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Abstract: Categorical data are ubiquitous in machine learning tasks, and the representation of categorical
data plays an important role in the learning performance. The heterogeneous coupling relationships
between features and feature values reflect the characteristics of the real-world categorical data which
need to be captured in the representations. The paper proposes an enhanced categorical data embedding
method, i.e., CDE++, which captures the heterogeneous feature value coupling relationships into
the representations. Based on information theory and the hierarchical couplings defined in our
previous work CDE (Categorical Data Embedding by learning hierarchical value coupling), CDE++
adopts mutual information and margin entropy to capture feature couplings and designs a hybrid
clustering strategy to capture multiple types of feature value clusters. Moreover, Autoencoder is used
to learn non-linear couplings between features and value clusters. The categorical data embeddings
generated by CDE++ are low-dimensional numerical vectors which are directly applied to clustering
and classification and achieve the best performance comparing with other categorical representation
learning methods. Parameter sensitivity and scalability tests are also conducted to demonstrate the
superiority of CDE++.

Keywords: categorical data; data embedding; heterogeneous couplings; hybrid clustering strategy;
autoencoder; clustering; classification

1. Introduction

Categorical data with finite unordered feature values are ubiquitous in machine learning tasks,
such as clustering [1,2] and classification [3,4]. Most machine learning algorithms are built for numerical
data based on algebraic operations, such as k-means and SVM, which cannot be directly used for
categorical data. These algebraic machine learning algorithms will be applicable for categorical data
only if we embed the categorical data into numerical vector space. However, learning numerical
representations of categorical data is not a trivial task since the intrinsic characteristics in categorical
data need to be captured in embeddings.

As stated in [5], the hierarchical couplings relationship (i.e., correlation and dependency) between
feature values in categorical data is a crucial characteristic which should be mined sufficiently. The sophistic
couplings between feature values also reflect the correlations between features. Take the simple dataset
in Table 1 as an example. It is intuitive that the value (short for feature value) Female of feature Gender is
highly coupled with the value Liberal arts of feature Major. Similarly, The value Engineering in feature
Major is strongly coupled with the value Programmer in feature Occupation. Thus, the relation between
feature Gender and Major could be expressed by a semantic cluster, i.e., {Female, Liberal arts}, as well as
feature Major and Occupation by {Engineering, Programmer}. These value clusters which may contain
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multiple values reflect the heterogeneous couplings in categorical data. Moreover, the feature value clusters
are also coupled with each other in both same and different granularities. These high-level couplings are
heterogeneous and therein exists both linear and nonlinear relationships.

Table 1. A simple example to explain the value coupling relationships.

Name Gender Major Occupation

John Male Engineering Programmer
Tony Male Science Analyst
Alisa Female Liberal arts Lawyer
Ben Male Engineering Programmer

Abby Female Liberal arts Marketing Manager
James Male Engineering Technician

For most learning tasks, the more relevant information (i.e., the hierarchical couplings) the categorical
data embeddings captures, the better performance it has. However, besides CDE [5], other representation
learning methods could capture only limited or none of the couplings in categorical data. Generally,
existing methods fall into two categories: the embedding-based method and the similarity-based
method. Typical embedding methods, e.g., 1-hot encoding and Inverse Document Frequency (IDF)
encoding [6,7], transform categorical data to numerical data by some encoding schemes directly. But
these methods treat features independently and ignore the couplings between feature values. Also,
several similarity-based methods, e.g., ALGO (clustering ALGOrithm), DILCA (DIstance Learning for
Categorical Attributes), DM (Distance Metric), COS (COupled attribute Similarity) [8–11], take value
couplings into consideration. However, these methods do not take feature value intrinsic clusters
and couplings between clusters into account so that their representation capacities are limited for
categorical data.

Learning the heterogeneous hierarchical couplings in categorical data is not a trivial task. There
are short of work representing hierarchical couplings in categorical data so far. To our knowledge,
our previous work CDE (Categorical Data Embedding) [5] is the first work focusing on hierarchical
couplings mining and categorical data representing. Compared with other existing representation
methods, it gets relatively better performance. However, CDE can only capture homogeneous value
clusters through single clustering strategy and linear correlation between value clusters through
principal component analysis which limits its performance in complex categorical data.

To address the above issues, we propose an enhanced Categorical Data Embedding method, i.e.,
CDE++, which can capture heterogeneous feature value relationships in categorical data. In value
couplings learning phase, we use mutual information and margin entropy to learn the interactions
of features and feature values. To learn the value clusters couplings, we design a hybrid clustering
strategy to get heterogeneous value clusters from multiple aspects. Then the Autoencoder is adopted
on these value cluster indicator matrices to obtain lower-dimensional value embeddings which can
capture complex nonlinear relationships between value clusters. We finally concatenate the value
embeddings to generate an expressive object representation. In this way, CDE++ can capture the
intrinsic data characteristic of categorical data in the expressive numerical embeddings which largely
facilitate the following learning tasks.

