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Abstract: Optimal realizations of quantum technology tasks lead to the necessity of a detailed
analytical study of the behavior of a d-level quantum system (qudit) under a time-dependent
Hamiltonian. In the present article, we introduce a new general formalism describing the unitary
evolution of a qudit (d ≥ 2) in terms of the Bloch-like vector space and specify how, in a general case,
this formalism is related to finding time-dependent parameters in the exponential representation of
the evolution operator under an arbitrary time-dependent Hamiltonian. Applying this new general
formalism to a qubit case (d = 2), we specify the unitary evolution of a qubit via the evolution of a
unit vector in R4, and this allows us to derive the precise analytical expression of the qubit unitary
evolution operator for a wide class of nonstationary Hamiltonians. This new analytical expression
includes the qubit solutions known in the literature only as particular cases.

Keywords: unitary evolution of a qudit; nonstationary Hamiltonian; exponential representation;
Bloch-like vector space; analytical solutions

1. Introduction

Optimal realizations of many quantum technology tasks need a detailed analysis of the evolution
of a d ≥ 2 dimensional quantum system (a qudit) under a time-dependent Hamiltonian H(t).
In mathematical terms, the evolution of a qudit under a Hamiltonian H(t) is described on the
complex Hilbert space Cd by the unitary operator UH(t, t0)—the solution of the Cauchy problem
for the nonstationary Schrödinger equation with the initial condition UH(t0, t0) = I. For a
time-independent Hamiltonian H, the solution of this Cauchy problem is well-known and reads
UH(t, t0) = exp {−iH(t− t0)}.

If a Hamiltonian H(t) depends on time, then UH(t, t0) is formally given by the T-chronological
exponent [1,2]—the infinite Volterra series (see Equation (4) in Section 2)—which however converges
only under some suitable conditions on H(t). For some nonstationary Hamiltonians beyond these
conditions, the analytical expressions for UH(t, t0) via parameters of H(t) are also known, for example,
for a free electron [3] in a magnetic field spinning around the x3-axis. However, for an arbitrary
time-dependent H(t), the analytical expression for UH(t, t0) via parameters of H(t) is not known even
in a qubit case.

On the other hand, every unitary operator V on the complex Hilbert space Cd has the form
exp{−iα}Ṽ, α ∈ R, where a unitary operator Ṽ is an element of the SU(d) group and, hence, admits
the exponential parametrization via the SU(d) group generators. Therefore, for a d-dimensional
quantum system, the exponential representation for UH(t, t0) must also exist and there arises the
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problem of how to determine time-dependent parameters of this exponential representation via
characteristics of a given qudit Hamiltonian H(t). To our knowledge, the solution of this problem has
not been reported in the literature even for a qubit case.

In this article, we introduce a new general formalism describing the unitary evolution of a qudit
(d ≥ 2) in terms of the Bloch-like vector space and specify how in a general case this formalism is
related to finding time-dependent parameters in the exponential representation of UH(t, t0) under an
arbitrary time-dependent Hamiltonian.

Applying this general formalism to a qubit case (d = 2), we specify the unitary evolution of a
qubit via the evolution of a unit vector in R4 and find the precise analytical expression of UH(t, t0) for
a wide class of nonstationary qubit Hamiltonians. This new analytical expression includes the qubit
solutions known in the literature only as particular cases.

The article is organized as follows.
In Section 2, we analyze the known representations for UH(t, t0) and discuss the properties

of the generalized Gell-Mann representation for an arbitrary Hamiltonian and an arbitrary unitary
operator on Cd (different aspects of the Bloch-like representations for qudits were considered in
References [4–11]).

In Section 3, we derive (Theorem 1) the new general equations specifying the unitary evolution
of a qudit (d ≥ 2) under a Hamiltonian H(t) in terms of parameters in the generalized Gell-Mann
representation and in the exponential representation of UH(t, t0).

In Sections 4 and 5, we specify (Theorem 2) the forms of these new general equations in a qubit
case (d = 2) and derive the novel precise analytical expression of UH(t, t0) for a wide class of qubit
Hamiltonians H(t).

The main results of the article are summarized in Section 6.

2. Unitary Evolution of a Qudit (d ≥ 2)

Let H(t) : Cd → Cd, H(t) = H†(t), d ≥ 2, be a Hamiltonian of a d-level quantum system (qudit).
The evolution of a qudit state

ρ(t) = UH(t, t0)ρ(t0)U†
H(t, t0), t ≥ t0, (1)

under a Hamiltonian H(t) is determined by the unitary operator UH(t, t0)—the solution of the Cauchy
problem for the nonstationary Schrödinger equation

i
d
dt

UH(t, t0) = H(t)UH(t, t0), t > t0,

UH(t0, t0) = I,
(2)

which satisfies the cocycle property

UH(t, t0) = UH(t, s)UH(s, t0), s ∈ [t, t0], (3)

and is represented by the chronological operator exponent

UH(t, t0) = T exp
{
−i
∫ t

t0

H(τ)dτ

}
= I− i

∫ t

t0

H(τ)dτ +
1
2
(−i)2

∫ t

t0

dτ1

∫ t

t0

dτ2T {H(τ1)H(τ2)}+ ...

+
1
n!
(−i)n

∫ t

t0

dτ1

∫ t

t0

dτ2T{ H(τ1)H(τ2) · ... · H(τn)}+ ...,

(4)
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where symbol T{·}means

T{H(τ1) · ... · H(τm)} := H(τα1) · ... · H(ταm), τα1 ≥ τα1 > ... > ταm . (5)

If a Hamiltonian H(t) satisfies the condition[
H(t),

∫ t

t0

H(τ)dτ

]
= 0, t > t0, (6)

then the series in Equation (2) reduces to

UH(t, t0) = exp
{
−i
∫ t

t0

H(τ)dτ

}
. (7)

Recall (see, for example, References [4–8]) that any linear operator A on Cd admits the
representation via the generalized Gell-Mann matrices—the generalized Gell-Mann representation:

A = a0 I +

√
d
2

a ·Λ, a ·Λ := ∑
j=1,...,d2−1

aj ·Λj,

a0 =
1
d

tr[A] ∈ C, aj =
1√
2d

tr[AΛj] ∈ C, a = (a1, ...ad2−1),

(8)

where Λ = (Λ1, ...Λd2−1) is a tuple of traceless Hermitian operators on Cd:

Λk = Λ†
k , tr[Λk] = 0, k = 1, ..., (d2 − 1), (9)

satisfying the relations

ΛkΛm =
2
d

δkm I + ∑
j
(dkmj + i fkmj)Λj,

[Λk, Λm] = 2i ∑
j

fkmjΛj, tr[ΛkΛm] = 2δkm,
(10)

and constituting generators of group SU(d). In Equation (10), δkm is the Kronecker symbol and
f jkm, djkm are antisymmetric and symmetric structure coefficients of SU(d), respectively. The matrix
representations of the operators Λj, j = 1, ...., (d2 − 1), in the computational basis of Cd constitute
the higher-dimensional extensions of the Pauli matrices in the qubit case (d = 2) and the Gell-Mann
matrices in the qutrit case (d = 3).

For a vector a in Equation (8)

tr
[
A† A

]
= d

(
|a0|2 +

∥∥a′
∥∥2
Cd2−1

)
, (11)

where we choose the same normalization of a vector a in representation (8) as for traceless qudit
observables in Reference [8]. Here and in what follows, by the upper prime r′ ∈ Cd2−1, we denote the
column-vector comprised of components of a vector r = (r1, ..., rd2−1).

