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Abstract: Among all the methods of extracting randomness, quantum random number generators
are promising for their genuine randomness. However, existing quantum random number generator
schemes aim at generating sequences with a uniform distribution, which may not meet the
requirements of specific applications such as a continuous-variable quantum key distribution
system. In this paper, we demonstrate a practical quantum random number generation scheme
directly generating Gaussian distributed random sequences based on measuring vacuum shot noise.
Particularly, the impact of the sampling device in the practical system is analyzed. Furthermore,
a related post-processing method, which maintains the fine distribution and autocorrelation properties
of raw data, is exploited to extend the precision of generated Gaussian distributed random numbers to
over 20 bits, making the sequences possible to be utilized by the following system with requiring high
precision numbers. Finally, the results of normality and randomness tests prove that the generated
sequences satisfy Gaussian distribution and can pass the randomness testing well.

Keywords: quantum random number generator; vacuum fluctuation; Gaussian distribution;
goodness of fit test

1. Introduction

Random numbers are of extreme importance for a great range of applications from scientific to
engineering fields, including statistical sampling, numerical simulation, lottery and cryptography.
A typical example is the quantum key distribution (QKD), in which true random numbers are
essential to guarantee its unconditional security [1–4]. The algorithm-based classical pseudo-random
number generators have been widely applied for their simple implementation and extremely high
generation rate [5]. However, the inherent determinacy of pseudo-random number generator makes
it substantially deterministic and predictable, which leads to the failure in satisfying theoretically
requirements of secure communication systems. Aside from the algorithmic method, extracting
randomness from objective physical processes is feasible. An outstanding alternative is a quantum
random number generator (QRNG), which exploits the intrinsic random nature of quantum
mechanics [6,7], acts as a promising method in generating truly random numbers.

Practical (conventional) QRNG schemes could generate relatively large amount of quantum
random numbers with high generation rate via utilizing easily accessible commercial devices. Schemes
of various quantum random sources have been demonstrated, including discrete ones by measuring
photon path [8–10], photon arrival time [11–16], photon number distribution [17,18], as well as
continuous types of phase noise of lasers [19–25] and Raman scattering [21], intensity fluctuation of
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amplified spontaneous noise (ASE) [26–29], quadrature fluctuation of vacuum shot noise (VSN) [30–34],
and other potential quantum state [35,36].

Practical schemes are proposed under assumptions only if the QRNG model works well, indicating
the system is fully trusted. This rigorous condition can hardly be fulfilled, and device-independent (DI)
protocols are proposed for closing the loophole. DI QRNG verify the randomness physically, taking
the violation of Bell’s inequality [37,38] as a judgment [39,40]. Later, two branches are researched for
alternative proposes, namely randomness extraction [41–43] and randomness amplification [44,45].
While DI protocols sacrifice too much on feasibility, a third choice which compromises between
practical scheme and DI protocol is proposed. These semi-DI protocols merely make a reasonable
assumption on critical devices [46–51], pursuing practical security instead of unconditional security.

The application fields of Gaussian RNG are diverse, in which the most significant application
is a simulation, ranging from Monte Carlo method to simulation of communication channels and
noises, biology, psychology, and so on. Specific to quantum information, Gaussian RNG provides
Gaussian distributed random numbers for the modulation of coherent states in continuous-variable
QKD systems [4,52,53]. However, all the previous QRNG schemes provide uniformly distributed
random numbers. Despite the universality that uniformly distributed random numbers could be
converted to any distributions mathematically, the conversion process itself somehow costs much
time and resources. An even higher potential risk is the process is that approximate in principle [54],
which may lead to the defects of performance in applications. In fact, most of the continuous-variable
quantum random sources, owing to the central limit theorem, feature Gaussian distributed signals
in the time domain, including vacuum shot noise and phase noise of laser. Hence, it is possible for
hardware-based schemes, naturally including QRNG, to utilize the Gaussian distribution profile and
directly generate random numbers as required.

In this paper, a practical scheme directly generating Gaussian distributed quantum random
numbers is proposed. Here “directly” means there are no conversion steps from the uniform
distribution to the Gaussian distribution, however, the scheme is not post-processing free. Firstly,
we point out the inherent difference in entropy estimation for Gaussian distribution versus uniform
distribution. Practical issues of sampling devices are discussed for entropy estimation and system
optimization. Secondly, a novel post-processing method is proposed, which takes a step further from
the recursive method in classical Gaussian distributed RNG [55]. It is designed to remove the impacts
of classical noise in the system, along with fulfilling the precision and auto-correlation requirements
from applications. Finally, an experimental setup is demonstrated to show the feasibility of this scheme,
using vacuum fluctuation of the quantum state as a quantum random source, and the implementation
has passed tests both on normality and randomness.

The structure of this article is described as follows. In Section 2, firstly we discuss the difference
in entropy estimation between Gaussian and uniform distribution, followed by the analysis on the
impacts of practical sampling device to the system, namely sampling range and sampling resolution.
In Section 3, a novel post-processing method is proposed to overcome the disadvantage of low precision
in sampling, and substantially eliminate the impacts of electronic noise. In Section 4, an experimental
setup is demonstrated, as well as the optimization and post-processing operation on a practical system.
Finally, the test results for both normality and randomness are shown.

