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Abstract: The task of reconstructing the system’s state from the measurements results, known as
the Pauli problem, usually requires repetition of two successive steps. Preparation in an initial state
to be determined is followed by an accurate measurement of one of the several chosen operators
in order to provide the necessary “Pauli data”. We consider a similar yet more general problem
of recovering Feynman’s transition (path) amplitudes from the results of at least three consecutive
measurements. The three-step histories of a pre- and post-selected quantum system are subjected to a
type of interference not available to their two-step counterparts. We show that this interference can be
exploited, and if the intermediate measurement is “fuzzy”, the path amplitudes can be successfully
recovered. The simplest case of a two-level system is analysed in detail. The “weak measurement”
limit and the usefulness of the path amplitudes are also discussed.

Keywords: quantum measurements; Pauli problem; transition amplitudes; weak measurements;
quantum particle’s past

1. Introduction

The Pauli problem [1] questions the possibility of deducing the theoretical quantum state
(wave function) from the observed statistics of quantum measurements. The measurements are
assumed to be ideal (i.e., infinitely accurate), and a reconstruction of the state, if at all possible, requires
measuring several non-commuting operators (see for example [2–7] and Refs. therein).

Below we will consider the problem in a somewhat broader context. Quantum mechanics predicts
probabilities of the outcomes of series of consecutive measurements by defining probability amplitudes
for virtual histories (Feynman paths), followed by the system. The path amplitudes are then added,
as appropriate, and the absolute square of the sum gives the probability of a particular scenario to
occur [8]. The measurements usually considered in connection with the Pauli problem are, in fact
two-step sequences, consisting of preparing the system in an initial state and measuring the chosen
variable later. The case of a preparation followed by two or more measurements made on the system is
richer, since it allows for a different type of interference not available to the two-step histories.

In this paper we consider a different “Pauli problem”, namely the possibility of recovering the
system’s path amplitudes from the results of intermediate fuzzy measurements, and discuss how it can
be done in practice. The rest of the paper is organised as follows. In Section 2 we revisit the basic rules
for constructing probabilities with the help of virtual (Feynman) paths. In Section 3 we apply the recipe
of Section 2 to a composite system + probe, and explain why the two-step histories are insufficient for
our purpose. In Section 4 we extend the approach to three-step histories where a system is “pre- and
post-selected” in known initial and final states. In Sections 5 and 6 we apply the method to the
simplest case of a two-level system (a qubit), and in Section 7 provide a numerical simulation. Section 8
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discusses the “strong” and “weak” limiting cases where the approach of Sections 4–7 fails, and analyses
the reason for the failure. In Section 9 we evaluate the “strong” and “weak” averages of the pointer’s
readings, and briefly comment on the popular subject of the so-called “weak measurements” [9].
Usefulness of the paths amplitudes for predicting the outcomes of future measurements, and making
statements about the system’s past is analysed in Section 10. Section 11 contains our conclusions.

2. From Amplitudes to Probabilities

We start by recalling the rules for evaluating the probabilities of three consecutive measurements,
given in [8], and recently revisited in [10–12]. Consider such measurements performed on a quantum
system (s), with which one associates a N-dimensional Hilbert space,Hs. Three quantities, represented
by operators Q̂`, ` = 0, 1, 2, are measured at t = 0, t = t′ > 0, and t = t′′ > t′, respectively.
Each operator has M` ≤ N possibly degenerate eigenvalues, Q`

m`
, m` = 1, . . . , M`, and can be

written as

Q̂` =
M`

∑
m`=1

Q`
m`

N

∑
n`=1

∆
(

Q`
m`
− 〈q`n`

|Q̂`|q`n`
〉
)
|q`n`
〉〈q`n`

|, (1)

where |q`n`
〉, n` = 1, . . . , N form a suitable orthonormal basis, and ∆(x − y) ≡ 1 for x = y,

and 0 otherwise.
To be able to define a statistical ensemble, one needs the first measurement to yield a

non-degenerate eigenvalue Q0
n0

, which prepares the system in the corresponding state |q0
n0
〉. The next

step consists of evaluating the probability amplitudes for all virtual (Feynman) paths, {q2
n2
← q1

n1
← q0

n0
},

starting at |q0
n0
〉 and passing through all possible states at t = t′ and t = t′′ (see Figure 1),

A(q2
n2
← q1

n1
← q0

n0
) = 〈q2

n2
|Û(t′′, t′)|q1

n1
〉〈q1

n1
|Û(t′, 0)|q0

n0
〉, (2)

where Û(t′′, t′) is the system’s evolution operator. An amplitude for obtaining at t = t′ a value Q1
m1

is
found by summing (2) over all states |q1

n1
〉, consistent with Q1

m1
, Q̂1|q1

n1
〉 = Q1

m1
|q1

n1
〉,

A(q2
n2
← Q1

m1
← q0

n0
) =

N

∑
n1=1

∆
(

Q1
m1
− 〈q1

n1
|Q̂1|q1

n1
〉
)
× A(q2

n2
← q1

n1
← q0

n0
). (3)

Finally the probability for having a sequence of observed outcomes {Q2
m2
← Q1

m1
← Q0

n0
} is found by

summing absolute squares of the amplitudes (3) over the degeneracies of the last eigenvalue Q2
m2