The contributions of this work are summarized as follows:

• By analyzing the hierarchical couplings in categorical data, we propose an enhanced Categorical
Data Embedding method (CDE++), which could capture heterogeneous feature value coupling
relationships in each level.

• We adopt mutual information and margin entropy to capture the couplings between features
and design a hybrid clustering strategy to capture more sophisticated and heterogeneous value
clusters in the low level. CDE++ implements different metric-based clustering methods, including
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density-based clustering method and hierarchical clustering method, with various clustering
granularities from different perspectives and semantics.

• We utilize Autoencoder to learn the complex and heterogeneous value cluster couplings in the
high level. With this, CDE++ maps the original value representation into a low-dimensional space,
while learning both linear and nonlinear value cluster coupling relationships.

• We empirically prove the superiority of CDE++ through both supervised and unsupervised learning
tasks. Experiment results show that (i) CDE++ significantly outperforms the state-of-the-art methods
and their variants in both clustering and classification. (ii) CDE++ is insensitive to its parameters
and thus has stable performance. (iii) CDE++ is scalable w.r.t. the number of data instances.

The rest of this paper is organized as follow. Related work is discussed in Section 2. We introduce
the proposed method, i.e., CDE++, in Section 3. Experiments setup and results analysis are provided
in Section 4. We conclude this work in Section 5.

2. Related Work

Existing representation learning algorithms broadly fall into two categories: (i) embedding-based
representation which represents each categorical object by a numerical vector, (ii) similarity-based
representation which uses object similarity matrix to represent the categorical object.

2.1. Embedding-Based Representation

Embedding-based representation, which is the most widely used in categorical data representation,
generates a numerical vector to represent each categorical object. A popular embedding method called
1-hot encoding translates each feature value to a zero-one indicator vector [6]. It first counts the
values of one feature fi as |Vi|. Then the value in the feature is represented by a 1-hot |Vi|-dimension
vector, where ‘1’ corresponds to the value entry and ‘0’ to the others. 1-hot encoding treats each
value equally and ignores the instinct couplings of real datasets. Our previous work CDE [5] is a
state-of-the-art embedding-based representation which makes use of coupling relationships of data
sets. However, the method could not exploit heterogeneous coupling relationships comprehensively
due to its clustering method and the limits of nonlinear relationship mining. This method uses a
dimension reduction method, such as the principal component analysis (PCA) [12], to alleviate the
curse of the dimensionality issue. IDF encoding is another popular embedding-based representation
method [7], and it utilizes the probability-weighted amount of information (PWI), which is calculated
based on the value frequency, to represent each value. IDF-encoding learns couplings between values
from the occurrence perspective, accordingly, its ability of mining intrinsic coupling relationships
of data set is very limited. The method in [13] has the same goal as our work, which is to learn
transforms categorical data to numerical representations for categorical data. The main difference
between the method in [13] and our method is that they need class labels while our method is an
unsupervised method.

Embedding-based representation methods are also used for textual data, and there are several
effective embedding methods such as Skim-gram [14], latent semantic indexing (LSI) [15], latent Dirichlet
allocation (LDA) [16], as well as some variants of them in [17–19]. Granular Computing paradigm [20–22]
is an embedding method which is powerful especially when dealing with non-conventional data such
as graphs, sequences, text documents. However, the embedding representation for textual data is
significantly different from categorical data since categorical data is structured, whereas textual data is
unstructured. Thus, we do not detail these embedding methods here.

2.2. Similarity-Based Representation

Similarity-based representation methods utilize an object similarity matrix to represents categorical
data. The inspiration of several similarity-based methods comes from learning couplings of categorical
data. For instance, ALGO [8] first takes advantage of conditional probability in a pair of values to
describe the value couplings; DILCA [9] learns a context-based distance between feature values to
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capture feature couplings; DM [10] incorporates the frequency probabilities and feature weighting to
mining couplings of the feature. COS [11] grasps couplings from two aspects, i.e., inter-feature and
intra-feature. The above similarity measures learn feature couplings by pair-values. However, they
could not obtain comprehensive couplings since the value clusters and the couplings therein are not
considered. Moreover, the similarity methods are inefficient because they require to calculate and store
the object similarity matrix.

There are several embedding methods that utilize similarity matrix to optimize their embedding
representations [23,24]. However, the performance of these embedding methods depends heavily on
the underlying similarity methods.

3. Method of CDE++

3.1. Learning Process of CDE++

We aim to rebuild the categorical data set so as to make it more convenient for the following
learning tasks. Figure 1a illustrates the framework of our enhanced Categorical Data Embedding
Learning method (CDE++). The gray boxes in Figure 1a represent a series of learning methods, whereas
the white boxes consist of a certain amount of intermediate data for our representation rebuilding.
Figure 1b is an instance of data flow in CDE++. The notations are illustrated in Table 2.

