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Abstract: The Thermodynamic Formalism provides a rigorous mathematical framework for studying
quantitative and qualitative aspects of dynamical systems. At its core, there is a variational principle that
corresponds, in its simplest form, to the Maximum Entropy principle. It is used as a statistical inference
procedure to represent, by specific probability measures (Gibbs measures), the collective behaviour of
complex systems. This framework has found applications in different domains of science. In particular,
it has been fruitful and influential in neurosciences. In this article, we review how the Thermodynamic
Formalism can be exploited in the field of theoretical neuroscience, as a conceptual and operational
tool, in order to link the dynamics of interacting neurons and the statistics of action potentials from
either experimental data or mathematical models. We comment on perspectives and open problems in
theoretical neuroscience that could be addressed within this formalism.

Keywords: Thermodynamic Formalism; neuronal networks dynamics; maximum entropy principle; free
energy and pressure; linear response; large deviations; ergodic theory

1. Introduction

Initiated by Boltzmann [1,2], the goal of statistical physics was to establish a link between the
microscopic mechanical description of interacting particles in a gas or a fluid, and the macroscopic
description that is provided by thermodynamics [3,4].

Although this program is, even nowadays, far from being completed [1,5], the work of Boltzmann and
his successors opened new avenues of research, not only in physics but also in mathematics. Especially
the term “ergodic”, which was coined by Boltzmann [1], inaugurated an important branch of mathematics
that provides a rigorous link between the description of dynamical systems in terms of their trajectories
and the description in terms of statistics of orbits and, more generally, between dynamical systems theory
and probability theory. At the core of the ergodic theory, there is a set of “natural” dynamically invariant
probability measures in the phase space, somewhat generalising the Liouville distribution for conservative
systems with strong analogies with Gibbs distributions in statistical physics [6,7]. This strong connection,
in particular, gave birth to the so-called Thermodynamic Formalism.

The introduction of Thermodynamic Formalism that occurred in the 1970s was primarily due to
Yakov Sinai, David Ruelle, and Rufus Bowen [8–10]. The development of Thermodynamic Formalism
initially served to derive rigorous criteria characterising the existence and uniqueness of the Gibbs
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states in the infinite volume limit. Although Gibbs states and equilibrium states (see Section 2.1.1) are
naturally defined in finite volume systems, the extension to infinite volume (“thermodynamic limit”) is
far from straightforward. Indeed, it does not follow from the Carathéodory or Kolmogorov extension
theorems [11,12], that the equilibrium states of the infinite volume define a measure, as there is no way to
express the marginals associated to an infinite-volume Gibbs measure without making explicit reference
to the measure itself [12]. When considering conditional probabilities, rather than marginals, Dobrushin,
Lanford, and Ruelle led to a different consistency condition that affords for the building of infinite volume
Gibbs measures [7] .

In the context of dynamical systems, Sinai, Ruelle, and Bowen were able to connect the theory
of hyperbolic (Anosov) dynamical systems to results in statistical mechanics. Indeed, Sinai found an
unexpected link between the equilibrium statistical mechanics of spin systems and the ergodic theory of
Anosov systems by a codification using Markov partitions (see Section 2.1.1 for details). This idea was
later extended for a much more general class of hyperbolic systems [10,13,14]. While the Thermodynamic
Formalism started as a branch of rigorous statistical mechanics, nowadays it is viewed from different
communities as a branch of dynamical systems or stochastic processes.

There have been a few attempts to use Thermodynamic Formalism in different ways other than
as a natural mathematical foundation of statistical mechanics, for example, studying population
dynamics [15,16], self-organised criticality [17], the relative abundance of amino acids across diverse
proteomes [18], analyse the difference between introns and exons in genetic sequences [19,20], coding
sequence density estimation in genomes [21], and statistics of spike trains in neural systems [22–28], which
is the main topic of this review. Neuronal networks are biological systems whose components, such as
neurons, synapses, ionic channels, ..., are ruled by the laws of physics and are written in terms of differential
equations; hence, are dynamical systems. On the other hand, because of their large dimensionality, it is
natural to attempt to characterise neuronal networks using methods inspired by statistical physics, for
example, mean-field methods [29–32], density methods [33] or Fokker-Planck equations [34]. Most neurons
produce short electrical pulses, called action potentials or spikes, and it is widely believed that the collective
spike trains emitted by neuronal networks encode information about the underlying dynamics and
response to stimuli [35–37]. Thus, researchers have devoted a lot of effort to understanding the correlations
structure in the statistics of spike trains [38–45].