,

P(Q2
m2
← Q1

m1
← Q0

n0
) =

N

∑
n2=1

∆
(

Q2
m2
− 〈q2

n2
|Q̂2|q2

n2
〉
)
|A(q2

n2
← Q1

m1
← q0

n0
)|2. (4)

Two relevant observations can be made here. Firstly, the scheme is explicitly causal in the sense that
future observations cannot affect the statistics of the ones already made. In particular, summing (4) over
all outcomes Q2

m2
restores the probabilities for the experiment in which only Q̂0 and Q̂1 are measured,

P(Q1
m1
← Q0

n0
) =

N

∑
n1=1

∆
(

Q1
m1
− 〈q1

n1
|Q̂1|q1

n1
〉
)
× |A(q1

n1
← q0

n0
)|2 =

M2

∑
m2=1

P(Q2
m2
← Q1

m1
← Q0

n0
). (5)

For someone interested in the statistics of only the first two measurements it does not, therefore, matter
what would be measured at t = t′′, or if anything would be measured in the future at all.

Secondly, the scheme treats the “past” (any t < t′′) and the “present” (at t = t′′) differently.
If the measured eigenvalue is degenerate, in the “past” one sums the amplitudes, as in Equation (3).
At “present”, the probabilities |A(q2

n2
← Q1

m1
← q0

n0
)|2 are added, as in Equation (4). The latter rule [8]

can be traced to the need to ensure causality in the case an operator commuting with Q̂2 and having N
distinct eigenvalues is measured in the immediate future at t = t′′ + ε, ε→ 0 [10].
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The rules, although formulated for systems in a finite-dimensional Hilbert space are readily
generalised to the case where the measured operators have continuous spectra. Note also that they can
be used to obtain more compact expressions for the probabilities (5) in terms of the projectors onto the
eigen-subspaces of the chosen operators (see, e.g., Section 2.2 of [12]).

|q0n>	

|q21>	 |q22>	

|q11>	 |q12>	

Time	

“P
ast”	

t=0	

t=t’	

			t=t’’	
“Present”	

Figure 1. Four virtual paths for a two-level system. The times t = 0 and t = t′ belong to the “past”,
while t = t′′ refers to the “present”, and must be treated differently.

3. Von Neumann Measurements and the Two-Step Histories

The standard approach to quantum measurements involves coupling the system of interest to
another degree of freedom (a probe), and deducing the system’s properties from the probe’s statistics.
One choice of a probe is a von Neumann pointer (p) [13], a one dimensional free particle of a mass M
with a coordinate f and a momentum λ. The pointer is briefly coupled to the system (s) at some t = t′,
so that the full Hamiltonian is given by

Ĥ = Ĥs + λ̂2/2M + λ̂Ĉδ(t− t′), (6)

where Ĥs refers to the system, the operator

Ĉ =
N

∑
j=1

Cj|cj〉〈cj|, (7)

represents the system’s variable to be measured, and δ(x) is the Dirac delta. We will start by assuming
that all eigenvalues of Ĉ, Cj, j = 1, . . . , N are different, and return to degenerate Cj’s at the end of the
next Section.

A possible experiment consists of preparing the composite {system+pointer} in a known initial
state measuring Q̂0, applying the coupling (6), and then making a measurement on the pointer, Q̂1.
The purpose of the experiment is to learn something about the system in the absence of the probe.
We, therefore, have a two-step history, which can be treated by the method of Section 2. At t = 0 the
system and the pointer are prepared in states |bi〉 and |G〉, respectively. In particular, we suppose that
the outcome of Q̂0 is Q0

1, so

Q̂0 = B̂s+p ≡ |bi〉|G〉〈bi|〈G|, Q0
1 = 1, Q0

m0 6=1 = 0 (8)

Q̂1 = χ̂p = ∑
m=−...,0,1,...

χm

∫

∆m
|χ〉〈χ|dχ, (9)

with ∆m ≡ [∆(m− 1/2), ∆(m + 1/2)] and χ̂p acts only on the pointer.
Thus, obtaining an outcome Q0

1 = 1 one prepares the composite in an initial state

|Φ0〉 = |bi〉|G〉, |G〉 =
∫

d f G( f )| f 〉. (10)
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In what follows, we will assume G( f ) to be a real symmetric Gaussian,

G( f ) = (π∆ f 2/2)−1/4 exp(− f 2/∆ f 2), (11)

where the width ∆ f determines the uncertainty in the pointer’s initial position and, therefore, affects the
accuracy of the measurement.

To describe the pointer at t = t′ we will use a continuous basis |χ〉, 〈χ1|χ2〉 = δ(χ2 − χ1),
and the measured operator, χ̂p, with a discrete spectrum Q1

m = χm, m = . . . ,−1, 0, 1, . . . . Thus,
after observing an outcome χm one knows that the (yet undefined) variable χ has a value in an interval
∆(m− 1/2) ≤ χ < ∆(m + 1/2). The newly introduced parameter ∆ determines the accuracy with
which the pointer is read. Note that an eigenvalue χm is highly degenerate, since χ̂p|χ〉|cj〉 = χm|χ〉|cj〉,
for any ∆(m− 1/2) ≤ χ < ∆(m + 1/2), and j = 1, 2, . . . , N.