2. Analysis of Gaussian Distribution QRNG Scheme

2.1. Gaussian Random Source and Entropy Estimation

2.1.1. Vacuum Fluctuation

In principle, most quantum random sources with Gaussian distributed signals in the time domain
can be applied in our scheme. Particularly, for the following excellent features, we choose vacuum
fluctuation of the quantum state as the random source. Firstly, vacuum shot noise is caused by vacuum
fluctuation, thus the randomness of the pure state is secured. Secondly, it is a Gaussian state, which
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means the measurement of either position or momentum quadrature x̂ or p̂ in a pure state will always
follow a Gaussian distribution. Finally, it is identical, which means additional vacuum fluctuation
introduced by devices, such as the beam splitter, will not affect the randomness of the quantum source.

The Wigner function of vacuum fluctuation is as follows:

W0(x, p) =
1
π

exp(−x2 − p2). (1)

As a quasi-probability function, one can repeatedly measure either x̂ or p̂ quadrature, given
fixed phase difference θ between the vacuum and LO signals. Taken x̂ quadrature as an example,
the probability density distribution (PDF) of detected signal should be:

|ψ0(x)|2 =
∫ +∞

−∞
W0(x, p)dp =

1√
π

exp(−x2), (2)

which is perfectly Gaussian distributed, with mean value µ = 0 and variance σ2 = 1/2 centering at
the origin in phase space.

Security is always an important issue to a cryptographic system, including quantum random
number generator, compared to its classical counterpart. While there definitely exist some risks of
leaking information to an adversary in randomness extraction, modeling of vacuum fluctuation also
takes advantage of its property, of which it could never be tampered even by the most powerful
adversary under the limitation of physical laws. Hence, unlike traditional applications of classical
RNG, where the noises are usually treated as introduced by the system itself, we could regard any
noise in the system as introduced by the eavesdropper (Eve) in the QRNG system, in attempt to reach
a lower bound in entropy estimation.

For homodyne detection, signals of two balanced arms are subtracted to supress the common
mode noise, while the amplification factor is decided by the system:

∆n = n̂2 − n̂1 = ââ†
LO + âLO â† (3)

Vsamp ∝ A∆n

= A |αLO| (x̂ cos θ + p̂ sin θ) (4)

where â, â† are annihilation and creation operators, and n̂ = ââ† is photon number operator. Vsamp is
the signal at sampling device (after subtraction), A is the amplification factor of the system excluding
LO signal, |αLO| indicates the X quadrature of LO signal, and θ is the phase difference between vacuum
and LO signal.

2.1.2. Entropy Estimation

As a conventional scheme, entropy estimation should be done before randomness extraction.
The most significant difference between uniform and Gaussian distribution, from the perspective of
information theory, is that the information entropy H(X) should have different maximal value under
different constraints.

In order to eavesdrop most information under classical scenario, Eve’s best strategy is figuring
out maxx∈X pi, the highest probability of a single bin in a random variable X, which directly related to
the minimal entropy (min-entropy):

H(X) = − logd max
x∈X

pi (5)

where d is the base of logarithmic function that defines whether the signal is binary, decimal and so on.
For binary information, we often define d = 2. However, if the signal precision n is more than one bit,
it could be also treated as d = 2n.
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According to Equation (5), uniform distribution possesses the highest min-entropy with no
constraints. Noticing that for the continuous case, the classical entropy H(X) always goes to infinity
for ideal sampling device with infinite sampling range and precision. Therefore, we assume the total
amount of information a single signal carries is 1, thus normalize the maximal value of information
entropy rate. This method is also adopted for Gaussian distribution entropy estimation in the
following analysis.

Meanwhile, in applications under certain constraints, namely the quadratic quantity of energy (or
power) of signal is fixed, one is expecting a different PDF. This conclusion is naturally derived from
the property that among all distributions with the same variance σ2

m, Gaussian distribution possess the
highest information entropy H(X):

H(X) =
∫ +∞

−∞
−p(x) logd p(x)dx, (6)

where p(x) is PDF of ideal Gaussian distribution.
This property indicates that, if the variance of continuous noise signal σ2

m is observable and steady,
Gaussian distribution, instead of uniform distribution, could achieve a higher entropy. Fortunately, the
variance of total noise is indeed measurable in a QRNG scheme, and perfectly matches the assumption.
Therefore when adopting a Gaussian distributed random source, and the output is supposed to be
Gaussian distributed, the information quantity acquired is significantly reduced during the conversion
phase of uniform distributed RNG schemes.

To achieve a Gaussian distributed QRNG scheme, we should adopt the goodness of fit (GoF) test
essentially, to verify whether the PDF of our samples are sufficiently close to Gaussian distribution.
For Gaussian distribution, there are several specific methods, namely Kolmogorov-Smirnov test and
Anderson-Darling test, which will be introduced detailed in Appendix A.