Because spikes can be represented as binary variables, it is natural to adapt methods and concepts
from statistical physics, and more specifically the statistical physics of spin systems, to analyse spike trains
statistics. There have been many successful attempts in this direction. All of the approaches we know
about are based on variational principles. The most direct connection from statistical physics to spike train
statistics is done via the maximum entropy principle which has attracted a lot of attention during the past
years [38,39,43,46,47] (see [47] for a physicists-oriented review). Unfortunately, most of these articles are
limited to the original form of an Ising spin-glass potential (pairwise interactions with random couplings)
or variants of it with higher order interactions [40–42], where successive times are independent, thereby
neglecting the time correlations and causality one may expect from a network of neurons with interactions
(exceptions can be found in [48–50]). We focus on this approach and its extension to causal networks
in the present review as it is natural to link with the Thermodynamic Formalism. Another approach,
which actually appeared earlier in mathematical neuroscience, is the dynamic mean-field theory that takes
into account dynamics and time correlations. In this approach, originated in quantum field theory and
Martin–Siggia–Rose formalism (Statistical dynamics of classical systems [51]), the variational principle is
expressed via the minimisation of an effective action containing the equations for the dynamics. It was
introduced in the field of theoretical neuroscience by Sompolinsky who initially applied it to the study
of spin-glasses dynamics [52–54], before analysing neuronal networks dynamics [29]. Here, the effective
action can be summarised, in the limit when the number of neurons tends to infinity, by dynamic mean-field
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equations depending on neuron’s firing rates and pairwise time-correlations. Thus, here, the information
about spike statistics is contained in the two first moments (Gaussian limit). This approach has inspired a
lot of important works, where temporal correlations are taken into account, see, for example [55–57], or the
recent work by M. Helias and collaborators (i.e., the review on dynamic mean-field theory in [58] and the
link to from dynamic mean-field theory to large deviations from Ben-Arous and Guionnet [59] and [60]).
Another trend attempts to relate neuronal dynamics to spike statistics, expressed via a maximum-likelihood
approach [61] (we apologise if we have forgotten other approaches that we ignore). To our taste, the most
achieved work in this direction is Amari’s information geometry [62] making a beautiful link between
probability measures (e.g., exponential, like Gibbs measures) and differential geometry.

In this review, we show how Thermodynamic Formalism can be used as an alternative way to study
the link between the neuronal dynamics and spike statistics, not only from experimental data, but also from
mathematical models of neuronal networks, properly handling causal and memory dependent interactions
between neurons and their spikes. It is also based on a variational principle (and, actually, the four methods
that are discussed in this introduction certainly have a common “hat”, the large deviations theory [63]),
although we depart from this principle at some point where we discuss extensions of this approach to
non-stationary situations through a linear response formula. Additionally, Thermodynamic Formalism
provides a rigorous mathematical framework to study phase transitions that may illuminate the current
discussions regarding signatures of criticality observed in many examples of neuroscience [64–72] and,
especially, in Gibbs distributions inferred while using the maximum entropy principle from experimental
data [73–75]. The aim of this review is twofold. On the one hand, to bridge the gap between mathematicians
working in the field of Thermodynamic Formalism and scientists interested in characterising spike
statistics, especially those that apply the maximum entropy principle, which is placed here in a broader
context. On the other hand, to show new perspectives in the field of mathematical neuroscience related to
Thermodynamic Formalism, including phase transitions.

The rest of the article is organised, as follows. In Section 2, we introduce the main tools and ideas of
Thermodynamic Formalism that we use later. In Sections 3 and 4, we present the uses of this formalism in
neuroscience, for spike train statistics. In Section 5, we end with a discussion and present perspectives for
future works.

2. Mathematical Setting of Thermodynamic Formalism

Our goal in this section is to present the basic tools and ideas of Thermodynamic Formalism to the
unfamiliar reader (detailed accounts of this subject can be found in [9,10,76–78]).

2.1. General Properties

In order to study a dynamical system from the perspective of the Thermodynamic Formalism, we
need, first of all, to describe the set of elements that need to be either finite or countable. Thus, continuous
particle characteristics such as position, speed, or momentum do not enter in the setting we analyse
here, unless one “coarse grain” the phase space with a finite or countable partition. Discrete particle
characteristics, like spin, or symbols attached to specific features of a dynamical system, constitute the
set of symbols denoted by A also referred to as the alphabet. Let AM be the set of blocks of M symbols of
the alphabet, that is, sequences of the form x0x1 . . . xM−1, where xi ∈ A, i = 0 . . . M− 1 and AN, is the set
of right-infinite sequences of the form x = x0x1 · · · , with xi ∈ A for all i ∈ N. One may also consider the
bi-infinite sequences AZ, but we will mostly stick to AN in the sequel.

One can equip the space AN with a distance. We associate to θ ∈ (0, 1) the distance dθ such that
dθ(x, y) = θm, where m is the largest non-negative integer, such that xi = yi for every 0 ≤ i < m.
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In particular, if x = y then m = ∞ and dθ(x, x) = 0, and, by convention, if x0 6= y0 then m = 0. When
considering this distance, the metric space (AN, dθ) is compact [10].

In order to consider time order, we introduce the time evolution in the form of a left-shift, σ : AN →
AN, defined by (σx)i = xi+1, for all i ∈ N and any x ∈ AN, where the index i refers to time. That is, the
i-th symbol of σx (the image of x under σ), corresponds to the (i + 1)-th symbol of the original x, for all i.