The evolution operator for the composite {system + pointer} is a product

Û(t′, 0) = exp(−iλ̂Ĉ)Ûs(t′, 0)Ûp(t′, 0), (12)

where Ûs(t′, 0) = exp(−iĤst′), and Ûp(t′, 0) = exp(−iλ̂2t′/2M).
Following the recipe of Section 2 we write down the probability amplitudes for all virtual

(Feynman) paths {ci, χ← bi, G} in the composite’s Hilbert space,Hp+s = Hp ⊗ Hs,

A(ci, χ← bi, G) = 〈χ|〈cj|Û(t′, 0)|bi〉|G〉 = Gj(χ, t′)As(cj ← bi), (13)

where

As(cj ← bi) = 〈cj|Ûs(t′, 0)|bi〉 (14)

is the systems transition amplitude [8] between the states |bi〉 and |cj〉, defined in the absence of the
pointer, and the factor Gj(χ, t′) can be written as

Gj(χ, t′) =
∫
〈 f + Cj|Ûp(t′, 0)|G〉〈χ| f 〉d f , (15)

since exp(−iλ̂Ĉ)|cj〉| f 〉 = |cj〉| f + Cj〉.
With only two measurements, all paths {ci, χ← bi, G} lead to distinguishable (orthogonal) final

states, and the probability to have a pointer reading χm is found by adding absolute squares of the
amplitudes (13)

P(χm ← bi, G) = ∑
j

∫

∆m
dχ|Gj(χ, t′)|2|As(cj ← bi)|2. (16)

Therefore, regardless of how accurately the meter was prepared and read, all information about the
phases of the amplitudes As(cj ← bi) is lost. This is because, according to the rules of Section 2 none
of the virtual paths are allowed to interfere. For someone still wishing to determine the system’s
initial state |bi〉, the standard way to proceed is to choose a different operator Ĉ′, [Ĉ′, Ĉ] 6= 0 repeat
the measurement, and use the obtained data [2–7]. We will, however, consider a different problem,
in order to exploit the interference associated with the measurements made in the “past”.

4. From Probabilities to Amplitudes. Three-Step Histories

Suppose next that an additional measurement is made on the system at a t′′ > t′. Now the
measurement made on the pointer at t = t′ belongs to the past, and a different rule will apply.

The new experiment is as follows. At t = 0 the system and the pointer are prepared in a state
|bi〉|G〉, and coupled according to (6) just before t = t′. At t = t′, a measurement made on the pointer
yields an outcome χm. At t = t′′ the outcome χm is recorded, but only if a measurement D̂s made
on the system at t = t′′ yields a particular outcome Dk. The three steps are repeated enough times
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to evaluate the probabilities of having an outcome χm, given a later outcome Dk. The purpose of the
experiment is to recover the values of the system’s amplitudes, defined in the absence of the pointer.

This is a three-step measurement, for which we have

Q̂0 = B̂s+p ≡ |bi〉|G〉〈bi|〈G|, Q0
1 = 1, Q0

m0 6=1 = 0, (17)

Q̂1 = χ̂p = ∑
m=−...,1,0,1,...

χm

∫

∆m
|χ〉〈χ|dχ, (18)

Q̂2 = D̂s =
N

∑
k=1

Dk|dk〉〈dk|. (19)

We will assume the eigenvalues Dk to be non-degenerate provided D̂s is acting in the Hilbert spaceHs

of the system. They are, however, highly degenerate, if D̂s acts theHs+p, since D̂s|dk〉|χ〉 = Dk|dk〉|χ〉,
for any −∞ < χ < ∞.

Next we apply the rules of Section 2. Evaluating the amplitudes for all virtual paths in Hs+p,
connecting |bi〉|G〉 with |χ〉|cj〉, and |χ〉|cj〉 with |dk〉|χ′〉 [cf. Equation (2)], we find

A(dk, χ′ ← cj, χ← bi, G) ≡ 〈χ′|Ûp(t′′ − t′)|χ〉Gj(χ, t′)As(dk ← cj ← bi) (20)

where

As(dk ← cj ← bi) = 〈dk|Ûs(t′′, t′)|cj〉 × 〈cj|Ûs(t′)|bi〉 ≡ |Aj| exp(iφj), (21)

is the amplitude for the system to follow a path {|dk〉 ← |cj〉 ← |bi〉} inHs.
Summing the amplitudes over the degeneracies of the operator χ̂p acting in the Hs+p

[cf. Equation (3)], yields

A(dk, χ′ ← χm ← bi, G) =
N

∑
j=1

∫

∆m
dχA(dk, χ′ ← cj, χ← bi, G). (22)

Finally, summing over the degeneracies of D̂s in theHs+p [cf. Equation (4)], we have

P(Dk ← χm ← bi, G) =
∫

dχ′|A(dk, χ′ ← χm ← bi, G)|2

=
N

∑
jj′=1

Ijj′(m)|Aj′ ||Aj| exp[i(φj − φj′)] ≡
∫

∆m
dχρ(χ, dk), (23)

where Ijj′(m) is the overlap matrix of the pointer’s states,

Ijj′(m) ≡
∫

∆m
dχG∗j′(χ, t′)Gj(χ, t′) = I∗j′ j(m), (24)

and ρ(χ, dk) is the probability density of the pointer’s readings, obtained for a system ending up in
|dk〉 at t = t′′ (see Appendix A).