Data set �  ;���Q���G��

Occurrence-based     Co-ccurrence-basedFeature Value 
Coupling

Value coupling matrixes :    MO   &   MC   ( m × m )
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(a) The framework of CDE++. The white boxes
represent intermediate data whereas the gray
boxes represent learning methods.
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Figure 1. Overview of CDE++.
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Table 2. The descriptions of the notations in CDE++.

Symbols Description

X, x The dataset and a specific object.
F, f The feature set in the dataset and a specific feature.
f i The feature that value vi belongs to.
V, v The whole feature value set in the dataset and a specific feature value.
Vi The feature value set for feature fi in the dataset.
v f

x The value in feature f of object x.
n The number of objects in the dataset.
d The number of features in the dataset.
m The number of feature values in the dataset.
|C| The number of groud-truth classes in the dataset.
p(v) The probability of v that calculated by its occurrence frequency.
p(vi, vj) The joint probability of vi and vj.
ρ( fa, fb) The relation between two features fa and fb.
I( fa, fb) The relative entropy of joint distribution and marginal distribution between two features fa and fb.
H( f ) The marginal entropy of featrure f .
ξo The occurrence-based value coupling function.
ξc The co-occurrence-based value coupling function.
Mo The occurrence-based relationship matrix.
Mc The co-occurrence-based relationship matrix.
τ(eps, MinPts) The parameter of DBSCAN.
K The number of clusters parameter of HC.
C The cluster indicator matrix.
vc The dimension of cluster indicator matrix.
ε The factor of drop redundancy value clusters.
λ The hidden factor of Autoencoder.
q The dimension of value after Autoencoder.
Ω The general function to generate new objects embedding.

As shown in Figure 1, we first construct the value couplings matrices by occurrence-based and
co-occurrence-based value coupling method, which can capture the interactions between values. Then,
we learn value clusters by hybrid clustering strategy with multiple granularities. After obtaining the
value clusters, we learn the couplings between value clusters by the deep neural network, Autoencoder,
for the value representation. Finally, we obtain the object representation by concatenating the value
vectors for the following learning tasks.

3.2. Preliminaries

Consider a dataset X with n objects, that is, X = {x1, x2, ..., xn}, where each object xi is described
by d categorical features, and the features belong to F = { f1, f2, ..., fd}. Each feature fi has a finite set
of values Vi = {vi1, vi2, ...}. Moreover, the values from different features has no intersection such that
the number of total feature values is |V| = ∑d

i=1 |Vi|, denoted as m.
For better describing how to calculate the joint probability of two values vi and vj, we need to

introduce some symbols. Let f i denotes the feature that vi belongs to, and let v f
x denotes the value in

feature f of object x. Let p(vi) denotes the probability of vi that calculated by its occurrence frequency.
Thus, the joint probability of vi and vj is

p(vi, vj) =
|v f i

x = vi ∩ v f j

x = vj|
n

, ∀x ∈ X. (1)

The normalized mutual information, denoted as NMI, is a measurement of the mutual dependence
between two vectors [25]. When we observe one vector, the information of the other vector that we
can obtain can be quantified by NMI. Accordingly, the relation between two features fa and fb could
defined as



Entropy 2020, 22, 391 6 of 17

ρ( fa, fb) =
2I( fa, fb)

H( fa) + H( fb)
, (2)

where I( fa, fb) is the relative entropy of joint distribution and marginal distribution, and it is written in

I( fa, fb) = ∑
vi∈Vfa

∑
vj∈Vfb

p(vi, vj)log
p(vi, vj)

p(vi)p(vj)
. (3)

H( fa) and H( fb) are the marginal entropies of feature fa and fb, respectively. The marginal entropy of
the specific feature can be described by

H( f ) = − ∑
vi∈Vf

p(vi)log(p(vi)), f ∈ fa, fb. (4)

3.3. Learning Value Couplings

The value couplings are learned to reflect the intrinsic relationship between feature values. As we
used in the previous work [5], which is proved effective and intuitional. The relation between values
has two aspects: on the one hand, the occurrence frequency of one value is influenced by others; on the
other hand, one value could be influenced by its pair value because of their co-occurrence relationship
in one objects. For capturing the value couplings based on occurrence and co-occurrence, two coupling
functions and their corresponding relation matrices (m×m) are constructed, respectively.

The occurrence-based value coupling function is ξo(vi, vj) = ρ( f i, f j)× p(j)
p(i) , which represents

the occurrence frequency of vi influenced by vj. In this function, the NMI of two features works as
a weight. After constructing the coupling function, the occurrence-based relationship matrix Mo is
constructed by:

Mo =


ξo(v1, v1) · · · ξo(v1, vm)

...
. . .