2.2. Impact of Sampling Device

In the entropy estimation phase, a similar idea of “worst-case scenario” to its uniform counterpart
could be adopted. Alice loses some entropy due to the sampling device, while Eve may acquire
original information from ideal Gaussian distribution. As a continuous distribution, either infinite
sampling range or precision is not practical, and will cause the entropy to be infinite, hence we should
set conditions considering the performance of the practical device.

Classical Gaussian RNG often set ±10σ as the bounds in high multiple-sigma test [56], it seems
reasonable to follow this assumption. Meanwhile, sampling precision can hardly exceed 20 bits for
current commercial analog-to-digital converter (ADC). Practical issues of range, precision and depth
will be discussed in detail.

Despite the classical noise, our scheme is still a trusted device scheme, where the extractable
randomness of the scheme is described as:

Rdis = I(A : B), (7)

where Rdis refers to the generation rate of a QRNG, with “dis” indicates the discretized samples which
may lose some information, and I(A : B) is the mutual information between the authorized users
(Alice, Bob) in a cryptographic system. In QRNG scheme, specifically speaking, Alice is the random
source and Bob is the randomness extractor. Apparently, QRNG could be (and in most occasions is)
local, while Alice plays both roles of the sender (random source) and receiver (randomness extractor),
thus I(A : B) is actually determined by the entropy H(A) of measured classical data.

Particularly, in the vacuum fluctuation scheme we demonstrated below, the variance of total
noise σ2

m and the variance of classical noise σ2
c can be observed by separately turn on/off the LO
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signal. Since we believe the quantum noise Q and classical noise E are independent from each other,
the min-entropy of quantum noise is a conditional entropy, with classical noise part E is given by [33]:

Hmin(M|E) = − log2

[
max
e∈E

max
m∈M

PM|E(m|e)
]

= − log2 max (c1, c2) (8)

where M, E are the random variable of total measured noise and electric noise, m, e mean the
specific measured value. R, δ means the sampling range and sampling resolution respectively.

c1 = 1
2

[
erf
(

emax−R+3δ/2
2σq

)
+ 1
]

, c2 = erf
(

δ
2
√

2σq

)
refer to the two possible values that could be

the maximal pi in equation (5), and emax is the maximal possible electric noise.
Things differ a little under the Gaussian scenario comparing to the analysis in Ref. [33]. In the

uniform scenario, the optimization for the system is setting c1 = c2 to achieve maximal value of
min-entropy. However, if we adopt c1 = c2 in the Gaussian scheme, the raw data will definitely fail
the GoF test. Therefore, we have to analyze the impact of the sampling device under the restriction of
the GoF test, where there always exists c1 < c2.

2.2.1. Sampling Range

The sampling device will change the instantaneous voltages beneath (above) the lower (upper)
threshold into Vmin (or Vmax). Parameter k is the ratio between sampling range R and the deviation of
signal σ. Finite sampling range will truncate probability distribution P(x ≥ |kσ|) outside the range
±kσ, another consequence is a significant defect at the tails, causing the PDF non-Gaussian.

We define a parameter called normalized min-entropy in our analysis. Supposing an ideal
Gaussian distributed random variable, and the information carried by the variable is described
as Hideal−min before normalized to 1. When taking practical sampling device into consideration,
the distribution is changed and entropy is estimated by Equation (8), however, it should be monitored
by the GoF test. In the following analysis of sampling range and resolution, the utmost assumption is
that the signal should satisfy normality, meanwhile, this is also the assumption of the post-processing
method below. Therefore, the min-entropy of distribution from a practical system should initially pass
the GoF test, before it can be normalized according to the ideal case, which could be described as:

Hnorm−min = Hmin(M|E)/Hideal−min (9)

Figure 1 shows the relationship between sampling range and entropy Hnorm−min. Cases R ≤ ±3.5σ

are discarded for all precisions, due to these cases feature defected PDF and frequently fail the GoF
test (with default significance level at α = 0.01). However, lower sampling precision n with too
large a sampling range will also fail the GoF test (as the curve n = 12 stops at R = ±4.6σ), since the
discretization effect is notably increased for lower precision cases.

1. If k is too small, Vmin (Vmax) will occur too often, making the random variable more predictable,
and reducing entropy Hdis(X). Furthermore, the worse profile of Gaussian distribution has a
higher possibility to fail the GoF test, which does not match our requirement in post-processing
and applications;

2. If k is too large, most signals will locate in a small range of sample bins, making the most significant
bits (MSB) of samples more predictable, and also reducing entropy Hdis(X). On the other hand,
many sampling bins are unoccupied, wasting the ability of devices and substantially reduce the
sampling precision.
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Figure 1. Sampling range versus normalized min-entropy. The figure draws a set of entropy curves
calculated under the condition of sampling precision n = 12, 14, 16 and sampled data size L = 107

without noise. The observable value is the variance of total noise σ2
m. All data should pass GoF test in

prior.

For cases that successfully pass the GoF test, the normalized min-entropy decreases as the
sampling range increases. The curves do have a period of rapid increase under no constraint
assumption within the range of R ≤ ±3σ, however, these cases are rejected by the GoF test.
From the view of variance, as long as the raw data pass GoF test, the higher k value is, the lower
normalized min-entropy is, which shows great significance on the matching of signals and range of
sampling device.