The measured system contributes to P(Dk ← χm ← bi, G) with the path amplitudes given in (21),
whose values can, in principle, be determined by rewriting Equation (23) in an equivalent form,

N

∑
i=1

IiiXii + 2
N

∑
j′<j=1

{
Re[Ijj′ ]Xjj′ − Im[Ijj′ ]Yjj′

}
= P(Dk ← χm ← bi, G), (25)
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where

Xij ≡ |Ai||Aj| cos(φi − φj),

Yij ≡ |Ai||Aj| sin(φi − φj). (26)

The system of linear equations (25) can be solved if the probabilities P(Dk ← χm ← bi, G) have been
measured for N2 different intervals ∆m, m = 1, . . . , N2. Solving Equation (26) for |Ai| and φi, i =
1, . . . , N, one will be able to determine the values of all amplitudes As(dk ← cj ← bi) ≡ |Aj| exp(iφj)

up to an unimportant overall phase.
To conclude the Section, we note that the measured operator Ĉ may have J < N

degenerate eigenvalues,

Ĉ =
J

∑
j=1

Cj

N

∑
n=1

∆
(
Cj − 〈cn|Ĉ|cn〉

)
|cn〉〈cn| ≡

J

∑
j=1

Cjπ̂j, (27)

where π̂j projects onto its j-th eigen-subspace. In this case the analysis remains the same, except that N
is replaced by J, and the J amplitudes to be determined,

As(dk ← Cj ← bi) =
N

∑
n=1

∆
(
Cj − 〈cn|Ĉ|cn〉

)
× 〈dk|Ûs(t′′, t′)π̂jÛs(t′, 0)|bi〉, (28)

result from the interference between the virtual paths (21) not distinguished by a measurement of Ĉ.
Next we see how the scheme would work in the simplest case of a two-level system, N = 2.

5. An Inverse Measurement Problem

We can write Equation (23) as

〈Z| Ĩ(mµ)|Z〉 = P(Dk ← χmµ ← bi, G), mµ = 1, . . . , 2N, (29)

where |Z〉 is a complex “vector” with the components Zj ≡ As(dk ← cj ← bi), j = 1, . . . , N, and Ĩ(mµ)

is an “operator” with matrix elements Ijj′(mµ), j, j′ = 1, 2, . . . , N, and the subindex µ accounts for the
specific subset of intervals used. The problem now takes a more familiar form. One needs to find the
components of a (fictitious) state |Z〉, given the expectation values of the hermitian operators Ĩ(mµ),
mµ = 1, 2, . . . , 2N.

Equationation (29) is particularly useful in the case N = 2, where |Z〉 can be seen as an
unnormalised state of a fictitious “spin”, and Ĩ(m) can be expanded in terms of the Pauli matrices
(σ̂1 = Î, σ̂2 = σ̂x, σ̂3 = σ̂y, and σ̂4 = σ̂z),

Ĩ(mµ) =
4

∑
ν=1

βµνσ̂ν, µ = 1, . . . , 4, (30)

with four intervals ∆mµ corresponding to the pointer’s readings χmµ , chosen at one’s convenience.
The resulting four equations (29) determine the “spin”’s projections 〈X|σ̂x,y,z|X〉 onto the three spatial
axes, as well as the state’s norm, 〈X|X〉,

4

∑
ν=1

βµν〈Z|σ̂ν|Z〉 = P(Dk ← χmµ ← bi, G), µ = 1, . . . , 4. (31)
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The polar angles θ and φ of the axis along which the “spin” is polarised,

sin θ cos φ = 〈Z|σ̂x|Z〉/〈Z|Z〉,
sin θ sin φ = 〈Z|σ̂y|Z〉/〈Z|Z〉,

cos θ = 〈Z|σ̂z|Z〉/〈Z|Z〉, (32)

determine the “spin”’s state [cos(θ/2), exp(iφ) sin(θ/2)]T up to an arbitrary overall phase and,
returning to our original notations, we have the desired result,

As(dk ← c1 ← bi) =
√
〈X|X〉 cos(θ/2),

As(dk ← c2 ← bi) =
√
〈X|X〉 exp(iφ) sin(θ/2). (33)

Next we see how the scheme will work in practice.

6. Double-Slit Interference

It is natural to start with the simplest case, where one measures the final position of a massive
pointer, |χ〉 = | f 〉, and

M→ ∞, so that Ûp(t′ − t)→ 1, (34)

which moves only when it interacts with the system, and whose state remains the same once this
interaction is over [13]. If so, the matrices Ĩ(m) are real,

Ipos
jj′ (m) =

∫

∆m
d f G( f − C1)G( f − C2), (35)

and the coefficient multiplying σ̂y in Equation (30) vanishes, βµ3 ≡ 0. One can still solve any three of
Equation (31) for 〈Z|Z〉, 〈Z|σ̂x|Z〉, and 〈Z|σ̂z|Z〉/〈Z|Z〉 but would be unable to decide between φ and
2π − φ, as illustrated in Figure 2. (Note that the problem is exacerbated for N > 2 where N − 1 signs
would remain indeterminate when calculating the relative phases.)