...
ξo(vm, v1) · · · ξo(vm, vm)

 (5)

The co-occurrence-based value coupling function is ξc(vi, vj) =
p(vi,vj)

p(vi)
, which indicates the co-occurrence

frequency of value vi influenced by value vj. Note that f i and f j will never be equal since it is impossible
for two values owned by the same feature to co-occur in one object. Thus, the co-occurrence-based
relationship matrix Mc is designed as follow:

Mc =


ξc(v1, v1) · · · ξc(v1, vm)

...
. . .

...
ξc(vm, v1) · · · ξc(vm, vm)

 (6)

The two matrices could be treated as new representations of value couplings based on occurrence
and co-occurrence, respectively. Moreover, they could be applied in the following values clustering.

3.4. Hybrid Value Clustering

To capture the value clusters from different perspectives and semantics, we cluster the feature
values in different granularities and use the new representation (Mo, Mc) as the input of the clustering
algorithm. To make the cluster results more robust and reflect the data characteristics more precisely,
we choose a hybrid clustering strategy, which combines the clustering results of DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) and HC (Hierarchical Clustering).

The motivation we use the hybrid clustering strategy is as follows: (i) The metric of DBSCAN is
density-based, whereas HC is a partition-based method like K-means. So when we combine the cluster
results of the two clustering methods, we can obtain the comprehensive value clusters, which is crucial
for capturing the intrinsic data characteristics. (ii) DBSCAN has excellent performance for both convex
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data sets and non-convex data sets, whereas K-means is not suitable for non-convex data sets. HC
can also solve the non-spherical datasets that K-means can not solve. (iii) DBSCAN is not sensitive to
noisy points, which means DBSCAN is stable. Consequently, our hybrid clustering strategy suitable
for majority data sets; meanwhile, it has a better clustering result.

DBSCAN contains a pairwise parameter τ(eps, MinPts), where eps represents the maximum
radius of circles centered on cluster cores, and MinPts represents the minimum number of objects in the
circle. HC only has one parameter K, which means the number of clusters likes K-means. Therefore, for
clustering with different granularities, we set parameters {τ1, τ2, ..., τo} and {τ′1, τ

′
2, ..., τ

′
c} for Mo and Mc

clustering with DBSCAN respectively. Likewise, we set parameters {k1, k2, ..., ko′ } and {k′1, k
′
2, ..., k

′

c′
}

for clustering with HC.
Parameter selection. In HC clustering, the strategy of choosing K is demonstrated in Algorithm 1.

Instead of giving a fixed value, we use another proportion factor ε to decide the maximum cluster
number as shown in Steps (3-12) of Algorithm 1. We remove those tiny clusters with only one value
from the indicator matrix. When the number of removed clusters is larger than k

ε , we stop increasing
K, whose initial value is 2. In DBSCAN clustering, for a specific τ(eps, MinPts), the parameter eps
and MinPts are selected based on k-distance graph. For a given k, the k-distance function is mapping
each point to its k-th nearest neighbor. We sort the points of the clustering database in descending
order of their k-distance values. Furthermore, we set eps to the first point in the first “valley” of the
sorted k-distance graph, and we set MinPts as value k. The value k is same to the parameter K of HC.
The parameter selection is following [26].

After clustering, we get four clustering indicator matrices to represent the clustering results.
The clustering indicator matrix of (Mo, DBSCAN) is denoted as Cod , the size of which is m× o. Likewise,
other indicator matrices are {Coh , Ccd , Cch} with size {m× c, m× o

′
, m× c

′}. Finally, we concatenate
the four indicator matrices into one indicator matrix, denoted as C, which contains the comprehensive
information of value clusters. Similar to Mo and Mc, C could also be regarded as a new representation
of feature values based on value couplings and value clusters.

3.5. Embedding Values by Autoencoder

Deep Neural Network (DNN) is the hottest topic in machine learning because of its ability in
feature extraction. Each middle layer in DNN has the ability of feature learning; it is a self-learning
process without any prior knowledge.

After constructing the value clusters indicator matrix C, which contains comprehensive information,
we further learn the couplings between the value clusters. Meanwhile, it requires to build a concise
but meaningful value representation. It is intuitional for us to use DNN for value clusters couplings
learning, and we use Autoencoder to handle this in unsupervised circumstance. The simple function
of Encoder and Decoder are as follows:

Encoder : code = f (x),

Decoder : x
′
= g(code) = g( f (x)).

The Encoder is used to learn low-dimension representation code of the input X. Each layer of the
Encoder learns the feature and features couplings of Input X, therefore, code contains the complete
information of X. The Decoder is implemented to reconstruct X from its input, i.e., code. The training
process of Autoencoder is minimizing the loss function Loss[x, g( f (x))]. After training, the code will
contain the feature couplings of X and convey similar information with X as well.

The Autoencoder makes it possible for us to capture the heterogeneous value clusters couplings
and obtain a relatively low dimension values representation. In our method, we train the Autoencoder
by using the value clusters indicator matrix C as the input. Furthermore, we use the Encoder to calculate
a new values representation matrix Vnew in m× q. The column size q is determined by |o + c + o

′
+ c

′ |
(denoted by vc) and hidden factor λ which will be discussed in Section 4.5. The new value representation



Entropy 2020, 22, 391 8 of 17

Vnew would convey the information of value clusters C as well as the clusters couplings, which is
considered as a concise but meaningful value representation.