Note that representation (8) constitutes the decomposition of a linear operator A on Cd in the
orthogonal basis {

I, Λ1, ..., Λd2−1
}

(12)

of the vector space L where linear operators A : Cd → Cd constitute vectors, and the scalar product is
defined by 〈A1, A2〉L := tr[A†

1 A2].
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For a Hamiltonian H(t) on Cd, the generalized Gell-Mann representation (8) reads

H(t) = b0(t)I +
√

d
2 (bH(t) ·Λ) ,

b0(t) = 1
d tr[H(t)] ∈ R, b(j)

H (t) = 1√
2d

tr[H(t)Λj] ∈ R,

bH(t) = (b(1)H (t), ..., b(d
2−1)

H (t)) ∈ Rd2−1,

(13)

and condition (6) implies the following limitations on a vector bH(t) ∈ Rd2−1:

∑
k,m

fkmjb
(k)
H (t)

( ∫ t

t0

b(m)
H (τ)dτ

)
= 0, j = 1, ....,

(
d2 − 1

)
. (14)

Therefore, if a vector bH(t) satisfies conditions (14), then, by Equation (7),

UH(t, t0) = exp
{
−i
∫ t

t0

b0(τ)dτ

}
exp

{
− i

√
d
2

(∫ t

t0

bH(τ)dτ

)
·Λ
}

. (15)

However, for an arbitrary qudit Hamiltonian H(t), condition (6) (equivalently, condition (14)) does
not need to be fulfilled, so that the exponential representation (15) of UH(t, t0) via the decomposition
coefficients b0(t), bH(t) of a Hamiltonian H(t) by Equation (13) does not, in general, hold.

On the other hand, as it is the case for every unitary operator on Cd, operator UH(t, t0) must have
the form

UH(t, t0) = exp {−iα(t, t0)} ŨH(t, t0), α(t, t0) ∈ R, (16)

where ŨH(t, t0) ∈ SU(d) and, hence, as any element of SU(d), admits (see, for example, Reference [12]
and references therein) the exponential parametrization

ŨH(t, t0) = exp
{
− i

√
d
2
(nH(t, t0) ·Λ)

}
(17)

via generators Λ1, ...Λd2−1 of group SU(d) and a vector nH(t, t0) = (n1, ...nd2−1) ∈ Rd2−1, which in
case of solution ŨH(t, t0) ∈ SU(d) depends also on a Hamiltonian H(t), time t and an initial moment
t0. In Equation (17), similarly as in decomposition (8), we use the following normalization for a vector
nH(t, t0) :

tr
[(√

d
2

nH(t, t0) ·Λ
)2]

= d ‖nH(t, t0)‖2
Rd2−1 . (18)

Relations (16) and (17) imply that, for every qudit Hamiltonian H(t), for which a unique solution
of Equation (2) exists, the unitary evolution operator UH(t, t0) admits the exponential representation

UH(t, t0) = exp {−iα(t, t0)} exp
{
− i

√
d
2
(nH(t, t0) ·Λ)

}
,

α(t0, t0) = 0, nH(t0, t0) = 0,

(19)

where parameters α(t, t0), nH(t, t0) can be presented in the form

α(t, t0) =
∫ t

t0

β0(τ)dτ, β0(τ) ∈ R, nH(t, t0) =
∫ t

t0

βH(τ)dτ, βH(t) ∈ Rd2−1. (20)

This implies

UH(t, t0) = exp
{
−i
∫ t

t0

β0(τ)dτ

}
exp

{
− i

√
d
2

(∫ t

t0

βH(τ)dτ

)
·Λ
}

. (21)
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The form of this representation is quite similar to the one of representation (15), which is valid
if a Hamiltonian H(t) satisfies condition (14). However, for an arbitrary Hamiltonian H(t),
a vector βH(t) ∈ Rd2−1 in Equation (21) does not need to be equal to a vector bH(t) ∈ Rd2−1 in
representation (13) for this H(t).

Therefore, in order to specify the unitary evolution operator UH(t, t0) under an arbitrary
nonstationary Hamiltonian H(t), we need to express parameters β0(t) ∈ R, βH(t) ∈ Rd2−1 in
Equation (21) via coefficients b0(t) ∈ R, bH(t) ∈ Rd2−1 in the generalized Gell-Mann representation (13)
for a given H(t).

In the proceeding sections, we consider this problem for an arbitrary d ≥ 2 and further study the
case d = 2 in detail.

3. Evolution Equations in the Bloch-Like Vector Space

Together with the generalized Gell-Mann representation (13) for a Hamiltonian H(t), let us also
specify decomposition (8) for a unitary operator (17) on Cd:

ŨH(t, t0) = exp
{
− i

√
d
2
(nH(t, t0) ·Λ)

}
= u0(t, t0)I +

√
d
2

uH(t, t0) ·Λ,

uH(t, t0) = (u(1)
H , ..., u(d2−1)

H ),

u0(t, t0) =
1
d

tr[ŨH(t, t0)] ∈ C,

u(j)
H (t, t0) =

1√
2d

tr[ŨH(t, t0)Λj] ∈ C.

(22)

The initial conditions in Equation (19) and the unitary property of ŨH(t, t0) imply

u0(t0, t0) = 1, u(j)
H (t0, t0) = 0, (23)

and
|u0(t, t0)|2 +

∥∥∥u
′
H(t, to)

∥∥∥2

Cd2−1
= 1, (24)

u0(t, t0)
(

u(j)
H
(t, t0)

)∗
+ u∗0(t, t0)u

(j)
H (t, t0)

+

√
d
2 ∑

k,m

(
dkmj + i fkmj

)
u(k)

H (t, t0)
(

u(m)
H (t, t0)

)∗
= 0,

for all t ≥ t0 and all j = 1, ..., (d2 − 1).
Substituting Equation (22) into Equation (19), Equation (19) into Equation (2), and taking

uH(t, t0) = iũH(t, t0), we derive

α(t, t0) = exp
{
−i
∫ t

t0

b0(τ)dτ

}
(25)

and the following system of linear ordinary differential equations for u0(t, t0) and ũH(t, t0) :

·
u0(t, t0) = bH (t) · ũH(t, t0),

d
dt

ũ(j)
H (t, t0) = −u0(t, t0)b

(j)
H +

√
d
2 ∑

m,k

(
fkmj − idkmj

)
b(k)H (t)ũ(m)

H (t, t0),

u0(t0, t0) = 1, ũH(t0, t0) = 0.

(26)
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Relation (24) constitute the functionally independent first integrals of these ordinary differential
equations (ODEs).

Thus, for an arbitrary d ≥ 2, the unitary evolution operator UH(t, t0) under a Hamiltonian H(t)
is given by

UH(t, t0) = exp
{
−i
∫ t

t0

b0(τ)dτ

}
exp

{
− i

√
d
2
(nH(t, t0) ·Λ)

}
= exp

{
−i
∫ t

t0

b0(τ)dτ

}(
u0(t, t0) I + i

√
d
2

ũH(t, t0) ·Λ
)

,

(27)

where u0(t, t0) ∈ C, ũ′H(t, t0) ∈ Cd2−1 satisfy the Cauchy problem (26) for the nonautonomous system
of linear ordinary differential equations (ODEs).

On the other hand, due to the results in Reference [12], we can explicitly represent u0(t) ∈ C,
ũ′H(t) ∈ Cd2−1 in Equation (27) via a vector nH(t, t0).