Let us define continuous functions f : AN → R. We introduce the modulus of continuity of f :

vark( f ) := sup{| f (x)− f (y)| : xi = yi, for i = 0, . . . , k− 1.},

characterising the maximal variation of f on the set of infinite sequences agreeing on their first k symbols.
The function f is continuous if vark( f )→ 0 when k→ ∞, and the continuity is exponential if vark( f )→ 0
exponentially fast. A function f : AN → R has range R if f (x) ≡ f (x0, . . . , xR−1), i.e., f only depends on
the first R coordinates x0, . . . , xR−1. Functions with finite range are obviously continuous. The notion
of continuity, and, especially, exponential continuity is essential when studying the Thermodynamic
Formalism of functions with infinite range.

A useful concept for this formalism is that of the Markov partitions. Let Ω be a general (continuous)
state space and a general dynamics (a flow or a discrete time mapping) G on Ω. Consider a finite covering
of Ω, made by sets called rectangles, R = {R1, . . . , Rl} with the property that, for every pair i 6= j,
int(Ri) ∩ int(Rj) = ∅, and such that the closure of the image set G(Ri) equals a union of closures of sets
in R. There is a specific construction for different dynamical systems (for details we refer the reader
to [10]). This construction allows one to make a natural coding for the state space, where the trajectories
of the dynamical systems correspond to the sequences of symbols of the labels identifying the sets Ri.
Rectangles allow for us to partition a continuous phase space into a discrete finite partition. For hyperbolic
dynamical systems, each point in the phase space admits local stable or unstable manifolds with a non
zero diameter. The edges of rectangles in this case are made of these local stable and unstable manifolds
and the corresponding partition is called a “Markov partition”, because the image of a rectangle under the
dynamics can be represented by a Markov transition matrix [79].

2.1.1. Gibbs Measures

We now define the measurable sets on AN. Let us denote the sequence x0 . . . , xn−1 by x0,n−1. The
set [x0,n−1] := {y ∈ AN : y0 = x0, . . . , yn−1 = xn−1} is called a cylinder. Cylinders define a Borel sigma
algebra B on AN (see, for instance, Chapter 1, in [80]). We are interested in probability distributions
on (AN,B) also referred as (macro) states in physics. In the sequel we will skip the prefix “macro” and
deal with “states” as probability measures on (AN,B). There is a special class of states ν, such that, for
any measurable set B ⊂ AN, ν(σ−1(B)) = ν(B), where σ−1(B) stands for the set of all the pre-images
of σ of elements of B. These distributions are the set of shift-invariant probability measures denoted by
Mσ(AN). In general, it is possible to consider systems where there exists some forbidden transitions
between symbols. In that case, we need to consider a subset of A invariant under the dynamics, i.e.,
X ⊂ AN, such that σ(X) = X.

The analogy with the spin systems in statistical mechanics at the root of the terminology
“Thermodynamic Formalism”, goes, as follows. Let φ : AN → R be a continuous function, also called
“energy” or “potential”. Two important examples are finite range potentials, where φ(x) ≡ φ(x0,R−1), or
exponentially continuous potentials with infinite range. Subsequently, the “energy” of a configuration of n
sites based on the sequence x ∈ X, is given by the “Birkhoff sums”:

Snφ(x) :=
n−1

∑
i=0

φ ◦ (σx)i.
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We define the measures that assign probability to the cylinder sets based on the potential function,
with the so called “Gibbs property”. There exist constants C > 1 and F(φ), such that, for all x ∈ X and for
all n ≥ 1:

C−1 ≤
µφ([x0,n−1])

exp(∑n−1
i=0 φ ◦ (σx)i − nF(φ))

≤ C. (1)

The measures satisfying the condition (1) are called “Gibbs measures”. The quantity:

F(φ) = lim
n→∞

1
n

log ∑
x0···xn−1

eSnφ(y), (2)

for all y ∈ [x0,n−1] [10], is called the “pressure” (or free energy) of the potential φ. Observe that it does not
depend on the measure µφ itself, only on the potential. Thus, two Gibbs measures that are associated with
the same potential have the same pressure.

Given a continuous potential φ, such that vark(φ) ≤ b θk for some constants 0 < θ < 1 and,
b > 0, there is a unique shift-invariant probability measure satisfying the Gibbs property (1), [10].
Furthermore, under the same assumption for the potential, the associated Gibbs measure is mixing
i.e., limn→∞ µ (A ∩ σ−nB) = µ(A)µ(B), for any measurable set A, B and thus ergodic (A measure µ is said
to be ergodic for the dynamics G if for any measurable G-invariant set A, (G−1(A) = A), its measure is
either µ(A) = 0 or µ(A) = 1. See, for instance, Chapter 3 of [79] for a detailed introduction.) (see [10,80]
for definitions and details). Moreover, two continuous potentials φ and ψ are called cohomologous with
respect to the shift σ (and denoted by φ ∼ ψ), if there is a continuous function u and a constant K, such that:

φ = ψ + u− u ◦ σ− K.