Measuring instead the final pointer’s momentum |χ〉 = |λ〉, 〈λ| f 〉 = (2π)−1/2 exp(−iλ f ), one
encounters a similar difficulty. In this case we have

Imom
jj′ (m) =

∫

∆m
dλ|G̃(λ)|2 exp[i(Cj − Cj′)λ],

G̃(λ) = (2π)−1/2
∫

d f exp(−iλ f )G( f ), (36)

so that βµ4 ≡ 0, and having solved the three remaining equations one will not be able to decide
between θ and π − θ (see Figure 2).

However, provided both P(Dk ← fm ← bi, G) and P(Dk ← λm ← bi, G) have been
measured independently in two different experiments, one can combine the results to obtain the four
Equation (31). For example, choosing any three equations employing Ipos

jj′ (m) and P(Dk ← fm ← bi, G),
and one using Imom

jj′ (m) and P(Dk ← λm ← bi, G), will determine the two amplitudes (33)
unambiguously (up to a global phase).

Finally we note that the case of a two-level system is conceptually similar to a Young’s double-slit
experiment. Here the two states |c1〉 and |c2〉 play the roles of the two holes, and the target state |dk〉,
together with its orthogonal companion, |dk′〉, 〈dk|dk′〉 = 0 are the “points on the screen”. Unperturbed
probabilities |As(dk ← c1 ← bi) + As(dk ← c2 ← bi)|2 and |As(dk′ ← c1 ← bi) + As(dk′ ← c2 ← bi)|2
correspond to having an “interference pattern on the screen”. Thus, if a von Neumann measurement
perturbs the interference pattern (the probability to be detected in |dk〉 is

∫
ρ( f , dk)d f =

∫
ρ(λ, dk)dλ 6=

|As(dk ← c1 ← bi) + As(dk ← c2 ← bi)|2), yet does not destroy it completely, and the values of the
path amplitudes As(dk′ ← cj ← bi) can be deduced from the measurement’s statistics.
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θ

(ϕ,π-θ)x	
y	

z	

ϕ

Figure 2. With only two amplitudes, As(dk ← c1 ← bi) and As(dk ← c2 ← bi) to be evaluated,
the “spin”’s state |Z〉 in Equation (31) lies on a Bloch sphere. If the pointer has no own dynamics,
e.g., M → ∞, evaluating only its position (momentum) distribution leaves the azimuthal angle φ

(polar angle θ) indeterminate. The problem is remedied if the pointer’s state is allowed to spread,
as discussed in Section 7.

7. A Simple Example

To see the efficiency of the proposed scheme, we first change it a little. It is possible to avoid
mixing the results of measuring the pointer’s position and momentum, if the condition (34) is relaxed,
and the pointer’s initial state |G〉 is allowed to spread in the coordinate space. Choosing |χ〉 = | f 〉,
from (15) we have

Gj(χ, t′) =
21/4∆ f 1/4

π1/4∆ ft′
exp

[
( f − Cj)

2

∆ f 2
t′

]
,

∆ ft′ ≡ (∆ f 2 + 2it′/M)1/2. (37)

The appearance of a “complex width” ∆ ft′ allows one to determine all coefficients βµν in Equation (30)
from the statistics of the final pointer’s positions. Explicitly, from (24) we have

βµ1 = [I11(mµ) + I22(mµ)]/2, βµ2 = Re[I12(mµ)],

βµ3 = −Im[I12(mµ)], βµ4 = [I11(mµ)− I22(mµ)]/2. (38)

In an actual experiment set-up to evaluate the amplitudes As(dk′ ← cj ← bi) a successful post-selection
of the system in the final state, |dk〉, will occur K times out of the total number of trials, Ktotal . It is
convenient to divide the full range of f into four regions, ∆µ, µ = I, I I, I I I, IV, each containing a
quarter of all cases, K(µ) = K/4 (see Figure 3). To simulate the measurements, we use a random
number generator, obtain four numbers K(I), K(I I),K(I I I), and K(IV), ∑IV

µ=I K(µ) = K, replace the
probabilities in the r.h.s. of Equation (31) by their estimates,

4

∑
ν=1

βµν〈Z|σ̂ν|Z〉 =
K(µ)
Ktotal

Ktotal→∞−−−−−→ K
4Ktotal

, µ = I, . . . , IV, (39)

and solve Equation (39) for different values of Ktotal .
The results of three simulations for

Ĥs = ωσ̂z, Ĉ =
1
2

σz = [|c1〉〈c1| − |c2〉〈c2|]/2, C2 = −C1 = 1/2, (40)

arbitrarily chosen (unnormalised) initial and final states,

|bi〉 = (2.5 + 4i)|c1〉+ (6 + 3i)|c2〉,
|dk〉 = (3 + 4i)|c1〉+ (5 + 7i)|c2〉, (41)
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and