Namely, for each group element Vd ∈ SU(d) with the exponential parametrization

Vd(r) = exp
{
− i

√
d
2
(r ·Λ)

}
, r ∈ Rd2−1, (28)

let us consider the generalized Gell-Mann representation (8):

exp
{
− i

√
d
2
(r ·Λ)

}
= v0(r) I +

√
d
2
(v(r) ·Λ) ,

|v0(t)|2 +
∥∥v′(t)

∥∥2
Cd2−1 = 1,

(29)

where

v0(r) =
1
d

tr
[

exp
{
− i

√
d
2
(r ·Λ)

}]
, v(r) =

1√
2d

tr
[

Λ exp
{
− i

√
d
2
(r ·Λ)

}]
. (30)

Denote by E(λm(r)) the spectral projection of a Hermitian operator (r · Λ) corresponding to its

eigenvalue λm(r) ∈ R with multiplicity kλm (r). The spectral decomposition of Vd(r) = exp{−i
√

d
2 (r ·

Λ)} reads

Vd(r) = ∑
λm

exp
{
− i

√
d
2

λm(r)
}

E(λm(r)). (31)

Substituting this into relations in Equation (30) and taking into account the cyclic property of the trace
and relation tr[E(λm(r))] = kλm (r), we derive (these expressions differ by normalizations from those in
Reference [12])

v0(r) =
1
d

tr [Vd(r)] =
1
d ∑

λm

kλm (r) exp
{
− i

√
d
2

λm(r)
}

, (32)

vj(r) =
1√
2d

tr
[
ΛjVd(r)

]
=

1√
2d

tr

[
Λj

(
∑

m=0,1,...

(−i)m

m!

(
d
2

)m
2
(r ·Λ)m

)]

=
i
d

∂

∂rj
tr [Vd(r)] ,

(33)

which imply

v0(r) =
1
d

Kd(r), vj(r) =
i
d
(∇r Kd(r) ·Λ) ,

Vd(r) =
1
d

Kd(r)I + i

√
d
2

(
1
d
∇r Kd(r) ·Λ

)
,

(34)
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where ∇r :=
(

∂
∂r1

, ..., ∂
∂rd2−1

)
and

Kd(r) := ∑
λm(r)

kλm(r) exp
{
− i

√
d
2

λm(r)
}

. (35)

From Equations (29) and (34), it follows that, in relations in Equation (27),

u0(t, t0) =
1
d

Kd (nH(t, t0)) ,

ũH (t) =
1
d
∇nH

(Kd(nH(t, t0))),

(36)

for some vector nH(t, t0) ∈ Rd2−1, so that

ŨH(t, t0) = exp
{
− i

√
d
2
(nH(t, t0) ·Λ)

}
=

1
d

Kd (nH(t, t0)) I + i
1√
2d
∇nH

(Kd(nH(t, t0))) ·Λ.
(37)

The substitution of Equation (36) into the first and the second equations of the system of linear ODEs
of Equation (26) gives

∂

∂nH
Kd(nH(t, t0)) ·

dnH(t, t0)

dt
= bH(t) ·

∂

∂nH
Kd(nH(t, t0))

m
dnH(t, t0)

dt
− bH(t) ⊥

∂

∂nH
Kd(nH(t, t0))

(38)

and
∂

∂nH

(
∂

∂n(j)
H

(Kd(nH(t, t0))

)
· dnH(t, t0)

dt

= −b(j)
H (t)Kd(nH(t, t0)) +

√
d
2 ∑

k,m

(
fkmj − idkmj

)
b(k)H (t)

∂

∂n(m)
H

Kd(nH(t, t0)),

j = 1, ..., (d2 − 1),

(39)

respectively.
Relations in Equations (19) and (22)–(39) prove the following statement.

Theorem 1. Let H(t) = b0(t)I+ b(t) ·Λ, b(t) ∈ Rd2−1, be a Hamiltonian on Cd. For each d ≥ 2, the solution
of the Cauchy problem for the nonstationary Schrödinger equation (Equation (2))—the unitary operator UH(t, t0)

on Cd describing the evolution of a qudit under a Hamiltonian H(t)—has the form

UH(t, t0) = exp
{
− i

∫ t

t0

b0(τ)dτ

}
exp

{
−i

√
d
2
(nH(t, t0) ·Λ)

}

= exp
{
−i
∫ t

t0

b0(τ)dτ

}(
u0(t, t0) I + i

√
d
2

ũH (t, t0) ·Λ
)

.

(40)
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Here, the scalar function u0(t, t0) ∈ C and vector uH(t, t0) = (u(1)
H , ..., u(d2−1)

H ), u(j)
H ∈ C, are the solutions of

the Cauchy problem in Equation (26), equivalently,

u0(t, t0) =
1
d

Kd (nH(t, t0)) , ũH(t, t0) =
1
d
∇nH

(Kd(nH(t, t0)) , (41)

where function Kd(n) is given by Equation (35), and vector nH(t) ∈ Rd2−1 is the solution of the Cauchy problem

dnH(t, t0)

dt
= bH(t) + n⊥(t, t0), nH(t0, t0) = 0, (42)

with n⊥(t, t0) ∈ Rd2−1 satisfying for all t > t0 the orthogonality relation n⊥(t, t0) · ∇nH (Kd(nH(t, t0)) = 0
and determined via the equation

dnH(t, t0)

dt
· ∂

∂nH

(
∂

∂nj
Kd(nH(t, t0)

)

= −b(j)
H (t)Kd(nH(t, t0)) +

√
d
2 ∑

k,m

(
fkmj − idkmj

)
b(k)H (t)

∂

∂n(m)
H

Kd(nH(t, t0)).

(43)

In Section 4 and 5, we specify Equations (26), (42) and (43) for a general qubit case.

Finding Kd(n) for d=2,3

In this subsection, we consider the characteristic function Kd(r), given by Equation (35), and also,
representation (29) for d = 2, 3.

• For d = 2, the matrix representations of generators σ1, σ2, σ3 of SU(2) in the computational basis
in C2 are given by the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

σ = (σ1, σ2, σ3), tr[σkσj] = 2δjk,

σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2,

(44)

and, for each vector r ∈ R3, the traceless Hermitian operator n · σ on C2 has eigenvalues ±‖n‖R3 .
Therefore, by Equation (35), the characteristic function K2(r) and its derivatives are given by

K2(r) = exp {−i ‖r‖R3}+ exp {i ‖r‖R3}
= 2 cos ‖r‖R3 ,

∂

∂rj
K2(r) = −2 sin (‖r‖R3)

rj

‖r‖R3
,

(45)

and representation (29) reduces to the well-known formula

exp{−i (r · σ)} = I cos ‖r‖R3 − i sin (‖r‖R3)
r · σ
‖r‖R3

(46)

(see, for example, Reference [13]).
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• For d = 3, the matrix representations of the SU(3) generators in the computational basis in C3

constitute the Gell-Mann matrices. For each r ∈ R8, the traceless Hermitian operator (r ·Λ) on
C3 has eigenvalues [12]

λ1,2(r) =
2√
3
‖r‖R8 sin

(
φ(r)± π

3

)
,

λ3(r) = −
2√
3
‖r‖R8 sin (φ(r)) ,

(47)

where

sin (3φ(r)) = − 3
√

3

2 ‖r‖3
R8

det(r ·Λ). (48)