Cohomologous potentials have the same Gibbs measure, µφ = µψ.

2.1.2. Entropy and the Variational Principle

The Shannon entropy of a probability distribution quantifies the average level of “uncertainty” in its
possible outcomes.

h(p) := − ∑
x∈A

p(x) log p(x). (3)

More generally, let ν be a shift-invariant probability measure on X, we introduce the block entropy:

Hn(ν) := − ∑
x0,n−1∈An

ν([x0,n−1]) log ν([x0,n−1]).

For finite alphabets and because ν is shift-invariant, the following limit exists,

h(ν) := lim
n→∞

1
n

Hn(ν),

and is called the Kolmogorov–Sinai entropy or simply entropy of ν [76,81]. The key is that the sequence
Hn is sub-additive and the possible values lie in the compact set [0, log |A|] (see [76]).
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Another important quantity is the Kullback–Leibler (KL) divergence, which quantifies the difference
between probability distributions. Consider two probability distributions p and q on the same probability
space X, the KL divergence is:

D(p||q) := ∑
x∈X

p(x) log
p(x)
q(x)

.

This divergence is finite whenever p is absolutely continuous with respect to q, and it is only zero if
p = q.

Following the analogy with systems in statistical mechanics, an equilibrium state is defined as the
measure that satisfies the so-called variational principle, namely:

sup
{

h(ν) +
∫

φdν : ν ∈ Mσ(X)
}
= h(µφ) +

∫
φdµφ = F(φ), (4)

where
∫

φdν represents the expected value of φ with respect to the measure ν (it would be noted Eν(φ)

in a probabilistic context). Let us comment on this result. The first equality establishes that, among all
shift-invariant probability measures, there is a unique one, µφ, which maximises h(ν) +

∫
φdν. If

∫
φdν is

fixed to some value, this corresponds to maximising the entropy under constraints. This is the Maximum
Entropy Principle, but (4) is more general. The second equality states that the maximum, h(µφ) +

∫
φdµφ

is exactly the pressure defined in Equation (2). The equation F(φ) = h(µφ) +
∫

φdµφ establishes a link
with thermodynamics, as F(φ) is equivalent to the free energy (In contrast to thermodynamics where free
energy or pressure refer to different thermodynamic ensembles, we will not make such distinction here
as it is irrelevant. Also, note that we do not keep the minus sign and take the Boltzmann constant equal
to one. Thus, (4) coincides with the principle of free energy minimisation in statistical mechanics, but it
corresponds to a maximising measure in our formalism because of a sign convention. Gibbs measures
associated to potentials satisfying that vark(φ) ≤ bθk, as stated above, are equilibrium states. For more
general potentials, the notion of Gibbs states and equilibrium states may not coincide.

2.2. Observables and Fluctuations of Their Time Averages

An observable f is a function f : X → R, such that | f | < ∞ (| · | denote the absolute value), and which
is time-translation invariant, i.e., for any time i, f (x0,R−1) = f (xi,i+R−1) whenever x0,R−1 = xi,i+R−1.

An important observable, considered in the following sections, is the potential:

Uλ(x) = ∑
k

λk fk(x) k ∈ {1, ..., K}, (5)

that is a linear combination of K observables fk, where the parameters λk’s ∈ R. Here, we want to
make a few important remarks. First, this decomposition is similar to the definition of potentials
in thermodynamics, which are written in terms of a linear combination of intensive variables (e.g.,
temperature, chemical potential, and so on) and extensive functions of the configurations of the system
(physical energy, number of particles). In order to emphasise this analogy, we use the symbol U for the
potential, instead of φ. The function Uλ parametrically depends on the λk’s; hence, we use the lower index
λ, to denote Uλ as well as the corresponding Gibbs measure, denoted here µλ.

Now, we denote An( f ) the empirical average of the observable f in a sample of size n, that is,

An f (x) =
1
n

n−1

∑
i=0

f (σx).
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This quantity is important for empirical purposes. If µ is ergodic, the convergence of the empirical

average to the actual expected value is µ-almost-sure, that is An( f ) a.s.−→
∫

f dµ as n→ ∞. For an example
of application of this theorem in the context of spike train statistics, see Section 2.6.

2.3. Correlations

Let us consider a pair of observables f , g ∈ L2(µ), (square integrable functions with respect to µ). We
define their correlation at time n by

C f ,g(n) :=
∫

f · g ◦ σndµ−
∫

f dµ
∫

gdµ.

One also might be interested in the auto-correlation (or auto-covariance) of f at time n,

C f (n) :=
∫

f · f ◦ σndµ−
(∫

f dµ

)2
.

Observe that these quantities might decay fast. The mixing property implies that the correlations go
to zero with n→ +∞.