2.2.2. Sampling Resolution

Finite sampling resolution δ will result in information loss of probability distribution inside the
minimal discrete sampling interval, i.e., resolution: [xi − 1/2δ, xi + 1/2δ] (i ∈ [0, 2n − 1]). Intuitively,
entropy grows monotonously as the precision n increases. If n is too small, too many detailed
information is lost, and we can hardly extract random numbers after entropy estimation.

Figure 2 shows the relationship between precision and entropy Hnorm−min. For the same reason
discussed in sampling range analysis, cases R ≤ ±3.5σ are discarded. Despite precision below n = 12
will frequently fail the GoF test due to a strong discretization effect, we estimate the entropy to show
the trend of entropy curve.

Figure 2. Sampling precision versus normalized min-entropy. The figure is calculated under conditions
of sampling range R = ±4σ and sampled data size L = 107 without noise. The observable value is the
variance of total noise σ2

m. All data should pass goodness of fit (GoF) test in prior.
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2.2.3. Sampling Depth

Sampling depth (maximal samples in a single buffer) mainly affects the practical system on the
GoF test. As the test statistic shows, the AD test is distribution-free, but sample data size L related.
An identical distribution with sample length 10 times larger would lead to approximately linearly
increased test statistic, while the critical value remains the same. This is due to it possessing a larger
sample space, any violation on the PDF becomes more significant to be detected by the GoF test.
Therefore, a larger buffer should have a better PDF for raw data to pass the GoF test.

According to the three factors discussed above, we consider R = ±4σ to be the optimal sampling
range for noise-free cases, while the precision and depth should be as high as possible, which is not
so crucial in uniform occasions. It is highly recommended that if one wants to achieve a Gaussian
distribution QRNG, sampling precision should be at least 12 bits for decent performances. Although
the sampling range of the practical device is often fixed, one can adjust the amplification factor A |αLO|
to adapt the range, aiming at achieving better performance. However, noise introduced by the system
with a variance of σ2

c often alters the PDF and optimization condition. If the noise introduced by
the system is not crucial enough to change the PDF, the following post-processing method could
significantly reduce its influence.

3. Post-Processing

Post-processing is an essential part in QRNG scheme. It is adopted to remove the impacts of
classical noise in the system as well as the imperfections caused by finite sampling. Most of the
post-processing methods can also improve the probability distribution of the raw data.

The Toeplitz matrix hashing method [23,57,58] is widely acknowledged as the most effective
method in QRNG post-processing. However, the whole method aims at uniform distribution
generation [59], hence does not meet our requirement. Here we propose another post-processing
method originating from recursive method [55] adopted in classical Gaussian distribution
RNG schemes.

The recursive method takes the essence of Gaussian distribution that is, the summation of any
amount of Gaussian distributed variables is still Gaussian distributed:

Y = ∑
i

kiXi, (10)

while the original Gaussian variables Xi satisfy Xi = N(µi, σ2
i ), the output Y should satisfy Y =

N(∑i kiµi, ∑i k2
i σ2

i ).
Traditional central limit theorem (CLT) of non-Gaussian cases is only valid for a large amount

of independent identical distributed (i.i.d.) variables. On the contrary, we notice that the recursive
method takes merely four elements as Equation (11) shows. By adopting the recursive method,
one could avoid the risk that raw data of distinguishable non-Gaussian variables are converted to
identical Gaussian distribution.

The original transfer matrix Trec is derived from following operations:

a′1 = c− a3,

a′2 = c− a2,

a′3 = a1 − c,

a′4 = a4 − c,

(11)
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where c = 1
2 ∑4

i=1 ai. Thus we can denote the relationship between input and output vectors Ai, A′i,
as well as the operating matrix Trec ( 1

2 is normalization coefficient):

A′i = Trec Ai, (12)

Trec =
1
2


1 1 −1 1
1 −1 1 1
1 −1 −1 −1
−1 −1 −1 1

 (13)

The output of the recursive method possesses the perfect auto-correlation property. However,
it cannot extend the precision of a single number. To make full utilization of all significant bits from
different raw data in precision extension, adding random numbers from i.i.d. Gaussian distributed
variables with different weight is an effective method.

The post-processing method includes two steps. Firstly, we utilize the m-MSB (most significant
method) as pre-processing. When entropy estimation phase introduced in Section 2 is done, the value
m utilized in m-MSB processing is:

m = bHmin(M|E)c. (14)

Then we should adopt an operation that could achieve precision extension based on the matrix in
Equation (13). Noticing that since the raw data has passed GoF test, the condition in Equation (10)
is satisfied.

Assuming X is the original variable from ADC, and we could divide X into groups of Gaussian
distributed variables Xi, before taking operation as Equation (10) shows. As an example where we
divide the raw data into l = 4 groups, consecutive four random numbers x4i−3, x4i−2, x4i−1, x4i will
form a vector Ai before operating by the matrix. Particularly in Equation (10), suppose ki = 2−i,
then every adjacent raw data in vector Ai shifts only 1 more bit, thus the summation has a precision of
n = m + l − 1 bit, while m, n are the precision of variables Xi and Y respectively, and l is the number
of groups.