From relations (35) and (47), it follows that, for d = 3,

K3(r) = exp
{
− i

√
3
2

λ1(r)
}
+ exp

{
− i

√
3
2

λ2(r)
}
+ exp

{
− i

√
3
2

λ3(r)
}

= ∑
k=0,1,2

exp{−i
√

2 ‖r‖R8 sin(φ(r) + 2πk/3)}
(49)

and (see Appendix B)

∂

∂r
K3(r) = −3i

√
2
3

(
F1(r) p(r) + F2(r)

r
‖r‖R8

)
, (50)

where

p(m)(r) :=
8

∑
i,j=1

r(i)r(j)dijm

‖r‖2
R8

, p′(r) ∈ C8,

F1(r) := ∑
k=0,1,2

exp
{
−i
√

2 ‖r‖R8 sin(φ(r) + 2πk/3)
}

1− 2 cos(2(φ(r) + 2πk/3))
,

F2 (r) :=
2√
3

∑
k=0,1,2

sin (φ(r) + 2πk/3)

×
exp

{
−i
√

2 ‖r‖R8 sin(φ(r) + 2πk/3)
}

1− 2 cos((2(φ(r) + 2πk/3))
.

(51)

Taking into account Equations (37), (49) and (50), we derive that, for any vector r ∈ R8,

exp
{
− i

√
3
2
(r ·Λ)

}
=

I
3

K3(r) + { F1 (φ(r)) (p(r) ·Λ) + F2 (φ(r)) (r ·Λ) } (52)

In view of relations (10) and (51), this expression can be otherwise represented in the form

exp
{
− i

√
3
2
(r ·Λ)

}
= ∑

k=0,1,2

{
1

‖r‖2
R8

(r ·Λ)2 +
2√

3 ‖r‖R8
(r ·Λ) sin (φ(r) + 2πk/3)

− I
3
[1 + 2 cos (2(φ(r) + 2πk/3))]

}

×
exp

{
−i
√

2 ‖r‖R8 sin (φ(r) + 2πk/3)
}

1− 2 cos (2(φ(r) + 2πk/3))
,

(53)

which agrees with formula (5) in Reference [14].
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4. General Nonstationary Qubit Case

In this section, based on the new general results derived in Sections 2 and 3, we specify the unitary
evolution operator (Equation (40)) for d = 2.

In the qubit case, Λ ≡ σ = (σ1, σ2, σ3) and a general Hamiltonian on C2 has the form

H(t) = b0(t)I+ b(t) · σ, b(t) ∈ R3. (54)

Here and in what follows, in short, we suppress the lower index H in notations nH(t), bH(t) ∈ R3 and
the lower index R3 in notation ‖·‖R3 .

Let us specify the main issues of Theorem 1 if d = 2. In this case:

• The structure coefficients dkmj = 0, for all k, m, j = 1, 2, 3, and coefficients fkmj = εkmj constitute
the Levi-Civita symbol. Therefore, the system of linear ODEs (Equation (26)) reduces to

·
u0(t, t0) = b(t) · ũ(t, t0), ũ0(t0, t0) = 1,
·
ũ(t, t0) = −u0(t, t0)bj + b(t)× ũ(t, t0), ũ(t0, t0) = 0,

(u0(t, t0))
2 + ‖ũ(t, t0)‖2

R3 = 1,

(55)

with u0(t, t0) ∈ R, ũ(t, t0) ∈ R3 and notation b× ũ for a vector product on R3.

By introducing a 4-dimensional real-valued unit vector q(t, t0) = (u0(t, t0), ũ(t, t0)) ∈ R4 and
denoting by q′(t, t0) the column-vector with elements comprised of components of vector q(t, t0),
we rewrite the system of linear ODEs (Equation (55)) in the normal form

d
dt

q′(t, t0) = A(t)q′(t, t0), q(t0, t0) = (1, 0, 0, 0), (56)

with the skew-symmetric matrix

A(t) =


0 b1(t) b2(t) b3(t)

−b1(t) 0 −b3(t) b2(t)
−b2(t) b3(t) 0 −b1(t)
−b3(t) −b2(t) b1(t) 0

 . (57)

• For d = 2, function (Equation (35)) and its gradient are given due to Equation (45) by K2(n) =
cos ‖n(t)‖ , ∇nK2(n) = −2 sin (‖n‖) n

‖n‖ ,, so that by Equation (41),

u0(t, t0) = cos ‖n(t, t0)‖ ∈ R, ũ(t, t0) = − sin (‖n(t, t0)‖)
n(t, t0)

‖n(t, t0)‖
∈ R3, (58)

and the first and the second equations in Equation (55) take the forms

d ‖n(t, t0)‖
dt

=
b(t) · n(t, t0)

‖n(t)‖ (59)

and (
sin ‖n(t, t0)‖
‖n(t, t0)‖

− cos ‖n(t)‖
)

d ‖n(t, t0)‖
dt

n(t, t0)

‖n(t, t0)‖
− sin ‖n(t, t0)‖
‖n(t, t0)‖

dn(t, t0)

dt

= −b cos ‖n(t, t0)‖ +
b(t)× n(t, t0)

‖n(t, t0)‖
sin ‖n(t, t0)‖ ,

(60)

respectively.
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• The Cauchy problem (Equation (42)) in Theorem 1 reduces to

dn(t, t0)

dt
= b(t) + n⊥(t, t0) t > t0,

n(t0, t0) = 0,
(61)

where vector n⊥(t) ∈ R3 is orthogonal for all t > t0 to vector n(t) ∈ R3 and is determined via
Equation (43). For d = 2, the latter equation reduces to(

sin ‖n(t, t0)‖
‖n(t, t0)‖

− cos ‖n(t, t0)‖
)(

b(t) · n(t, t0)

‖n(t, t0)‖2 n(t, t0) − b(t)

)

=
sin ‖n(t, t0)‖
‖n(t, t0)‖

n⊥(t, t0) + (b(t)× n(t, t0))
sin ‖n(t, t0)‖
‖n(t, t0)‖

.

(62)

Noting that, on the left-hand side of Equation (62), where

b · n
‖n‖2 n − b = − 1

‖n‖2 (n× b× n) , (63)

and vectors
n× b× n, b× n (64)

are mutually orthogonal and are both in the plane orthogonal to vector n(t, t0) ∈ R3, we represent
vector n⊥(t, t0) in Equations (61) and (62) as

n⊥(t, t0) = α(t) (b(t)× n(t, t0)) + β(t, t0) ( n(t, t0)× b(t)× n(t, t0)) (65)

and find via Equation (62) that

α(t, t0) = −1, β(t, t0) = −
1− ‖n(t, t0)‖ ctg ‖n(t, t0)‖

‖n(t, t0)‖2 . (66)

Therefore, Equation (61)–(66) imply

dn(t, t0)

dt
= b(t)− (b(t)× n(t, t0))

− 1− ‖n(t, t0)‖ ctg ‖n(t, t0)‖
‖n(t, t0)‖2 (n(t, t0)× b(t)× n(t, t0)) ,

n(t0, t0) = 0.

(67)

Theorem 1 and relations in Equations (55)–(67) prove the following statement on the unitary
evolution of a qubit in a general nonstationary case.