2.3.1. Properties of the Pressure

From the pressure (2), important statistical information regarding the system can be obtained, in
particular, correlations. A distinguished case corresponds to the potentials of the form (5). When the
corresponding pressure is differentiable to any order, taking the successive derivatives of the pressure
with respect to their conjugate parameters gives the average values of the observables, their correlations,
and their high-order cumulants with respect to the Gibbs measure. That is, in general:

∂nF(Uλ)

∂λn
k

= κn for all k ∈ {1, ..., K}, (6)

where κn is the cumulant of order n with respect to µλ. In particular, κ1 is the mean of fk, κ2 is its variance,
κ3 the skewness, and κ4 the kurtosis. Partial derivatives with respect to pairs of parameters can also be
considered [82]:

∂2F(Uλ)

∂λk ∂λj
= C fk , f j

(0) +
∞

∑
n=1

C fk , f j
(n) +

∞

∑
n=1

C f j , fk
(n)

=
∂µ [ fk ]

∂λj
=

∂µ
[

f j
]

∂λi
.

(7)

Observe, we differentiate C fk , f j
from C f j , fk

as the dynamics may be irreversible in time. For an example
of application of these formulas in the context of spike train statistics, see Section 2.6.

Remark 1. The last two equations are fundamental. They establish a link between the variations in the average
of the observable fk, when slightly varying the parameter λj and the sum of time correlations between the pair of
observables f j, fk. This result is known, in statistical physics as the fluctuation-dissipation theorem [83,84]. It relates,
for example, in a ferromagnetic model, to the variation of the magnetisation of the spin k to the variations of the
local magnetic field hk, via the magnetic susceptibility, which is the second derivative of the free energy. This is
also the context of the linear response theory, which quantifies how a small perturbation of a parameter affect the
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average values of observables in terms of the unperturbed measure. Equation (7) can also be used to extend results of
Thermodynamic Formalism to non-stationary situations, as we discuss in Section 4.5.

Now, in the classical formulation in statistical physics and the Maximum Entropy models,
only the correlation C fk , f j

(0) appears in (7), because successive times are independent (correlations
C fk , f j

(n), C f j , fk
(n), n > 0 vanish). When handling memory (thus, potentials with range R > 1), there

is an infinite sum (series) of correlations appearing in the linear response. This infinite sum converges
whenever correlations are decaying sufficiently fast with time n (exponentially). In contrast, when they
do not converge fast enough (e.g., power-law with a small exponent), the series diverges, leading to a
divergence of the second derivative of the pressure, corresponding to a second-order phase transition.
Here, follow the Ehrenfest classification of phase transitions [85]. There is a phase transition of order k if
the pressure (free energy) is Ck−1 but not Ck. The known examples are first-order, second-order, or infinite
order (Kosterlitz-Thouless) phase transitions. Note that phase transitions in memory-less models can
also happen if the instantaneous correlation function C fk , f j

(0) diverges, e.g., when the number of degrees
of freedom in the system (number of spins, neurons) tends to infinity. Therefore, in the present setting,
second-order phase transitions can arise either when the number of degrees of freedom tends to infinity, or
(not exclusive), when time correlations decay slowly.

Thus, Equation (7) connects the second derivative of the pressure, variations in static average of
observables, and dynamical correlations. In the next sections, we discuss theorems that relate the dynamical
evolution to a criteria ensuring that time-correlations are exponentially decaying, preventing the possibility
of second order phase transitions for systems with a finite number of degrees of freedom.

2.3.2. Ruelle-Perron-Frobenius Operator

Let C(X) be the set of continuous functions on X. Consider the potential φ and a continuous
function f ∈ C(X), so one can define a bounded linear operator associated to φ (transfer operator), called
the Ruelle–Perron–Frobenius (RPF), as follows (There is a close analogy between this operator and the
propagator in quantum field theory or the Koopman operator in classical dynamics [5]. All of these
operators characterise how measures or observables evolve ruled by the dynamics.):

Lφ f (x) = ∑
y∈σ−1x

eφ(y) f (y). (8)

The spectral properties of (8) yields information to characterise the pressure and study the ergodic
properties of the system, in particular, the rate of decay of their correlation functions [80]. For instance, if 1 is
a simple eigenvalue and the modulus of each of the other eigenvalues is smaller than one, this is equivalent
to be mixing [80]. When the potential considered is of finite range, then the transfer operator corresponds
to a matrix and the whole formalism is equivalent to Markov chains defined on finite alphabets. A potential
φ is called normalised if Lφ(1) = 1. The log of a normalised potential of range R + 1, corresponds to
the transition probabilities of a Markov chain with memory depth R. Moreover, in this case F(φ) = 0.
For Lipschitz observables in the finite dimensional case, the Perron–Frobenius theorem assures a unique
eigenvector associated to the maximal eigenvalue, from which the unique invariant measure (Markov) is
obtained. This measure has mixing properties, exponential decay of correlations, central limit theorem,
and a large deviations principle (see Section 2.3.4). When the operator acts on an infinite dimensional
space (such as the space of continuous functions), then the spectrum of a bounded linear operator L is
given by the set spec(L) = {λ ∈ C : such that (λI −L) has no bounded inverse}, this set may contain
points that are not necessarily eigenvalues (see, for instance, [86]). In this case, the strategy is to find a
proper subspace where the spectrum of L has a finite number of such complex numbers whose norm
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is the spectral radius, say ρ, and the rest of the spectrum has norm strictly less than ρ (spectral gap). In
this scenario, it is known that there is exponential decay of correlations for a sufficiently regular class of
observables (such as Lipschitz), and the central limit theorem holds. In the absence of the spectral gap,
then one has sub-exponential decay of correlations, which breaks down the central limit theorem, and
the phase transition phenomenon appears (for further details and precise definitions, see [80] and the
references therein).