ωt′ = π/3, t′/M = π/6, ∆ f /(C2 − C1) = 0.5, (42)

are shown in Figure 4. It takes approximately K ∼ 105 − 106 successful post-selections in order to
recover the amplitudes of As(dk′ ← cj ← bi), given the values in Equation (42). Next we discuss the
two limiting cases, in which the method of this Section will fail.
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8. Accurate (Strong) and Inaccurate (Weak) Limits

The method of Section 8 fails, or at least becomes impractical as ∆ f → 0 or ∆ f → ∞.
The uncertainty in the initial pointer’s position determines the perturbation suffered by the measured
system, as shown in Figure 5a, where the probability of detecting the system in the final state |dk〉,

P(Dk ← bi, G) = ∑
m=I,IV

P(Dk ← fm ← bi, G) =
∫ ∞

−∞
ρ( f , dk)d f , (43)
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is seen to vary from |As(dk ← c1 ← bi)|2 + |As(dk ← c2 ← bi)|2 to |As(dk ← c1 ← bi) + As(dk ←
c2 ← bi)|2, as ∆ f increases from 0 to ∞. In both limits the matrix in the l.h.s. of Equation (39) becomes
singular, as shown in Figure 5b.

0.4

0.5

0.6

0.7

0.8

P
ro

b
a

b
ili

ty

Accurate (strong)

Inaccurate
(weak)

a)
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d
e

t[
β
µν
]

Δf/(C2-C1)

b)

Figure 5. (a) The probability P(Dk ← bi, G) in Equation (43) as function of the uncertainty in the
pointer’s initial position, ∆ f . (b) the determinant of the matrix βµν in Equation (39) vs. ∆ f .

In particular, if the initial position of the pointer is highly uncertain, ∆ f → ∞, from (23) we have
∫ ∞

−∞
G∗j′( f , t′)Gj( f , t′)d f =

∫ ∞

−∞
G( f − Cj′)G( f − Cj)d f

∆ f→∞−−−−→1. (44)

The pointer decouples from the system, and the interference between the two virtual paths is preserved,

P(Dk ← bi, G)→ |As(dk ← c1 ← bi) + As(dk ← c2 ← bi)|2. (45)

Note that the same effect can be achieved by leaving the width ∆ f constant, and multiplying the
coupling term in Equation (6), Ĥint ≡ λ̂Ĉ = −i∂ f Ĉ, by a constant α→ 0. Indeed, scaling the pointer’s
coordinate by choosing f ′ = α f , would result in

G( f )→ G( f ′/α), and Ĥint( f )→ αĤint( f ′). (46)

If, on the other hand, the initial position of the pointer is known accurately, ∆ f → 0,
Equation (23) yields

P(Dk ← bi, G)→ |As(dk ← c1 ← bi)|2 + |As(dk ← c2 ← bi)|2, (47)

since by (15)
∫ ∞

−∞
G∗j′( f , t′)Gj( f , t′)d f

∆ f→0−−−→δjj′ . (48)

Thus, an accurately set pointer strongly perturbs the system by completely destroying interference
between the virtual paths, even when the spreading of its initial state is taken into account.
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9. Averages and the “Weak Measurements”

Another possibility to explore the limits ∆ f → 0 and ∆ f → ∞ is to evaluate the moments of the
distribution of the pointer’s readings (23),

〈χl〉 ≡
∫ ∞

−∞
χlρ(χ, dk)dχ/

∫ ∞

−∞
ρ(χ, dk)dχ, l = 0, 1, 2, . . . (49)

These are, of course, also expressed in terms of the system’s path amplitudes As(dk ← c1 ←
bi) ≡ |Aj| exp(iφj), and we will look at the ρ’s first moments in the “strong” and the “weak” limits.
For simplicity, we will restore the condition (34) or, what is the same, assume that the times t′ and
t′′ − t′ are so short that Ûp(t′), Ûp(t′′ − t′) ≈ 1.

Expansions around ∆ f → 0 are not particularly interesting. Bearing in mind that
∫

f G2( f −
Cj)d f = Cj, in the two-level case of Section 6, for |χ〉 = | f 〉 we have

〈 f 〉 ≈ 〈 f 〉∆ f=0 −F0(∆ f , Cj)
|A1||A2| cos(φ1 − φ2)

|A1|2 + |A2|2
+F1(∆ f , Cj)

|A1||A2| cos(φ1 − φ2)

(|A1|2 + |A2|2)2 , (50)

where 〈 f 〉∆ f=0 = (C1|A1|2 + C2|A2|2)/(|A1|2 + |A2|2) is the average, obtained in a highly accurate
measurement, and the factors F0 and F1, which only depend on the parameters of the pointer and the
eigenvalues Cj, rapidly decrease for ∆ f → 0 (See Appendix B).

Similarly, since
∫

p|G̃(p)|2dp = 0, for the mean pointer’s momentum, |χ〉 = |λ〉 we obtain

〈λ〉 ≈ L(∆ f , Cj)
|A1||A2| sin(φ1 − φ2)

|A1|2 + |A2|2
, (51)

where L(∆ f , Cj)
∆ f→0−−−→0 is given in the Appendix B. Thus, some information about the relative phase of

the two path amplitudes can be obtained from accurate yet not too accurate measurements. However,
the expressions (50) and (51) are cumbersome and, as we already said, not particularly interesting.