Theorem 2. Let H(t) = b0(t)I+ b(t) · σ, b(t) ∈ R3, be a qubit Hamiltonian on C2. The unitary operator
UH(t, t0) on C2describing the evolution of a qubit under Hamiltonian H(t) takes the form

UH(t, t0) = exp
{
−i
∫ t

t0

b0(τ)dτ

}
exp {−i (n(t, t0) · σ)}

= exp
{
−i
∫ t

t0

b0(τ)dτ

}
( u0(t, t0) I + i ũ(t, t0) · σ) ,

(68)



Entropy 2020, 22, 521 12 of 21

where the unit vector (u0(t, t0), ũ(t, t0)) ∈ R4 is the solution of the Cauchy problem (Equation (55))
(equivalently, Equation (56)), vector n(t, t0) ∈ R3 is the solution of the Cauchy problem (Equation (67)),
and the following relations hold

u0(t, t0) = cos ‖n(t, t0)‖ ∈ R, ũ(t, t0) = − sin (‖n(t, t0)‖)
n(t, t0)

‖n(t, t0)‖
,

n(t, t0)

‖n(t, t0)‖
= − ũ(t, t0)

‖ũ(t, t0)‖
, ‖n(t, t0)‖ = arccos (u0(t, t0)) .

(69)

The cocycle property (Equation (3)) implies that, in the qubit case, the unit vector
(u0(t, t0), ũ(t, t0)) ∈ R4 in Equation (68)—which is the solution of the Cauchy problem (56)—must
satisfy the relations

u0(t, s)u0(s, t0) − ũ(t, s) · ũ(s, t0) = u0(t, t0),

u0(t, s)ũ(s, t0) + u0(s, t0)ũ(t, s) − ũ(t, s)× ũ(s, t0) = ũ(t, t0).
(70)

For d = 2, relations in Equation (14) reduce to the condition

b(t)×
(∫ t

t0

b(τ)dτ

)
= 0, (71)

which is necessary and sufficient for the Cauchy problem (Equation (55); equivalently, Equation (56))
and the Cauchy problem (in Equation (67)) to have the solutions

n(t, t0) =
∫ t

t0

b(τ)dτ, u0(t, t0) = cos
(∥∥∥∥∫ t

t0

b(τ)dτ

∥∥∥∥) ,

ũ(t, t0) = −
sin
(∥∥∥∫ t

t0
b(τ)dτ

∥∥∥)∥∥∥∫ t
t0

b(τ)dτ
∥∥∥

(∫ t

t0

b(τ)dτ

)
,

(72)

and the unitary evolution operator UH(t, t0) to be given by

UH(t, t0) = exp
{
−i
∫ t

t0

b0(τ)dτ

}
exp

{
−i
(∫ t

t0

(b(τ) · σ) dτ

)}

= exp
{
−i
∫ t

t0

b0(τ)dτ

}I cos
(∥∥∥∥∫ t

t0

b(τ)dτ

∥∥∥∥)− i
sin
(∥∥∥∫ t

t0
b(τ)dτ

∥∥∥)∥∥∥∫ t
t0

b(τ)dτ
∥∥∥

(∫ t

t0

b(τ)dτ · σ
) .

(73)

The expression standing in the first line of Equation (73) is consistent with expression (15) valid under
the general qudit condition (6) and specified for d = 2.

Condition (71) is, in particular, true if b(t) = eb ‖b(t)‖ where a unit vector eb does not vary in time.
Substituting this b(t) into Equation (73), we have

UH(t, t0) = exp
{
−i
∫ t

t0

b0(τ)dτ

}
exp

{
−i (eb · σ)

∫ t

t0

‖b(τ)‖dτ

}
= exp

{
−i
∫ t

t0

b0(τ)dτ

} [
I cos

(∫ t

t0

‖b(τ)‖dτ

)
− i sin

(∫ t

t0

‖b(τ)‖dτ

)
(eb · σ)

]
.

(74)

In the following section, based on the general result formulated in Theorem 2, we specify classes
of nonstationary Hamiltonians H(t), for which we can find the precise solutions of the Cauchy
problem (in Equation (55); equivalently, (56)) and, hence, explicitly specify the unitary operator (68)
via coefficients b0(t), b(t) of a Hamiltonian H(t).
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5. Special Classes of Qubit Hamiltonians

Let, for a qubit Hamiltonian (54), components (‖b(t)‖ , θb(t), ϕb(t)) of a vector b(t) ∈ R3 in the
spherical coordinate system be such that (here, we suppose that b(t) is twice differentiable)

d
dt

J1 = 0, where J1 :=
1

Ωb(t)

(
cos

(
θb(t)

)
−

·
ϕb(t)

2 ‖b(t)‖

)
,

d
dt

J2 = 0, where J2 :=
sin (θb(t))

Ωb(t)
,

(75)

where

Ωb(t) :=

√√√√( cos (θb(t))−
·

ϕb(t)
2 ‖b(t)‖

)2

+ sin2 (θb(t)), (76)

so that J2
1 + J2

2 = 1.
The class of Hamiltonians specified by conditions (75) is rather broad and includes, in particular,

all cases studied in the literature for which:

·
θb(t) = 0,

··
ϕb(t) = 0. (77)

Represented otherwise, constant J1 takes the form

J1 =
1

‖b(t)‖Ωb(t)

(
b3(t)−

1
2

d
dt

ϕb(t)
)

,

‖b(t)‖Ωb(t) =

√(
b3(t)−

1
2

d
dt

ϕb(t)
)2

+ b2
1(t) + b2

2(t),

tg(ϕb(t)) = b2(t)/b1(t),

(78)

from which it is immediately clear that the class of Hamiltonians specified by conditions (75) is defined
via the special time behavior of a vector b(t) with respect to the x3-axis.

Quite similarly, we can introduce the class of Hamiltonians specified via the property of b(t) ∈ R3

which is similar by its form to (78) but with respect to the x1-axis or the x2-axis.
Though, in the following statement, we explicitly specify only the unitary qubit evolution (68)

under a Hamiltonian satisfying conditions (75), the new result of this statement can be easily
reformulated for the classes of nonstationary Hamiltonians specified by conditions on b(t) ∈ R3

with respect to the x1-axis and the x2-axis.

Theorem 3. Let, for a qubit Hamiltonian H(t) = b0(t)I+ b(t) · σ on C2 the conditions (75) be fulfilled. Then,
for the unitary operator UH(t, t0) given by relations (68) and (69) and describing the evolution of a qubit state
under a Hamiltonian H(t), the unit vector (u0(t, t0), ũ(t, t0)) ∈ R4—the solution of the Cauchy problem (55),
equivalently, Equation (56), takes the form

u0(t, t0) = cos
(

ϕb(t)− ϕb(t0)

2

)
cos (γb(t, t0))− J1 sin

(
ϕb(t)− ϕb(t0)

2

)
sin (γb(t, t0)) ,

ũ1(t, t0) = −J2 cos
(

ϕb(t) + ϕb(t0)

2

)
sin (γb(t, t0)) ,

ũ2(t, t0) = −J2 sin
(

ϕb(t) + ϕb(t0)

2

)
sin (γb(t, t0)) ,

ũ3(t, t0) = −J1 cos
(

ϕb(t)− ϕb(t0)

2

)
sin (γb(t, t0))− sin

(
ϕb(t)− ϕb(t0)

2

)
cos (γb(t, t0)) ,

(79)
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satisfying the cocycle property (70). In Equation (79),

γb(t, t0) :=
∫ t

t0

‖b(τ)‖Ωb(τ) dτ (80)

and θb(t), ϕb(t) are angles specifying at time t vector b(t) ∈ R3 in the spherical coordinate system.