3.6. The Embedding for Objects

The final step is to model the objects embedding after we get values representation from Autoencoder.
The general function is presented as

xnew = Ω(vx
1 , vx

2 , · · · , vx
d), v ∈ Vnew. (7)

The function Ω in Equation (7) could be customized to suit for learning task in the following.
We concatenate the new values from Vnew to generate the new objects embedding.

The main procedures of CDE++ are presented in Algorithm 1. Algorithm 1 has three inputs, that
is, the data set X, the factor of drop redundancy value clusters ε, the hidden factor of Autoencoder λ.
The algorithm mainly consists of four steps. The first step is to calculate Mo and Mc based on occurrence
and co-occurrence value coupling function. Then CDE++ utilizes hybrid clustering strategy to cluster
values with Mo and Mc. The parameter ε is used to control the clustering results and determines the
time to terminate the clustering process. In the third step, the algorithm uses Autoencoder to learn the
couplings of value clusters and generates the concise but meaningful value embedding. The parameter
λ is a hidden factor of the input dimension and output dimension of Encoder, which indicates the
ratio of dimension compression. Finally, CDE++ embeds objects in the data set by concatenating the
value embedding.

Algorithm 1 Object Embedding (X, ε, λ)

Input: Dataset X, Parameters ε and λ
Output: the new representation of X (Xnew)
1: Generate Mo and Mc
2: Initialize C = φ
3: for M ∈ {Mo, Mc} do

4: for classi f ier ∈ {DBSCAN, HC} do

5: Initialize τ(eps, Minpts), k
6: Initialize r = 0
7: while r ≥ k

ε do

8: C = [C; classi f ier(M, τ or k)]
9: Remove the clusters containing only one value and count as r

10: end while
11: end for
12: end for
13: Train Autoencoder
14: Vnew = Encoder(C, λ)
15: Xnew = concatenate values f rom Vnew
16: Return Xnew

Complexity Analysis. (1) Generating value couplings matrix incurs the complexity of O(nd2);
(2) Values clustering needs the complexity of O(m ln m + m2); (3) The complexity of Autoencoder is
O(m ∗ vc ∗ epoch), where vc and epoch are total value clusters and the iteration times respectively.
(4) Generating numerical object embedding by value embeddings has the complexity of O(nd).
Accordingly, the total complexity of CDE++ is O(nd2 + m ln m + m2 + m ∗ vc ∗ epoch + nd). In real
data sets, the number of values in one feature is generally small, thus, m2 is a little larger than d2.
Meanwhile, m2 is not comparable with nd2. The total number of value clusters vc is much smaller than
m and epoch is iteration times which is manual setting. Therefore, the approximate time complexity of
CDE++ is simplified as O(nd2 + m ∗ vc∗epoch).
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4. Experiments and Evaluation

4.1. Experiment Settings

4.1.1. Data Sets

For evaluating the performance of CDE++, as Table 3 shows, fifteen real-world datasets from UCI
(https://archive.ics.uci.edu/ml/datasets.php) machine learning repository are used. These datasets
cover multiple areas, e.g., life, physical, game, social, computer, education, etc. Each data set has a
class label as a metric, and has several features described by categorical value.

Table 3. The Dataset attributes and F-score results of Clustering by Inverse Document Frequency (IDF),
DILCA, Categorical Data Embedding (CDE), CDE-AE, 1-HOT, 1-HOT-AE, and our method CDE++
on 15 Data Sets. The best performance for each data set is boldfaced. The Data Sets are sorted in
descending order of F-score.

Dataset_Attributes F-Score

Datasets n d m |C| IDF DILCA CDE CDE-AE 1-HOT 1-HOT-AE CDE++

Zoo 101 17 43 7 0.827 0.746 0.833 0.79 0.826 0.871 0.879
Iris 150 4 123 3 0.59 0.632 0.717 0.667 0.585 0.467 0.8
Hepatitis 155 19 360 2 0.535 0.679 0.672 0.687 0.677 0.684 0.755
Tic-tac-toe 958 9 27 2 0.536 0.542 0.557 0.559 0.578 0.578 0.659
Annealing 798 38 317 5 0.512 0.534 0.577 0.547 0.528 0.588 0.654
Bloger 100 5 15 2 0.484 0.492 0.546 0.539 0.53 0.51 0.61
Balance-scale 625 4 20 3 0.463 0.497 0.514 0.499 0.462 0.419 0.6
Lymphography 148 18 59 4 0.556 0.513 0.528 0.489 0.494 0.493 0.568
Hayes-roth 132 4 15 3 0.48 0.478 0.495 0.484 0.348 0.341 0.545
Teaching A.E. 151 5 101 3 0.395 0.41 0.432 0.44 0.428 0.444 0.503
Student A.P. 131 21 75 3 0.429 0.423 0.449 0.433 0.445 0.466 0.475
Lenses 24 4 9 3 0.442 0.471 0.458 0.467 0.546 0.583 0.458
Nursery 12,960 8 27 5 0.306 0.294 0.32 0.356 0.283 0.382 0.325
Primary-tumor 339 17 37 21 0.218 0.224 0.285 0.29 0.291 0.289 0.299
Chess 28,056 6 40 18 0.154 0.16 0.165 0.16 0.157 0.151 0.174