The opposite limit ∆ → ∞ is involved in the controversy surrounding the so-called
“weak measurements”. Returning to the notations of Section 3 and noting that

∫
d f f G( f − C1)G( f −

C2) ≈
∫

d f f [G( f ) − ∂ f G( f )C1][G( f ) − ∂ f G( f )C2] ≈ (C1 + C2)/2, for the pointer’s mean position
we have

〈 f 〉 ≈ 〈Z|(1̂
C1+C2

2 + σ̂x
C1+C2

2 + σ̂z
C1−C2

2 |Z〉
〈Z|1̂ + σ̂x|Z〉

= Re
[

C1 As(dk ← c1 ← bi) + C2 As(dk ← c2 ← bi)

As(dk ← c1 ← bi) + As(dk ← c2 ← bi)

]
.

(52)

Similarly, for the mean pointer’s momentum we find

〈λ〉 ∆ f→∞−−−−→ Var(λ)
〈Z|σ̂x(C1 − C2)|Z〉
〈Z|1̂ + σ̂x|Z〉

= Var(λ)× Im
[

C1 As(dk ← c1 ← bi) + C2 As(dk ← c2 ← bi)

As(dk ← c1 ← bi) + As(dk ← c2 ← bi)

]
(53)

where Var(λ) is the variance of the distribution of the momenta in the initial pointer’s state |G〉,

Var(λ) ≡
∫

dλλ2G̃(λ)2/
∫

dλG̃(λ)2 ∆ f→∞−−−−→ 0, (54)

which vanishes when G( f ) becomes very broad in the coordinate space, and G̃(λ)2 → δ(λ).
Equationations (50)–(53), although different, illustrate the same point. Any average, evaluated

for a pointer coupled, as in Equation (6), to a system making a transition between initial and final
states will have to be expressed in terms of certain combinations of the system’s transition amplitudes,
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defined in the absence of the pointer. Transition amplitudes are the basic elements of the description of
quantum motion [8], and this is really all that can be said about this matter.

The above analysis relates to the so called “weak values” WV(for a recent review see [9]). For short
enough t′ and t′′ − t′, Ûs(t′), Ûs(t′′ − t′) ≈ 1̂, the quantity in the square brackets in Equations (52)
and (53) reduces to a ratio of matrix elements

C1 As(dk ← c1 ← bi) + C2 As(dk ← c2 ← bi)

As(dk ← c1 ← bi) + As(dk ← c2 ← bi)
=

∑j=1,2 〈dk|cj〉Cj〈cj|bi〉
∑j=1,2 〈dk|cj〉j〈cj|bi〉

=
〈dk|Ĉ|bi〉
〈dk|bi〉

. (55)

Presented in this manner in [14], the r.h.s of Equation (55) was dubbed “the weak value of Ĉ for a
system pre- and post-selected in its initial and final states”, which be can obtained in a particular kind
of “weak quantum measurements”. Various weak values have been measured experimentally, yet their
place and status within conventional quantum mechanics remain unclear. We have long advocated the
interpretation of the “weak measurements” in terms of Feynman’s transition amplitudes, and refer
the reader to [15–18] for an analysis of the role of the Uncertainty Principle and the significance of
“anomalous weak values”. Here we further support this view by placing the “weak measurements”
within a broader context of measuring the transition amplitudes, absent in the simple two-step histories
of Section 2.

10. Prediction and Retrodiction

Having recovered the transition amplitudes As(dk′ ← cj ← bi), it is reasonable to question the
usefulness of what has been found. If the amplitudes are known for all |cj〉, j = 1, . . . , N, they can
be used to predict the results of other measurements made on the same system staring in the same
|bi〉, and ending in the same |dk〉, provided the new operator Ĉ′ commutes with Ĉ, [Ĉ, Ĉ′] = 0. Indeed,
their values is all that required to compute the probabilities P(Dk ← χm ← bi, G) in Equation (23),
for any choice of G( f ), |χ〉, C′j and ∆, even if the Hamiltonian of the system, Ĥs, is not known. The task

is not entirely trivial for N > 2, where Ĉ′ can have degenerate eigenvalues, and the corresponding
amplitudes must be added, as described in Section 2.

On the other hand, little can be learnt about an intermediate measurement of a Ĉ′ which does not
commute with the Ĉ. This is seen already from the N = 2 example, discussed in the previous Section.
Suppose one replaces Ĉ = σ̂z with a Ĉ′ = σ̂x, so that now

|c′1〉 = [|c1〉+ |c2〉]/
√

2, |c′2〉 = [|c1〉 − |c2〉]/
√

2, (56)

and

As(dk ← c′1 ← bi) = As(dk ← c1 ← bi)/2 + As(dk ← c2 ← bi)/2

+ 〈dk|Ûs(t′′ − t′)|c1〉〈c2|Ûs(t′)|bi〉/2 + 〈dk|Ûs(t′′ − t′)|c2〉〈c1|Ûs(t′)|bi〉/2. (57)

Of the four quantities in the r.h.s. of Equation (57) needed to evaluate As(dk ← c′1 ← bi), only the first
two are known from measuring the Ĉ, and this is clearly not enough.