Note that, given a potential ψ, one can explicitly find a normalised potential φ cohomologous to ψ,
as follows,

φ := ψ + log R− log R ◦ σ− log ρ, (9)

where R is the right eigenvector (real and positive) associated to the unique maximum eigenvalue ρ that is
associated to Lψ.

Remark 2. Note that the normalisation of the potential ψ does not require a partition function. In fact, as discussed
below, the classical normalisation by a partition function is a particular case of (9), holding for memory-less potentials
that does not generalise to range R > 1 potentials.

2.3.3. Time Averages and Central Limit Theorem

We have seen that if the measure µ is ergodic the time averages An( f ) converge µ-almost surely to
the expected value

∫
f dµ. Now, we can ask about fluctuations around the expected value. The observable

f satisfies the central limit theorem (CLT), with respect to (σ, µ) if:

An( f )− n
∫

f dµ√
n

law−→ N0,σ2
f

(10)

whereN0,σ2
f

is the Gaussian distribution with zero mean and covariance σ2
f , which is given by the following

expression involving temporal correlations:

σ2
f ,g = C f ,g(n)(0) +

∞

∑
n=1

C f ,g(n) +
∞

∑
n=1

Cg, f (n).

that is a particular case of (7). We illustrate an application of this theorem in the context of spike train
statistics later in Section 2.6.

Strong properties of convergence and exponential decay of correlations are ensured for Hölder
continuous potentials in finite dimension. These properties are associated with the spectral gap property
and they do not (necessarily) hold for less regular potentials or in non-compact spaces [78,80].

2.3.4. Large Deviations

The central limit theorem describes small fluctuations in the limit when n goes to infinity. Rare events
that are exponentially small are the object of study of the large deviations theory.

An empirical average An( f ) satisfies a large deviation principle (LDP) with rate function I f , if the
following limit exists:

I f (s) := − lim
n→∞

1
n

logP
({

An( f ) > s
})

, (11)

for s ∈ R. The above condition for large n implies that P ({An( f ) > s}) ≈ e−nI f (s). In particular, if
s >

∫
f dµ, then P ({An( f ) > s}) should tend to zero as n increases. The rate function tells us precisely

how fast this probability goes to zero. Computing the rate function from Equation (11), may be a laborious
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task. The Gärtner-Ellis theorem provides a way to compute I f more easily [63]. To this end, let us introduce
the scaled cumulant generating function (SCGF) associated with the observable f , by

Γ f (k) =: lim
n→∞

1
n

log
∫

enkAn( f )dµ k ∈ R,

whenever the limit exists. The name comes from the fact that the n-th cumulant of f can be obtained by
successive differentiation operations over Γ f (k) with respect to k, and then evaluating the result at k = 0.
If Γ f is differentiable, then the Gärtner-Ellis theorem ensures that the average An( f ) satisfies a LDP with
rate function given by the Legendre transform of Γ f , that is

I f (s) = max
k∈R
{ks− Γ f (k)}.

Therefore, one can study the large deviations of empirical averages An( f ) by first computing their
SCGF, characterise its differentiability, and then find the Legendre transform. We compute this function in
the context of spike train statistics later in Section 2.6.

If Γ f (k) is differentiable then I f (s) is convex [87], thus has a unique global minimum s∗ such that
I f (s∗) = 0, then I′f (s

∗) = 0. Assume that I f (s) admits a Taylor expansion around s∗, then for s close to s∗,

I f (s) = I f (s∗) + I′f (s
∗) (s− s∗) +

I′′f (s
∗) (s− s∗)2

2
+ O (s− s∗)3 .

Because I f (s∗) = 0 and I′f (s
∗) = 0, for large values of n we obtain from (11)

P
({

An( f ) > s
})
≈ e−nI f (s)

≈ e
−n

(
I′′f (s∗)(s−s∗)2

2

)

Therefore, the small deviations of At( f ) around s∗ are Gaussian with variance 1/nI′′f (s
∗). In this way,

the LDP can be regarded as an extension of the CLT.
The large deviation principle plays an important role in statistical mechanics, in particular in

spin glass dynamics [59]. A large deviation principle can be used in order to relate entropy and free
energy (here pressure) through a Legendre transform and to explain why variational principles arise in
statistical mechanics [63,88]. As mentioned in the introduction, large deviations is the common theoretical
principle linking dynamic mean field theory, maximum entropy principle, maximum likelihood, and
Thermodynamic Formalism, although this link has not been studied in detail, to our best knowledge.