Combining the analyses above, we modify Trec, adding different weights in the matrix similar to
the original method:

a′′1 = 1/2a1 + 1/4a2 − 1/8a3 + 1/16a4,

a′′2 = 1/16a1 − 1/2a2 + 1/4a3 + 1/8a4,

a′′3 = 1/8a1 − 1/16a2 − 1/2a3 − 1/4a4,

a′′4 = −1/4a1 − 1/8a2 − 1/16a3 + 1/2a4,

(15)

Thus we can denote (kNC is normalized coefficient):

A′′i = Srec Ai, (16)

Srec = kNC


1/2 1/4 −1/8 1/16

1/16 −1/2 1/4 1/8
1/8 −1/16 −1/2 −1/4
−1/4 −1/8 −1/16 1/2

 (17)

Noticing that, the structure of Srec is very much similar to the original structure of Trec. Both of
them share two rows/columns with three positive and one negative element, and others with three
negative and one positive. This type of structure is convenient for expansion to a 8× 8 or even larger
size of Trec [55]. For Srec, the expansion method is similar, as long as obeying the rules discussed below.

A crucial difference between the original recursive method and our modified method is that,
since we introduce different (absolute) value in the operating matrix, the auto-correlation coefficient
will not remain flat. Therefore, we can only extract one number from A′′i (of n = m + l− 1 bit precision,
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where m is the precision of Ai, n is the precision of A′′i as the final output, and l is the size of Srec),
while in the original case all numbers of A′i (of m bit precision) could be extracted.

The recursive method post-processing operation can be designed, hence it is definitely more
flexible than Equation (10). Utilizing matrix for a precision extension instead of simply adding i.i.d.
Gaussian distributed variables have several merits:

1. Elements in the matrix, which are the weights in Equation (10), is not fixed, as long as they
obey fundamental rules. For 4× 4 matrix, each row/column should have 3 (1) positive and
1 (3) negative elements, and the position should not be the same; the absolute value of each
row and column should not be the same either. Thus there is a group of Srec with hundreds of
possible matrices;

2. The size of the matrix can be designed, which indicates how many raw numbers will be used to
generate a final number. We take the 4× 4 matrix as the simplest example for a demonstration.
However, when the precision after m-MSB pre-processing is inadequate, and a larger matrix
should be made. For instance, in the following section of implementation, we generate 12-bit
Gaussian distribution numbers from 5-bit pre-processed data, by utilizing an 8× 8 matrix. If the
matrix size is larger, it has a potential for even higher precision, such as five-bit pre-processed
data with a 16× 16 matrix will generate 20-bit Gaussian distribution random numbers for high
multiple-sigma applications.

3. The values of matrix elements can also be designed, which indicate shifted bits of the
pre-processed data. In the discussion above, weights of adjacent numbers always follow the
power of 1/2, which means that adjacent numbers in Ai should shift one bit in the summation
operation. However, if we change 1/2 to 1/4, it means that adjacent numbers in Ai should shift
two bits. Remember that according to Equation (17), a normalized coefficient kNC should be
carefully calculated to match the designation, making sure that the input and output share the
same variance.

Due to these merits above, one can design his/her own Srec matrix for alternative experimental
setup and application requirements. Furthermore, these properties leave huge space for further
introduction of pre-generated random seed. It is possible to prepare several operating matrices and,
based on the random seed that generated before or even feedback from real-time QRNG scheme,
alter the post-processing operation in real-time.

Table 1 shows the relative entropy H(p(x)|q(x)) between p(x) and q(x). p(x) is quasi-Gaussian
distributed, mixing ideal Gaussian distribution with several types of classical noise of small variance.
q(x) is the reference of standard Gaussian distribution. It is clear that the post-processing method
dramatically reduces the impact of noise for low Quantum-to-Classical Noise Ratio (QCNR) cases,
especially for those noises which a not Gaussian, regardless of the profile of raw data. However, noise
is still distinguishable from a standard Gaussian distribution.

Table 1. The relative entropy H(p(x)|q(x)) between unknown distribution p(x) (with normalized
variance) and reference q(x) after post-processing. All data unit is 10−5. Hrel = 0 means the unknown
distribution is identical with q(x). We assume p(x) a standard Gaussian distribution with minor
classical noise of Quantum-to-Classical Noise Ratio (QCNR) ranges between 3–20 dB. In order to
highlight the smooth effect on profile, data is designed for small size with ntot = 10M. The residual
relative entropy after post-processing is possibly due to the finite size effect of this calculation method.