Average 0.462 0.473 0.503 0.494 0.479 0.484 0.554

In the unsupervised K-means task, we use the whole dataset as training sets and test sets. In the
supervised SVM task, we use 75% of the datasets for training sets and the rest 25% for test sets.

The detailed attributes of data sets are presented in Table 3, where {n, d, q, |C|} denotes the number
of objects, features, feature values, ground-truth classes in the data set respectively.

4.1.2. Baseline

In this test, CDE++ is compared with IDF encoding (denoted by “IDF”), DILCA, our previous
work (i.e., the coupled data embedding denoted as “CDE”), and the widely used 1-hot coding (denoted
by “1-HOT”). Moreover, to make a fair comparison, we introduce the variations of CDE and 1-HOT by
replacing their last step of generating value embedding with AutoEncoder. The variations are denoted
by CDE-AE and 1-HOT-AE, respectively. In CDE and its variation, the parameters are set according to
its original paper. The parameters of CDE++ are mentioned in Section 4.5. We use Autoencoders with
same parameters settings, as shown in Table 4.

Table 4. Basic Parameters of Autoencoder.

Architecture † A-64-code dimension-64-A
′

MaxEpochs 1000
LossFunction MSE with L2 and Sparsity Regularizers
Training Algorithm Scaled Conjugate Gradient Descent

† The code dimension in Architecture is determined by the hidden factor λ and the original data dimension.

https://archive.ics.uci.edu/ml/datasets.php
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4.1.3. Evaluation Methods

The performance of learning tasks significantly depends on the data representation. The more
expressive the representation is, the better the performance. To give a convincing evaluation, we feed
the obtained representation into both unsupervised and supervised learning tasks. Without loss of
generality, we choose K-means as the representative unsupervised learning task, whereas SVM as the
representative of supervised learning tasks.

In K-means clustering, we set the number of clusters K = |C| in each data set. We use the widely used
F-score to measure the performance. The higher the F-score, the better the K-means clustering performance,
so as to the object representation performance. Although the datasets we used are relative balance, we
choose the micro version of F-score. The calculation of micro F-score is shown below.

precision =
∑ TPi

∑ (TPi + FPi)
, recall = ∑ TPi

∑ (TPi + FNi)
, (8)

F-score = 2
recall × precision
recall + precision

, (9)

where TPi, FPi, FNi are the numbers of true positive, false positive, false negative for class i.
For the SVM classifying, we use Accuracy as the performance measurement. Likewise, the higher

the Accuracy, the better the performance of object representation.
Since the starting points of value clustering are random, we run the proposed CDE++ 10 times and

feed the obtained representations into the learning tasks. Each task is repeated 10 times to get a stable
result. The reported F-score or Accuracy is the average value over these 100 validations. Therefore, the
robustness of evaluation results is guaranteed.

4.1.4. Experimental Environment

All the experiments are conducted on the same workstation.
Hardware environment Macbook Pro 2016; CPU: Intel Core i7; RAM: 16 GB. Apple Inc. USA.
Software environment Matlab 2018b. MathWorks Inc. USA.

4.2. Results of Clustering

Table 3 presents the K-means clustering F-score of the tested methods. In thirteen out of fifteen
datasets, CDE++ has the best performance, which is much better than other embedding methods.
On average, CDE++ obtains approximate 16.58 %, 14.56 %, 9.10 %, 10.80 %, 13.56 %, 12.50 % improvement
compared with IDF, DILCA, CDE, CDE-AE, 1-HOT, 1-HOT-AE, respectively. CDE outperforms other
state-of-art representation methods due to the learning of hierarchical couplings, while CDE++ enhance
the heterogeneous value relationship capturing and achieve the best performance.

4.3. Results of Classification

Table 5 demonstrates the Accuracy of SVM using the representations output by CDE, CDE-AE,
1-HOT, 1-HOT-AE, and CDE++. CDE++ performs significantly better than the first four methods, and
is comparably better than 1-HOT and 1-HOT-AE. On average, CDE++ obtains approximate 12.76%,
13.55%, 10.38%, 17.3%, 5.8%, 5.11% improvement compared with IDF, DILCA, CDE, CDE-AE, 1-HOT,
1-HOT-AE, respectively. In the supervised learning task, our enhanced CDE++ could also keep a
high performance than others. Therefore, based on the results above, CDE++ has generality for both
unsupervised tasks and supervised tasks.
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Table 5. The Accuracy results of Classifying by IDF, DILCA, CDE, CDE-AE, 1-HOT, 1-HOT-AE, and
our method CDE++ on 15 Data Sets. The best performance for each data set is boldfaced. The Data Sets
are sorted in descending order of Accuracy.