The proof of this statement is given in Appendix A. Note that the Cauchy problem with
a skew-symmetric matrix—like the one in Equation (56)—arises in many fields of mathematical
physics, for example, in the solid body theory, in the quaternions models [15], etc. If we reformulate
conditions (78) (equivalently, Equation (75)) with respect to the x1-axis, then the corresponding solution
(u0(t, t0), ũ(t, t0)) ∈ R4 of the Cauchy problem for the ODEs (56) would agree with the treatment in
Section 5.10 of Ref. [15].

Let, for example, b(t) = eb ‖b(t)‖ where a unit vector eb does not vary in time—the case we have
analyzed above in Equation (74) and where the general condition (71) is true. In this case,

ϕb(t) = ϕb(t0) = ϕb, θb(t) = θb(t0) = θb,

J1 = cos θb, J2 = sin θb,
(81)

conditions (75) are also fulfilled, and the substitution of Equation (81) into expression (78) leads exactly
to relation (73).

However, in general, conditions (71) and (75) do not need to be fulfilled simultaneously.
As an application of the result of Theorem 3, consider some examples important for applications

where conditions (75) are fulfilled while condition (71) is violated.

1. Let, for a qubit Hamiltonian, as in Equation (54), the spherical coordinates of a vector b(t) ∈ R3

satisfy the relations

θb(t) = θb, ϕb(t) = ωt + η, ‖b(t)‖ = b, η ∈ R, (82)

in the case where a vector b(t) rotates around the x3-axis with an angular velocity ω and has a
norm constant in time. Based on approaches different to ours, this case was considered in many
papers in connection with the evolution of a pure qubit state; see, for example, Reference [3].
For case (82), conditions (75) and parameters in (79) take the forms:

J1 =
cos θb −ω/2b

Ωb
, J2 =

sin θb
Ωb

,

Ωb =

√
(cos θb −ω/2b)2 + sin2 θb = Const,

‖b(t)‖Ωb =

√
(2b cos θb −ω)2 + 4b2 sin2 θb := Ω̃b.

(83)

Therefore, for case (82), we have by Theorem 3:

u0(t, t0) = cos
(

ω(t− t0)

2

)
cos(Ω̃b(t− t0))− J1 sin

(
ω(t− t0)

2

)
sin(Ω̃b(t− t0)),

ũ1(t, t0) = −J2 cos
(

ω(t + t0)

2
+ η

)
sin(Ω̃b(t− t0)),

ũ2(t, t0) = −J2 sin
(

ω(t + t0)

2
+ η

)
sin(Ω̃b(t− t0)),

ũ3(t, t0) = −J1 cos
(

ω(t− t0)

2

)
sin(Ω̃b(t− t0))− sin

(
ω(t− t0)

2

)
cos(Ω̃b(t− t0)),

(84)
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so that the unitary evolution operator (68) with the unit vector (u0(t), ũ(t)) given by Equation (84)
completely defines the evolution of every qubit state under a nonstanionary Hamiltonian specified
by relations (82).

Taking, for example, t0 = 0 and an initial pure state |Ψ(0)〉 = |0〉 ∈ C2, we find that at any
moment t > 0 the pure state is

|Ψ(t)〉 = UH(t)|0〉 = u0(t, 0)|0〉+ iũ1(t, 0)|1〉 − ũ2(t, 0)|1〉+ iũ3(t, 0)|0〉
= (u0(t, 0) + iũ3(t, 0)) |0〉+ i (ũ1(t, 0) + iũ2(t, 0)) |1〉,

(85)

where |0〉, |1〉 are elements of the computational basis of C2. Substituting (84) into Equation (85),
we have

u0(t, 0) + iũ3(t, 0) =
(

cos
(

Ω̃bt
)
− i J1 sin

(
Ω̃bt

))
exp

{
− iωt

2

}
,

ũ1(t, 0) + iũ2(t, 0) = −J2 sin(Ω̃bt) exp
{

iωt
2

+ η

}
,

(86)

so that

|Ψ(t)〉 =
{

cos
(

Ω̃bt
)
− i J1 sin

(
Ω̃bt

)}
exp

{
− iωt

2

}
|0〉 − i J2 sin(Ω̃bt) exp

{
iωt
2

+ η

}
|1〉, (87)

where constants J1 and J2 are given by Equation (83). For η = 0, the pure state (86) coincides with
the pure state given by Equation (138.11) in Ref. [3] and found by another approach.

2. Consider further a more general case, where, for a vector b(t) ∈ R3 in Equation (54):

b1(t) = q
·
ϕb(t)

λ
cos (ϕb(t)) , b2(t) = q

·
ϕb(t)

λ
sin (ϕb(t)) , b3(t) = p

·
ϕb(t)

λ
, (88)

with function
·
ϕb(t)

λ > 0 for all t > t0 and some constants λ, q, p. In this case,

‖b(t)‖ =
·
ϕb(t)

λ

√
q2 + p2, cos(θb(t)) =

p√
q2 + p2

= Const,

Ωb(t) =
1√

q2 + p2

√(
p− λ

2

)2
+ q2 = Const,

‖b(t)‖Ωb =

·
ϕb(t)

λ

√(
p− λ

2

)2
+ q2 =

ζ

λ

·
ϕb(t),

ζ :=

√(
p− λ

2

)2
+ q2 = Const.

(89)

Hence, by Equation (75) the constants

J1 =
p− λ/2

ζ
, J2 =

q
ζ

, (90)
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and, in Theorem 3, the vector (u0(t), ũ(t)) ∈ R4, which specifies by Equation (68) the unitary
evolution of a qubit, is given by

u0(t, t0) = cos
(

ϕb(t)− ϕb(t0)

2

)
cos

{
ζ

λ
(ϕb(t)− ϕb(t0))

}
− p− λ/2

ζ
sin
(

ϕb(t)− ϕb(t0)

2

)
sin
{

ζ

λ
(ϕb(t)− ϕb(t0))

}
,

ũ1(t, t0) = −
q
ζ

cos
(

ϕb(t) + ϕb(t0)

2

)
sin
{

ζ

λ
(ϕb(t)− ϕb(t0)

}
,

ũ2(t, t0) = −
q
ζ

sin
(

ϕb(t) + ϕb(t0)

2

)
sin
{

ζ

λ
(ϕb(t)− ϕb(t0))

}
,

ũ3(t, t0) = −
p− λ/2

ζ
cos

(
ϕb(t)− ϕb(t0)

2

)
sin
{

ζ

λ
(ϕb(t)− ϕb(t0))

}
+ sin

(
ϕb(t)− ϕb(t0)

2

)
cos

{
ζ

λ
(ϕb(t)− ϕb(t0))

}
,

(91)

where λ, q, p are some constants and angle ϕb(t) is an arbitrary function of t, such that
·
ϕb(t)

λ > 0.

If, in particular,
·
ϕb(t) = ω and λ = ω, then relations (91) reduce to relations (84).

6. Conclusions

In the present article, we introduced a new general formalism that allows for the analysis of the
unitary evolution of a qudit (d ≥ 2) under an arbitrary time-dependent Hamiltonian H(t) in terms of
the Bloch-like vector space. Via this formalism, we derived (Theorem 1, Section 3) the new general
equations specifying the evolution of the Bloch-like vector in the generalized Gell-Mann representation
of UH(t, t0) and the vector n(t, t0) ∈ Rd2−1 in the exponential representation of UH(t, t0).