Normal t-Dist. Uniform Rayleigh
QCNR(dB) Before After Before After Before After Before After

3 1.2225 1.1653 1.2966 1.3338 64.036 4.6896 179.40 1.4993
6 1.2582 1.2320 1.4416 1.4348 9.0556 1.4507 39.991 1.2510

10 1.1920 1.2031 1.2478 1.2741 1.4064 1.3917 4.5185 1.1799
20 1.2717 1.2455 1.2132 1.2510 1.1764 1.1996 1.2150 1.1964
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4. Implementation and Results

4.1. Experimental Setup

We experimentally demonstrate our scheme and the setup is described as follows (as shown in
Figure 3). The local oscillator (LO) is 1550 nm distributed feedback laser (NKT Basic E15, linewidth
100 Hz) with adjustable output power up to 15 mW, connecting to an external variable optical
attenuator (VOA) precisely setting the amplification factor of the LO signal. Vacuum shot noise,
physically provided by blocking one input port of a 50:50 beam splitter (BS), interferes with the LO
light. The signals are sent to a well-tuned homemade AC coupling homodyne detector (measurement
bandwidth limited to 100 MHz by low-pass filter) to measure the noise. Following circuits including
an analog-to-digital converter (ADC, ADS5400, sampling frequency 200 MHz, sampling precision
12 bits and input voltage range 1.5 V peak-to-peak), a field-programmable gate array (FPGA, KC705
evaluation board) that realizes randomness extraction and data precision adjustment. The power
spectral density function of total noise and classical noise is shown in Figure 4.

CW Laser

VOA

BS

SUB

PD2

PD1

ADC EXTAMP

Homodyne Detection

Vacuum 

State

Figure 3. The schematic setup of vacuum shot noise based Gaussian distribution QRNG. Vacuum State:
Vacuum shot noise (as random source); CW Laser: Continuous wave Laser (as local oscillator); VOA:
Variable Optical Attenuator; BS: 50:50 Beam Splitter; PD1, PD2: Photodiode detectors (as balanced
detector in homodyne detection); SUB: Subtractor; AMP: Amplifier; ADC: Analog-to-Digital Converter;
EXT: Randomness Extractor.
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Figure 4. The power spectral density (PSD) function of the vacuum fluctuation when the LO is on (blue
line) and off (red line). Mean value of total measured noise is −52 dB, while mean value of classical
noise is -61 dB. The quantum noise dominates by over 10 dB with AC coupling, and possesses a flat
spectrum within system frequency limited by the homodyne detectors (1 kHz-100 MHz). The 3 dB
bandwidth of detector is 100 MHz.

To obtain better performance, the power of LO light was examined by setting different LO power
with fixed steps. When LO light was off, the vacuum fluctuation can be ignored, and classical noise
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contributes to the output with variance of σ2
c , which is quite steady. The variance of total noise σ2

m
increases as LO power (after VOA) getting stronger. The linear region ends when LO power increases
at around 9.5 mW, and finally saturates at around 13 mW.

Our system features a high QCNR to obtain more potential information from the signal. By setting
LO power slightly less than saturation at around 12 mW (6 mW for each branch of the balanced
detector), we have acquired 12-bit raw data after ADC, and calculate the variance of signals when
LO light is on/off, representing the total and classical noise respectively. Noticing that, all the units
mentioned here are sampling bins, and according to the ability of our sampling device, one sampling
bin roughly equals 0.366 mV.

Firstly, due to the fixed sampling range, Vrange = 212 and peak-to-peak value is Vp−p = 200,
around 3-bit MSB is discarded. Since the variance of total noise is σ2

m = 1200.7, classical noise is
σ2

c = 82.5, variance of quantum noise can be calculated: σ2
q = 1118.2, thus the maximal QCNR is

defined by:

γ = QCNR =
σ2

m − σ2
c

σ2
c

= 13.55, (18)

with QCNR = 13.55 (11.3dB), the classical noise after normalization is ε = 1/QCNR = 0.074.
As QCNR indicates, classical noise can only fluctuate in a small range of voltage. The MSB part of

the residual sample is more likely to be affected by quantum noise, while the LSB part is affected by
both quantum and classical noise, which is opposite to uniform distributed occasions.

We adopted entropy estimation initially in the post-processing phase. Our ADC has a
sampling range of 1.5 V peak-to-peak and sampling precision of 12 bits, thus the quantization
error is (δ/12)2 = 9.3132 × 10−10V2. While the LO is turned off, measured voltage variance is
σ2

c = 1.11× 10−5V2 = 82.5δ2, and the total measured voltage variance is σ2
m = 1.61× 10−4V2 =

1200.7δ2. Since the requirement of passing GoF test, the system always works under safety condition
c1 < c2 in Equation (8), hence the min-entropy is determined by the middle of the distribution, i.e.,
Hmin = − log2

(
erf
(

δ/2
√

2σq

))
= 6.39 bits. Therefore, the rest 12-3-6 = 3-bit LSB is doubtful for

security aspect, and its influence should be eliminated by post-processing. To make our scheme more
reserved, we keep five bits per signal from the highest non-zero MSB as the pre-processed data in
precision extension. Hence, the output has a precision of 5 + (8−1) = 12 bit per signal, while the
generation rate by number is 1/8 of the original sampling rate, i.e., 25 M samples per second.