Accuracy

Datasets IDF DILCA CDE CDE-AE 1-HOT 1-HOT-AE CDE++

Zoo 0.937 0.946 0.97 0.944 1 1 1
Lenses 0.826 0.793 0.833 0.714 0.8 0.811 1
Annealing 0.973 0.979 0.985 0.978 0.991 0.989 0.988
Tic-tac-toe 0.894 0.872 0.913 0.735 0.981 0.98 0.984
Balance-scale 0.741 0.713 0.727 0.649 0.968 0.957 0.968
Nursery 0.804 0.729 0.817 0.549 0.937 0.939 0.943
Iris 0.883 0.897 0.893 0.887 0.92 0.927 0.911
Bloger 0.742 0.733 0.739 0.808 0.758 0.852 0.903
Hepatitis 0.829 0.817 0.834 0.811 0.877 0.804 0.894
Hayes-roth 0.754 0.771 0.807 0.763 0.829 0.834 0.861
Lymphography 0.792 0.803 0.819 0.803 0.826 0.834 0.849
Primary-tumor 0.538 0.551 0.577 0.528 0.595 0.61 0.623
Student A.P. 0.518 0.499 0.529 0.519 0.551 0.544 0.615
Teaching A.E. 0.547 0.543 0.576 0.509 0.561 0.585 0.613
Chess 0.184 0.216 0.242 0.215 0.27 0.257 0.413

Average 0.731 0.724 0.751 0.694 0.791 0.795 0.838

4.4. Ablation Study

To examine whether all the components of CDE++ is necessary, we implement the ablation
study, and Table 6 shows the comparative group setting. We implement K-means clustering and SVM
classification learning task using the output of objects embedding. In the implementation, (i) and (ii)
use DBSCAN and HC for value clusters learning respectively, whereas (iii) uses both of them. Neither
(i), (ii) nor (iii) learn value clusters couplings. (iv) uses all parts of CDE++.

Table 6. Ablation Study Settings.

Learning Value Clusters Learn Value Clusters Couplings

DBSCAN HC Autoencoder

i X × ×
ii × X ×
iii X X ×
iv X X X

Tables 7 and 8 illustrate the K-means clustering and SVM classifying performance, respectively.
Under the whole parts of CDE++, these two learning tasks obtain the highest F-score and Accuracy.
Based on the ablation study, it is believed that no components can be dropped from CDE++ and the
whole structure could return better objects embedding.



Entropy 2020, 22, 391 12 of 17

Table 7. F-score Results of Ablation Study based on Clustering task. The best performance for each
data set is boldfaced.

F-Score

Datasets DBSCAN HC DBSCAN+HC CDE++

Zoo 0.829 0.85 0.854 0.879
Iris 0.453 0.491 0.646 0.8
Hepatitis 0.503 0.617 0.666 0.755
Tic-tac-toe 0.621 0.578 0.573 0.659
Annealing 0.606 0.514 0.544 0.654
Bloger 0.53 0.588 0.572 0.61
Balance-scale 0.464 0.5 0.549 0.6
Lymphography 0.434 0.488 0.484 0.568
Hayes-roth 0.445 0.445 0.441 0.545
Teaching.A.E 0.437 0.419 0.491 0.503
Student.A.P 0.435 0.425 0.446 0.475
Lenses 0.625 0.583 0.583 0.458
Nursery 0.333 0.295 0.273 0.325
Primary-tumor 0.248 0.291 0.288 0.299
Chess 0.163 0.167 0.151 0.174

Average 0.475 0.483 0.504 0.554

Table 8. Accuracy Results of Ablation Study based on Classifying task. The best performance for each
data set is boldfaced.

ACCURACY

Datasets DBSCAN HC DBSCAN+HC CDE++

Zoo 0.964 0.97 0.976 1
Lenses 1 0.789 0.811 1
Annealing 0.975 0.93 0.971 0.988
Tic-tac-toe 0.695 0.965 0.977 0.984
Balance-scale 0.971 0.961 0.958 0.968
Nursery 1 0.944 0.943 0.943
Iris 0.833 0.738 0.898 0.911
Bloger 0.839 0.781 0.819 0.903
Hepatitis 0.828 0.838 0.845 0.894
Hayes-roth 0.812 0.837 0.834 0.861
Lymphography 0.828 0.813 0.843 0.849
Primary-tumor 0.625 0.579 0.564 0.623
Student.A.P 0.578 0.527 0.527 0.615
Teaching.A.E 0.565 0.557 0.578 0.613
Chess 0.665 0.461 0.236 0.413

Average 0.812 0.779 0.785 0.838

4.5. Sensitivity Test w.r.t. Parameters ε and λ

We examine the sensitivity of the performance of CDE++ w.t.r. ε and λ in this part. The first parameter
ε is used to control the dimension of feature value representation before conducting Autoencoder,
whereas the second parameter λ controls the dimension of feature value representation after Autoencoder.
For the robustness of the test, we have selected four datasets by different level of clustering performance
(i.e., F-score) for the sensitivity test. Both parameters are in the range of {2,4,6,8,10,20,40}.