Applying the general Equations (26), (42), (43) to a qubit case (d = 2), we then derived (Theorem 2,
Section 4) a new general result on the qubit evolution under a nonstationary Hamiltonian. This general
result allowed us to find (Theorem 3, Section 5) the new precise analytical solutions for a wide class of
nonstationary Hamiltonians which comprise the qubit cases already known in the literature only as
particular ones.

The general formalism presented in this article is valid for a qudit of an arbitrary dimension
d > 2, in particular, for a qutrit and the analysis of the evolution of a qutrit under a time-dependent
Hamiltonian within this new formalism is a subject of our future research.
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Appendix A

In this section, we present the proof of Theorem 3, namely, we show that functions u0(t) ∈ R,
ũ(t) ∈ R3, given by Equation (79), constitute solutions of the Cauchy problem (55), equivalently (56),
under conditions (75) and satisfy also the cocycle property (70).
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Under conditions (75), the derivative of function u0(t) ∈ R in Equation (79) has the form

d
dt

u0(t) = −
1
2

dϕb(t)
dt

sin
(

ϕb(t)− ϕb(t0)

2

)
cos (γb(t, t0))

− ‖b(t)‖Ωb(t) cos
(

ϕb(t)− ϕb(t0)

2

)
sin (γb(t, t0))

− J1

2
dϕb(t)

dt
cos

(
ϕb(t)− ϕb(t0)

2

)
sin (γb(t, t0))

− J1‖b(t)‖Ωb(t) sin
(

ϕb(t)− ϕb(t0)

2

)
cos (γb(t, t0))

= −
(

J1‖b(t)‖Ωb(t) +
1
2

dϕb(t)
dt

)
sin
(

ϕb(t)− ϕb(t0)

2

)
cos (γb(t, t0))

−
(
‖b(t)‖Ωb(t) +

J1

2
dϕb(t)

dt

)
cos

(
ϕb(t)− ϕb(t0)

2

)
sin (γb(t, t0)) .

(A1)

Similarly, for the derivatives of ũ(t) = (ũ1(t), ũ2(t), ũ3(t)) ∈ R3, given by Equation (79), we find

d
dt

ũ1(t) = −J2‖b(t)‖Ωb(t) cos
(

ϕb(t) + ϕb(t0)

2

)
cos γb(t, t0)

+
J2

2
dϕb(t)

dt
sin
(

ϕ(t) + ϕ(t0)

2

)
sin γb(t, t0),

d
dt

ũ2(t) = −J2‖b(t)‖Ωb(t) sin
(

ϕb(t) + ϕb(t0)

2

)
cos γb(t, t0)

− J2

2
dϕb(t)

dt
cos

(
ϕ(t) + ϕ(t0)

2

)
sin γb(t, t0),

d
dt

ũ3(t) = −
(

J1‖b(t)‖Ωb(t) +
1
2

dϕb(t)
dt

)
cos

(
ϕb(t)− ϕb(t0)

2

)
cos γb(t, t0)

+

(
‖b(t)‖Ωb(t) +

J1

2
dϕb(t)

dt

)
sin
(

ϕb(t)− ϕb(t0)

2

)
sin γb(t, t0).

(A2)

Next: (i) substituting Equation (79) into the terms standing on the right-hand sides of the
equations in Equation (56); (ii) expressing b1(t), b2(t), b3(t) in spherical coordinates; and (iii) using the
trigonometric addition theorems and the explicit expressions for J1, J2 and Ωb(t) (see Equation (75)
and (76)), we derive the following expressions:

• for the right-hand side of the first differential equation in Equation (56)

b1(t)ũ1(t) + b2(t)ũ2(t) + b3(t)ũ3(t)

= −
(

J1‖b(t)‖Ωb(t) +
1
2

dϕb(t)
dt

)
sin
(

ϕb(t)− ϕb(t0)

2

)
cos (γb(t, t0))

−
(
‖b(t)‖Ωb(t) +

J1

2
dϕb(t)

dt

)
cos

(
ϕb(t)− ϕb(t0)

2

)
sin (γb(t, t0)) ;

(A3)

• for the right-hand side of the second differential equation in Equation (56)

− b1(t)u0(t) + b2(t)ũ3(t)− b3(t)ũ2(t)

= −J2‖b(t)‖Ωb(t) cos
(

ϕb(t) + ϕb(t0)

2

)
cos (γb(t, t0))

+
J2

2
dϕb(t)

dt
sin
(

ϕ(t) + ϕ(t0)

2

)
sin (γb(t, t0)) ;

(A4)
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• for the right-hand sides of the third and the fourth differential equations in Equation (56):

− b2(t)u0(t) + b3(t)ũ1(t)− b1(t)ũ3(t)

= −J2‖b(t)‖Ωb(t) sin
(

ϕb(t) + ϕb(t0)

2

)
cos (γb(t, t0))

− J2

2
dϕb(t)

dt
cos

(
ϕ(t) + ϕ(t0)

2

)
sin (γb(t, t0))

(A5)

and
− b3(t)u0(t) + b1(t)ũ2(t)− b2(t)ũ1(t)

= −
(

J1‖b(t)‖Ωb(t) +
1
2

dϕb(t)
dt

)
cos

(
ϕb(t)− ϕb(t0)

2

)
cos (γb(t, t0))

+

(
‖b(t)‖Ωb(t) +

J1

2
dϕb(t)

dt

)
sin
(

ϕb(t)− ϕb(t0)

2

)
sin (γb(t, t0)) .

(A6)

Clearly, the expressions for d
dt u0(t), d

dt ũ1(t), d
dt ũ2(t), d

dt ũ3(t), derived in Equation (A1),(A2),
coincide with the corresponding expressions in Equation (A3)–(A6). This proves that functions (79)
constitute the solutions to the Cauchy problem (56), equivalently, Equation (55).

Taking into account that (see in Section 2) the unitary evolution operator
UH(t, s) = u0(t, s)I+ iũ(t, s) · σ, for each s ∈ [t, t0], let us now prove that solutions (79) satisfy
the cocycle property (3) for UH(t, t0). In terms of u0(t, s), ũ(t, s), the cocycle property leads to
relations (70), which read:

u0(t, s)u0(s, t0)− ũ(t, s) · ũ(s, t0) = u0(t, t0),

u0(t, s)ũ(s, t0) + u0(s, t0)ũ(t, s)− ũ(t, s)× ũ(s, t0) = ũ(t, t0).
(A7)

Substituting solutions (79) into Equation (A7), applying the addition rules for trigonometric
functions, and taking into account that J2

1 + J2
2 = 1, for the left-hand side of the first equation in

Equation (A7), we derive:

u0(t, s)u0(s, t0)− ũ(t, s) · ũ(s, t0) (A8)

= cos (γb(t, s)) cos (γb(s, t0)) cos
(

ϕb(t)− ϕb(t0)

2

)
− J1 sin

(
ϕb(t)− ϕb(t0)

2

)
×
[

cos (γb(t, s)) sin (γb(s, t0)) + sin (γb(t, s)) cos (γb(s, t0))

]
− sin (γb(t, s)) sin (γb(s, t0)) cos

(
ϕb(t)− ϕb(t0)

2

)
= cos

(
ϕb(t)− ϕb(t0)

2

)
cos (γb(t, t0))− J1 sin

(
ϕb(t)− ϕb(t0)

2

)
sin (γb(t, t0)) . (A9)



Entropy 2020, 22, 521 19 of 21

By the same procedure, for the left-hand sides of the remaining equations in Equation (A7), we have

u0(t, s)ũ1(s, t0) + u0(s, t0)ũ1(t, s)− (ũ(t, s)× ũ(s, t0))1 (A10)