2.4. Potentials of Range One

A specific case where the variational principle (4) holds, is when the potential has the form (5). Then,
equilibrium states are probability distributions µλ, that maximise the entropy (3), under the constraints of
expected values of K observables Eµλ

( fk) := ∑x fk(x)µλ(x) = Ck for k = 1, . . . , K. This problem can be
solved by introducing a Lagrange multipliers λk in the potential (5):

F(Uλ) := max
p
{H(p) +Ep(Uλ)} = H(µλ) +Eµλ

(Uλ). (12)
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There exists a unique maximum entropy distribution µλ (equilibrium state) satisfying the constraints.
It turns out that the maximising distribution can be explicitly found for range one potentials and the
distribution satisfies the Gibbs property (1), which, in this particular case, reduces to,

µλ(x) = exp
(
− F(Uλ) + Uλ(x)

)
=

exp
(
Uλ(x)

)
Z

, (13)

for all x ∈ X. Equation (13) is obtained by considering F(Uλ) = log Z, where Z is the “partition function”.
From Equation (12), the expression for the entropy (3) and the Jensen inequality, one can obtain the formula
for the pressure in this case:

F(Uλ) = log ∑
x∈X

eUλ(x).

The constrained problem can be uniquely solved, because the map λ 7→ Eµλ
(U) maps the real line

monotonically onto the interval (min U, max U) [76].
For range one potentials, the measure of a block becomes a product distribution, as given by:

µλ([x0,n−1]) =
n−1

∏
i=0

exp
(
Uλ(xi)

)
Z

. (14)

As the index n corresponds to time, having an interaction depending on one single coordinate implies
that configurations at distinct times are independent.

2.5. Finite Range Potentials

Equation (9) can be used to find the unique Markov measure that is associated with a finite range
potential. As an example, consider a potential U of range two representing the pairwise interactions in a
graph with incidence matrix I. The entries I(y, x) = 1 represent the allowed transitions between symbols
y → x and I(y, x) = 0 the forbidden. We introduce the finite | A | × | A | transfer matrix LU , which
corresponds to the RPF “operator” (8) restricted to a finite space.

LU(y, x) = I(y, x)eU(y), y, x ∈ A, y ∈ σ−1x (15)

As anticipated in Section 2.3.2, calling ρ the unique maximal positive eigenvalue of LU guaranteed by the
Perron–Frobenius theorem, and R(x) and L(x) the x-th entry in the right and left eigenvectors associated
with ρ, respectively, we define a normalized potential φ(y, x) = U(y) + log R(y)− log R(x)− log ρ, such
that the matrix

P(y, x) = I(y, x)eφ(y,x) =
I(y, x)R(y)eU(y)

ρR(x)
(16)

is stochastic, i.e., ∑x P(y, x) = 1, and represents the transition probabilities of a Markov chain P(y→ x) =
P(x | y). The invariant measure p associated to the matrix P satisfying pP = p is

p(x) =
R(x)L(x)
〈R, L〉 , (17)

where 〈R, L〉 = ∑x R(x)L(x). Note that normalisation is done without defining a partition function. The
Markov measure µ(p, P) of a block is given by µ [x0,n] = p(x0)P (x1, x2) · · · P (xn−1, xn) for xk ∈ A, k =

0, .., n. Here, we have a nice way to show that this measure satisfies the Gibbs property while using the
Markov property µ [x1,n | x0] = e∑n

k=1 log P(xk−1,xk) where we see that the conditioning upon the first time is
similar to left boundary conditions in statistical physics.
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It follows from (9) and (17) that µ [x0,n] obeys the variational principle and satisfies Equation (1), where
F(U) = log ρ. The Gibbs measure µ [x0,n] gives an exponential weight to each cylinder set, depending on
the “energy” depending on smaller blocks.

2.6. Example

To illustrate the maximum entropy principle and the statistical analysis that can be performed while
using tools and ideas from Thermodynamic Formalism, we include here a toy example. Consider the state
space of all the binary blocks of size 2× 2 and one step transitions between them. We associate to each
block en integer (23), and index a matrix using this representation of blocks we built the RPF matrix (15).
There are allowed and forbidden transitions as explained in Section 3.3.1 (see Figure 3). Assume that
we obtain from data (T samples) the empirical average value of the observable AT(x1

0 · x2
1) = 0.1 and

AT(x1
1 · x2

0) = 0.4 and we want to find the maximum entropy Markov chain compatible with these
constraints. Using Equations (6), (15) and (16), and , we obtain the maximum entropy Markov chain,
defined by the following Markov transition matrix:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



0 0.16 0.04 0.64 0.16 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0.64 0.16 0.16 0.04 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0.04 0.16 0.16 0.64 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0.16 0.64 0.04 0.16
4 0.16 0.04 0.64 0.16 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0.64 0.16 0.16 0.04 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0.04 0.16 0.16 0.64 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0.16 0.64 0.04 0.16
8 0.16 0.04 0.64 0.16 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0.64 0.16 0.16 0.04 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0.04 0.16 0.16 0.64 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0.16 0.64 0.04 0.16
12 0.16 0.04 0.64 0.16 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0.64 0.16 0.16 0.04 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0.04 0.16 0.16 0.64 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0.16 0.64 0.04 0.16

From this Markov transition matrix, we can compute the fluctuations that are associated to each
observable either using numerical simulations or analytically. We illustrate in Figure 1, the limit theorems
and fluctuations introduced in Section 2 applied to this example.