To test the sensitivity w.r.t. ε, we first fix λ = 10. Figures 2 and 3 present the dimension of
objects representation and clustering performance using different ε values. The dimension of objects
representation is stable when ε ≥ 8 whereas the clustering performance is always stable. The reason
why CDE++ is stable w.r.t ε is that ε only chooses some granularities of value coupling clustering. Under
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such granularities, the clusters with only one value have been dropped. Thus, it makes the clustering
performance stable, so as to the CDE++.
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Figure 2. Sensitivity test w.r.t. parameter ε in term of Representation Dimension.
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Figure 3. Sensitivity test w.r.t. parameter ε in term of F-score.

Figures 4 and 5 present the dimension of objects representation and clustering performance using
different λ values. Likewise, we fix ε = 8 to test the sensitivity w.r.t. λ. Figure 5 shows that the
clustering performance is relatively stable as a whole in the range of λ. However, the dimension of
objects representation decreases as λ increases, which is illustrated in Figure 4. λ is the parameter that
adjusts the ratio of the output dimension and input dimension in Autoencoder, and λ is inversely
proportional to the output value representation after Autoencoder. In the value range mentioned
above, though the dimension of value representation decreases, it could convey similar information in
virtue of the Autoencoder algorithm. So the clustering performance would not fluctuate acutely.
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Figure 4. Sensitivity test w.r.t. hidden factor λ in term of Representation Dimension.
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Figure 5. Sensitivity test w.r.t. hidden factor λ in term of F-score.

Upon the sensitivity test results, we can claim that the CDE++ performance is not sensitive w.r.t. ε

and λ. Moreover, we suggest ε = 8 and λ = 10 as a general parameters value pair.

4.6. Scalability Test

We split the largest dataset, i.e., Chess, in our work into five subsets, where the data size increase
doubly, for the scaleup test w.r.t. data size. The subsets of Chess have six fixed features. Likewise, we
synthetic data sets by varying the dimensions in [20,320] for the scalability test w.r.t. data dimension
with fixed data size (e.g., 10,0 0). The feature value of the synthetic data sets is randomly chosen
from {0, 1}.

Figure 6 presents the scalability test results of the five embedding methods. As Figure 6 illustrates,
the execution times increase subtly as the data set size increases. It demonstrates that the execution
time of CDE++ is linear to the data size and the scalability of CDE++ w.r.t. data set size is well, while
DILCA has O(n2d2 log d).
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1-HOT is the most efficient embedding method since it does not consider the couplings between
feature values and just translate feature value to a 1-hot vector. The time complexity of CDE++ and
CDE before learning clusters coupling are similar, since the neural network Autoencoder is more time
consuming than PCA, the execution time of CDE++ is longer than CDE. When we replace the PCA of
CDE with Autoencoder, the execution times increase and become even longer than CDE++.

Figure 7 shows the execution time of the tested methods with different object dimensions. When
the object dimension enlarges, the execution times of all the five methods rise up acutely. 1-HOT and
1-HOT-AE are much faster since they are simpler than other methods as introduced above. CDE++,
CDE, and CDE-AE have higher and similar execution time because their complexities are quadratic
functions of the feature number. Specifically, the execution time of CDE++ performed on a dataset with
10,000 objects and more than 300 features is about 10 minutes. Thus, we can say that the execution
time is still acceptable in high dimension dataset embedding.
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Figure 6. Scalability test w.r.t Data Size in term of Execution Time.
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Figure 7. Scalability test w.r.t Data Dimension in term of Execution Time.
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5. Conclusions

This paper proposes an enhanced Categorical Data Embedding method (CDE++), which aims to
generate an expressive representation for complex categorical data by capturing heterogeneous feature
value coupling relationships. We design a hybrid clustering strategy to capture more sophisticated
and heterogeneous value clusters in the low level. We utilize Autoencoder to learn the complex and
heterogeneous value cluster couplings in the high level. Different from existing representation methods,
our work comprehensively captures the intrinsic data characteristic. Experiment results demonstrate
that CDE++ is available for both supervised and unsupervised learning tasks, whereas it significantly
outperforms existing state-of-the-art methods with good scalability and efficiency. Moreover, it is
insensitive to its parameters.

Based on the superiority of CDE++, our future work is to consider mixed data (i.e., categorical and
continuous data). Meanwhile, considering different applications requirements, we could customize
CDE++ to get better performance.
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