We compare our scheme in generation rate with traditional method of uniform distribution
QRNG plus inverse CDF conversion post-processing. Under the condition of same implementation
settings, namely sampling rate fs, sampling precision n and min-entropy (extractable quantity of
randomness) H(x), traditional method can generate fsn raw data, and around fsn · H(x) final data
in uniform distribution with estimated entropy H(x), thus the generation rate of k-bit Gaussian
distributed number is fsn · H(x)/k. On the other hand, our scheme provide fs raw data, and around
fs/4 or fs/8 final data of Gaussian distributed numbers. Considering the practical condition n = 12,
H(x) = 0.6 ∼ 0.8 and k = 12 ∼ 32, n · H(x)/k and 1/4 are approximately at the same order of
magnitude. Hence, the generation rate of two schemes are leveled, but our scheme has avoided the
enormous time cost to calculate the accurate Gaussian distributed value, or space cost to store the huge
library of inverse CDF conversion in post-processing [55].

4.2. Test Results

Normality Tests

Initially, the random sequences after post-processing should pass the normality test. The fitting
result is shown in Figure 5. Random sequences also pass several goodness of fit tests, the test result is
shown in Table 2.
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Figure 5. Result of distribution fitting for the random sequences after post-processing. Blue and red
solid lines refer to sampled data and reference (ideal vacuum noise with certain variance σ2

q ) calculated
above, and dashed line refers to fitting result. The R-square parameter of fitting is R = 0.9997. Reference
and fitting curves are nearly indistinguishable.

Table 2. The result of commonly used matlab functions for normality test. Random sequences are
normalized to N(0, 1) for the convenience of matlab tests, so there are no terms of variance test.

Function Mean AD Test JB Test t-Test

Calculated result -3.6066× 10−4 p = 0.4788 p = 0.3678 p = 0.2023
Confidence Interval [−0.0036, 0.0036] NULL NULL NULL

Hypothesis value H = 0 H = 0 H = 0 H = 0
Status Pass Pass Pass Pass

We calculate the 3σ threshold of bias e(n) and auto-correlation ak(n) under Gaussian distribution.
3σ criterion is a rough threshold indicating the bias e(n) and auto-correlation coefficient ak(n) of
a finite sample from ideal random sequence, should only exceed the reference by a probability of
1− erf

(
3√
2

)
= 0.3%.

The 3σ criterion originates from the central limit theorem (CLT). The traditional description of
CLT indicates that, the summation Sn of a large amount of i.i.d. variables {Xi} should always have
asymtotic behavior to Gaussian distribution:

Zn =
Sn − E(Sn)√

D(Sn)
→ N(0, 1), (19)

where Sn = 1
n ∑i Xi.

As long as we can derive the mean value µ and variance σ2 of certain test statistic, the 3σ threshold
is determined. These two statistics can be described as:

e(n) =
1
N

N

∑
i=1

(si − s̄),

ak(n) =
∑N

i=1(si − s̄)(s(i+k) modN − s̄)

∑N
i=1 (si − s̄)2 ,

(20)

while for the Gaussian distribution, there exists: s̄ = µ = 0, 1
N ∑N

i=1 (si − s̄)2 = σ2 = 1. Hence the
simplification of Equation (20) is:

e(n) =
1
N

N

∑
i=1

si,

ak(n) =
∑N

i=1 sis(i+k) modN

∑N
i=1 s2

i
,

(21)
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One can easily derive that for Gaussian distribution, bias follows distribution e(n) ∼ N(µ, 1
n σ2),

while auto-correlation follows distribution ak(n) ∼ N(0, 1
n ) (and free from k), both of which are normal

distribution. We utilize the threshold of 3σ criterion to test our Gaussian distribution QRNG, and the
result of auto-correlation coefficient is shown in Figure 6.

0 200 400 600 800 1000 1200
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Figure 6. Result of 3σ test of auto-correlation |ak(n)| versus delay k 6= 0 for Gaussian distribution
random sequence. Data size is 50M samples, data precision is 12 bit. Threshold is derived as |ath(n)| =
3/
√

n as above (3/
√

n = 4.2× 10−4).

In addition, since no test suites for Gaussian distributed random numbers are proposed,
we converted some random sequences into uniform distribution for randomness test. The conversion
is done by CDF method discussed in Appendix B, and result is shown in Table 3.

Table 3. The result of NIST-STS test after CDF conversion of Gaussian distributed random sequences.
For the test environment of significance level α = 0.01 and block number of n = 400, The p-value
should be over p = 0.01 threshold (uniformity version over 0.0001) and proportion should be within
the range [0.9750, 1].