Another use of the path amplitudes (21) and (28) is retrodictive reconstruction of the system’s
past. Classically, the knowledge of a system’s current position, velocity, and its Lagrangian is sufficient
for predicting its position in the past. Quantally, one may wish to determine the system’s initial state,
|bi〉, from the values of the path amplitudes. The state is fully determined by the coefficients 〈ϕn|bi〉
of its expansion in some known basis |ϕn〉, |bi〉 = ∑N

n=1 〈ϕn|bi〉|ϕn〉. If the system’s Hamiltonian
Ĥs is known, the operator Ĉ has non-degenerate eigenvalues [cf. Equation (7)], and the values of
As(dk ← cj ← bi) have been measured, the problem is easily solved. Indeed, using (21) we obtain
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〈ϕn|bi〉 = As(dk ← cn ← bi)/〈dk|Ûs(t′′, t′)|cn〉,
|ϕn〉 ≡ Ûs−1(t′, 0)|cn〉,

〈ϕn′ |ϕn〉 = 〈cn′ |cn〉 = δnn′ , (58)

and with |bi〉 thus determined, the results of other possible measurements can be predicted.
However, if some of the Ĉ’s eigenvalues are degenerate [cf. Equation (27)], full reconstruction of

the initial state is not possible, since important information is lost to interference. From (28) we have

As(dk ← Cj ← bi) =
N

∑
n=1

∆
(
Cj − 〈cn|Ĉ|cn〉

)
× 〈dk|Ûs(t′′, t′)|cn〉〈ϕn|bi〉, (59)

so that the values of 〈ϕn|bi〉 cannot be recovered from the known values of As(dk ← Cj ← bi).

11. Conclusions

In summary, we have shown that the values of system’s transition amplitudes can be deduced
from the statistics of an intermediate measurement. The deduction is possible provided the
measurement is “fuzzy”, and does not destroy interference between the system’s virtual paths.
What distinguishes our method from usual approach to the “Pauli problem” [2–7] is its reliance
on a type of interference, absent in two-step histories, consisting only of preparation and the
actual measurement. With the post-selection step added, the situation is conceptually similar to
a double-(multiple-) slit experiment [8], in which a probe, designed to determine the path taken
by the system, does its job imperfectly, so a vestige of the interference pattern is retained on the
screen. There is a two-way relationship between a result of observation and what can be considered a
computational tool, although it is typically more difficult to deduce amplitudes from the probabilities
than to construct the probabilities from the known amplitudes.

Finally, it is worth noticing that neither reconstructing the amplitudes as in Section 7,
nor evaluating their combinations by measuring the “weak values” of Section 9, would serve to
provide a deeper insight into quantum mechanical formalism. If asked “what has been evaluated?”
one can only answer “amplitudes”. Moreover, if asked further “what are these amplitudes?” one can
only reply “something quantum theory uses to predict the observable probabilities”.
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Appendix A. Derivation of Equation (23)

By definition,

P(Dk ← χm ← bi, G) =
∫ ∞

−∞
dχ′ × |

N

∑
j=1

∫

∆m
dχ〈χ′|Ûp(t′′ − t′)|χ〉Gj(χ, t′)As(dk ← cj ← bi)|2. (A1)

But ∫ ∞

−∞
dχ′〈χ′′|Ûp†(t′′ − t′)|χ′〉〈χ′|Ûp(t′′ − t′)|χ〉 = δ(χ′′ − χ) (A2)

so that [θ∆m(χ) = 1 inside ∆m, and 0 otherwise]

∫

∆m

dχ′′dχδ(χ′′ − χ)G∗j′ (χ
′′, t′)Gj(χ, t′) =

∫

∆m

dχθ∆m (χ)G
∗
j′ (χ, t′)Gj(χ, t′) =

∫

∆m

dχG∗j′ (χ, t′)Gj(χ, t′). (A3)
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Defining

ρ(χ, dk) ≡ ∑
j

∑
j′

G∗j′(χ, t′)Gj(χ, t′)× As∗(dk ← cj′ ← bi)As(dk ← cj ← bi)

= |∑
j

Gj(χ, t′)As(dk ← cj ← bi)|2, (A4)

we obtain Equation (23).

Appendix B. The Factors F0, F1, and L in Equations (50) and (51)

In Section 9 we defined

F0(∆ f , Cj) ≡ 2
∫

G( f − C1)G( f − C2)d f ,

F1(∆ f , Cj) ≡ 2
∫

f G( f − C1)G( f − C2)d f ,

L(∆ f , Cj) ≡ 2
∫

λ exp[i(C1 − C2)λ]|G(λ)|2. (A5)

For a Gaussian G( f ) in Equation (11), as ∆→ 0 we have

F0(∆ f , Cj) ∼ exp[−(C1 − C2)
2/2∆ f 2]→ 0,

F1(∆ f , Cj) ∼ |C1 − C2| exp[−(C1 − C2)
2/2∆ f 2]→ 0,

L(∆ f , Cj) ∼
|C1 − C2|

∆ f 2 exp[−(C1 − C2)
2/2∆ f 2]→ 0. (A6)
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