= −J2

[
sin (γb(t, s)) cos (γb(s, t0)) + cos (γb(t, s)) sin (γb(s, t0))

]
cos

(
ϕb(t) + ϕb(t0)

2

)
+ J1 J2 sin (γb(t, s)) sin (γb(s, t0))

[
sin
(

ϕb(t)− ϕb(s)
2

)
cos

(
ϕb(s) + ϕb(t0)

2

)
+ cos

(
ϕb(t) + ϕb(s)

2

)
sin
(

ϕb(s)− ϕb(t0)

2

)
+ cos

(
ϕb(t)− ϕb(s)

2

)
× sin

(
ϕb(s) + ϕb(t0)

2

)
− sin

(
ϕb(t) + ϕb(s)

2

)
cos

(
ϕb(s)− ϕb(t0)

2

) ]
= −J2 cos

(
ϕb(t) + ϕb(t0)

2

)
sin (γb(t, t0)) (A11)

and

u0(t, s)ũ2(s, t0) + u0(s, t0)ũ2(t, s)− (ũ(t, s)× ũ(s, t0))2 (A12)

= −J2[sin (γb(t, s)) cos (γb(s, t0)) + cos (γb(t, s)) sin (γb(s, t0))] sin
(

ϕb(t) + ϕb(t0)

2

)
+ J1 J2 sin (γb(t, s)) sin (γb(s, t0))

[
sin
(

ϕb(t)− ϕb(s)
2

)
sin
(

ϕb(s) + ϕb(t0)

2

)
+ sin

(
ϕb(t) + ϕb(s)

2

)
sin
(

ϕb(s)− ϕb(t0)

2

)
− cos

(
ϕb(t)− ϕb(s)

2

)
cos

(
ϕb(s) + ϕb(t0)

2

)
+ cos

(
ϕb(t) + ϕb(s)

2

)
cos

(
ϕb(s)− ϕb(t0)

2

) ]
= −J2 sin

(
ϕb(t) + ϕb(t0)

2

)
sin (γb(t, t0)) , (A13)

and

u0(t, s)ũ3(s, t0) + u0(s, t0)ũ3(t, s)− (ũ(t, s)× ũ(s, t0))3 (A14)

= − cos (γb(t, s)) cos (γb(s, t0)) sin
(

ϕb(t)− ϕb(t0)

2

)
− J1 cos

(
ϕb(t)− ϕb(t0)

2

)
[cos (γb(t, s)) sin (γb(s, t0)) + sin (γb(t, s)) cos (γb(s, t0))]

+ J2
1 sin (γb(t, s)) sin (γb(s, t0)) sin

(
ϕb(t)− ϕb(t0)

2

)
+ J2

2 sin (γb(t, s)) sin (γb(s, t0)) sin
(

ϕb(t)− ϕb(t0)

2

)
= −J1 cos

(
ϕb(t)− ϕb(t0)

2

)
sin (γb(t, t0))− sin

(
ϕb(t)− ϕb(t0)

2

)
cos (γb(t, t0)) . (A15)

The comparison of Equation (A9),(A11),(A13),(A15) with the expressions for functions u0(t), ũ(t) in
Theorem 3 proves that the unitary evolution qubit operator UH(t, t0), specified in Theorem 3, satisfies
the cocycle property (70).

This concludes the proof of Theorem 3.
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Appendix B

In this section, we show that the gradient of K3(r) is given by Equation (50). By Equation (49),
we have

∂K3(r)
∂r

= −i
√

2 ∑
k=0,1,2

[
r
‖r‖R8

sin (φ(r) + 2πk/3)

+ ‖r‖R8
∂φ(r)

∂r
cos (φ(r) + 2πk/3)

]
× exp

{
−i
√

2‖r‖R8 sin (φ(r) + 2πk/3)
}

.

(A16)

Using further Equation (48), we derive

∂φ(r)
∂r

= − 1
cos(3φ(r))

(
r
‖r‖2

R8

sin(3φ(r)) +
√

3
2

1
‖r‖3

R8

∂

∂r
(det(r ·Λ))

)
, (A17)

where

det(r ·Λ) = 2(r(1)r(4)r(6) + r(1)r(5)r(7) + r(2)r(5)r(6) − r(2)r(4)r(7))

+
1√
3

r(8)
(

2(r(1))2 + 2(r(2))2 + 2(r(3))2 − (r(4))2 − (r(5))2 − (r(6))2 − (r(7))2
)

+ r(3)
(
(r(4))2 + (r(5))2 − (r(6))2 − (r(7))2

)
− 2

3
√

3
(r(8))3.

(A18)

Taking into account that the symmetric structure constants dijk of SU(3) have the form (see, e.g.,
Reference [16]):

d146 = d157 = d256 = d344 = d355 = −d247 = −d366 = −d377 =
1
2

,

d118 = d228 = d338 = −d888 = −2d448 = −2d558 = −2d668 = −2d778 =
1√
3

,
(A19)

we derive
∂

∂r(l)
(det(r ·Λ)) = 2

8

∑
i,j=1

r(i)r(j)dijl . (A20)

Hence, Equation (A17) reduces to

∂φ(r)
∂r

= − 1
cos(3φ(r))

(
r
‖r‖2

R8

sin(3φ(r)) +
√

3
p(r)
‖r‖R8

)
(A21)

and, for Equation (A16), we obtain

∂K3(r)
∂r

= −i
√

2 ∑
k=0,1,2

[
r
‖r‖R8

(
sin(φ(r) + 2πk/3)− sin(3φ(r))

cos(φ(r) + 2πk/3)
cos(3φ(r))

)
−
√

3p(r)
cos(φ(r) + 2πk/3)

cos(3φ(r))

]
× exp

{
−i
√

2‖r‖R8 sin(φ(r) + 2πk/3)
}

.

(A22)

Noting that, on the right-hand side of Equation (A22), cos (3φ(r)) = cos (3 (φ(r) + 2πk/3)),

− cos(φ(r) + 2πk/3)
cos(3(φ(r) + 2πk/3))

= − 1
4 cos2(φ(r) + 2πk/3)− 3

=
1

1− 2 cos(2(φ(r) + 2πk/3))

(A23)
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and

sin (φ(r) + 2πk/3)− sin(3φ(r))
cos(3φ(r))

cos (φ(r) + 2πk/3)

= − sin (2(φ(r) + 2πk/3))
cos(3φ(r))

=
2 sin((φ(r) + 2πk/3)

1− 2 cos((2(φ(r) + 2πk/3))
,

(A24)

for the second and the first terms in the right-hand side of Equation (A22), we come correspondingly
to the following expressions:

− i
√

6p(r) ∑
k=0,1,2

exp
{
−i
√

2‖r‖R8 sin(φ(r) + 2πk/3)
}

1− 2 cos(2(φ(r) + 2πk/3))
= −i

√
6F1(r)p(r) (A25)

and

− i
√

2
r
‖r‖R8

∑
k=0,1,2

sin (φ(r) + 2πk/3)
exp

{
−i
√

2 ‖r‖R8 sin(φ(r) + 2πk/3)
}

1− 2 cos((2(φ(r) + 2πk/3))

= −i
√

6F2(r)
r
‖r‖R8

,

(A26)

where functions F1(r) and F2(r) are given by Equation (51). Relations (A22), (A25) and (A26) prove
Equation (50).
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