Test Name p-Value Proportion Status

Frequency 0.811993 394 Success
Block Frequency 0.719747 396 Success
Cumulative Sums 0.785103(KS) 395.5(avg) Success
Runs 0.270275 396 Success
Longest Run 0.788728 397 Success
Rank 0.375313 396 Success
FFT 0.272297 395 Success
Non-overlapping 0.647530(KS) 394(avg) Success
Overlapping 0.830808 396 Success
Universal 0.451234 393 Success
Approx. Entropy 0.739918 397 Success
Excursions 0.726852(KS) 392(avg) Success
Excursions Var. 0.670396(KS) 395(avg) Success
Serial 0.589359(KS) 392.5(avg) Success
Complexity 0.124115 392 Success

5. Conclusions

We proposed a QRNG scheme generating random numbers with a Gaussian distribution based
on vacuum fluctuation of a quantum state, a theoretically proved Gaussian distributed random
source. We analyzed the impacts of practical issues in the QRNG system, including sampling range,
resolution and depth of the sampling device, along with the optimization method. A novel and
flexible post-processing method is proposed, inspired from the classical RNG scheme, to extend the
precision of a single number to 12, or even over 20 bits, where the property of Gaussian distributed
PDF and the auto-correlation coefficient is maintained at the cost of generation rate. The generated
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random sequence simultaneously pass normality test focusing on distribution, as well as widely
acknowledged NIST-STS test suite of randomness (after converted to uniformly distributed sequences).
We experimentally demonstrated the scheme based on vacuum shot noise with conventional devices
at a generation rate 25M of sample per second.

Our scheme takes advantage of the Gaussian distributed profile of quantum random sources.
Impacts of practical issues, strictly monitored by the GoF test, could not essentially alter the profile
of Gaussian distribution, and consequently eliminated by the designed fast post-processing method.
We provide a novel method generating Gaussian distribution random numbers effectively.

We have to admit that, despite other QRNG schemes would face consumption in
uniform-Gaussian conversion procedure, the generation rate in our system is questionably inadequate
for a practical continuous-variable QKD system [52,53]. However, we demonstrate the feasibility of
such kind of QRNG, and two factors limiting the generation rate, both of which have huge space to
improve. Firstly, the frequency in our system is quite low, due to the limitation of detector bandwidth
in our system. By using a balanced detector and ADC with higher bandwidth, the generation rate
can be further improved by at least one order of magnitude. Secondly, despite the amplification, the
amplified vacuum fluctuation is still too small compared with the sampling range, thus fails to make
full use of the ADC.

Security is another issue that is extremely significant to the QRNG system. Despite that, we have
estimated the min-entropy in the trusted device scenario and operate accordingly, it is not totally clear
whether the MSB method in the post-processing phase eliminates the classical noise substantially.
The security issue of Gaussian-distributed schemes needs further discussion, and we are keen on
tracing related works.
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Abbreviations

The following abbreviations are used in this manuscript:

QRNG Quantum Random Number Generator
QKD Quantum Key Distribution
PDF/CDF Probability/Cumulative Density Function
ADC Analog-to-Digital Converter
QCNR Quantum-to-Classical Noise Ratio
GoF Goodness of Fit
MSB/LSB Most/Least Significant Bit

Appendix A. Goodness of Fit Tests

Kolmogorov-Smirnov(KS) test is the primitive one-parameter GoF test for Gaussian
distribution [60]. KS test describe the closeness by distance:

Di = max
(

F(Yi)−
i− 1

N
,

i
N
− F(Yi)

)
, (A1)

where Yi is the sample data in ascending order, F(·) is the CDF, N is the size of sample. The final test
statistic is the maximal distance among Di: D = max Di, with significance level of α = 0.01.
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Unfortunately, Gaussian distributed QRNG should pay extremely high attention to the tails
of PDF, due to large amount of information they bring, of which KS test can not indicate properly.
Therefore, a modified version of GoF, the Anderson-Darling(AD) test is proposed [61]:

A2 = −N −
N

∑
i=1

2i− 1
N

[ln F(Yi) + ln(1− F(YN+1−i))] , (A2)

where A2 is the test statistic.
AD test has a critical value that only relates to α and distribution-free. In practice, we choose the

AD test over its alternatives (KS test as well as other GoF tests, namely Jarque–Bela, Lilliefors tests,
etc.) as the main GoF test, for its convenience, universality and high sensitivity towards profile [62].

Appendix B. PDF Conversion between Uniform and Gaussian Distribution

Several methods are proposed for uniform-Gaussian (or inverse) conversion. Two of them
outstand for their clear expressions:

1. Box-Muller [63]: uniform and Gaussian distribution can be easily converted between rectangular
basis and polar basis. Assuming that U, V are uniform variables, and X, Y are Gaussian variables,
there exist:

X =
√
−2 ln U sin(2πV),

Y =
√
−2 ln U cos(2πV),

(A3)

while for the inverse conversion:

U = exp(−X2 + Y2

2
),

V =
1

2π
arctan

X
Y

.
(A4)

2. CDF method [54]: uniform and Gaussian distribution can be converted by cumulative density
function (CDF) and its inverse function, ICDF. Assuming U an uniform variable, and X a Gaussian
variable, there exist:

U = CDF(X),

X = ICDF(U),
(A5)

CDF(·) is denoted as:

CDF(X) =
∫ x

−∞
p(x)dx =

1
2

[
1 + erf(

x√
2
)

]
. (A6)

In the last part of our randomness test, we choose the CDF method for its convenience in numerical
calculation. However, when utilizing the ICDF method as the ordinary Gaussian distribution QRNG
scheme, it still takes a large number of resources, compared to our post-processing method.
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