The entropy maximisation for this toy example can be explicitly solved, and the simulations
can also be performed directly from the transition matrix. However, large scale networks require
sophisticated Montecarlo sampling methods to fit maximum entropy models that include non-synchronous
interactions [89]. In the first column of Figure 1, we directly sample from the Markov transition matrix
for different sample sizes and average the empirical frequency of both observables considered in the toy
example. In the second column we plot the fitted Gaussian distributions of the empirical averages for
different sample sizes. The third row correspond to the large deviations rate function. As explained in
Section 2.3.4, the second derivative at the minimum of I f characterise the Gaussian fluctuations around
the expected value of f . The last column represents the auto-correlations (7).
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Figure 1. Example of fluctuations of observables. Top row represent four measures of fluctuations of the
observable x1

0 · x2
1. The same analysis is done in the bottom row for the observable x1

1 · x2
0. The first column

represent the sample average for different sample sizes. We observe the convergence towards the theoretical
value as predicted by the law of large numbers. The second column represent the fitted Gaussian’s to
the histograms of the averages that were obtained for different sample sizes in the legend (10). The third
column represent the large deviations rate function for both observables. In the abscissa it is the parameter
s in (11) and in the ordinate I f (s) where f represent the observables x1

0 · x2
1 (top) and x1

1 · x2
0 (bottom). The

minimum of I f (s) indicate the expected value of f (LLN) and values in the neighbourhood characterise
the CLT, as explained in Section 2.3.4. The expected values of both observables are determined by the
constrains imposed to the maximum entropy problem. The fourth column show the auto-correlations
obtained while using Formula (7).

2.7. Systems with Infinite Range Potentials, Chains with Infinite Memory and Gibbs Distributions

In this section, we somewhat depart from the strict setting of Thermodynamic Formalism, switching
to the perspective of Markov chains and their extension to infinite memory. Although Thermodynamic
Formalism allows for one to consider infinite memory (infinite range potentials) the advantage of the
approach presented here is to allow considering non stationary dynamics, i.e., escape from the variational
principle (4) constrained by the entropy definition, which requires stationarity.

A general class of stochastic processes to deal with infinite memory are called Chains with complete
connections [90,91]. These chains define non-markovian processes. However, Markovian approximations
are possible and useful [92]. This section follows closely from [90].

Definition 1. A system of transition probabilities is a family {Pn}n∈Z of functions with Pn(· | ·) : A ×
A−∞,n−1 → [0, 1], such that the following conditions hold for every n ∈ Z:

(a) For every xn ∈ A, the function Pn (xn | ·) is measurable with respect to the filtration F≤n−1.
(b) For every x−∞,n−1 ∈ A−∞,n−1,

∑
xn∈A

Pn (xn | x−∞,n−1) = 1.

Definition 2. A probability measure µ in P(A−∞,n,F ) is consistent with a system of transition probabilities
{Pn}n∈Z if: ∫

h (x−∞,n) µ(dx) =
∫

∑
xn∈A

h (x−∞,n−1xn) Pn (xn | x−∞,n−1) µ(dx).
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for all n ∈ Z and all F≤n-measurable functions h. The probability measure µ, when it exists, is called a chain with
complete connections consistent with the system of transition probabilities {Pn}n∈Z. It is possible that multiple
measures are consistent with the same system of transition probabilities.

We now give conditions ensuring the existence and uniqueness of a probability measure consistent
with the system of transition probabilities [90].

Theorem 1. A system of continuous transition probabilities (varm[Pn (xn | ·)]→ 0 as m→ +∞) on a compact
space has at least one probability measure consistent with it.

Definition 3. A system of transition probabilities is non-null, if, for all n ∈ Z and all xn
−∞ ∈ A−∞,n:

P [ xn | x−∞,n−1 ] > 0

Definition 4. A normalized potential has bounded squared variations if, for all n ∈ Z and all x−∞,n ∈ A−∞,n:

∑
k≥0

var2
k (log P [ xn | x−∞,n−1 ]) < +∞.

There exists a unique probability measure consistent with the system of transition probabilities if these are non-null
and the associated normalised potential has bounded squared variations [90].

There is a mathematically well-founded correspondence between chains with complete connections
and Gibbs distributions presented up to now [7,90,93]. Let us now discuss the formal analogy.

Define φ ( n, x ) : Z× A→ R by:

φ ( n, x ) ≡ log P [ xn | x−∞,n−1 ] , (18)

and:

Φ(m, n, x) =
n

∑
r=m

φ ( r, x ) . (19)

Then:
P [ xm,n | x−∞,m−1 ] = eΦ(m,n,x) = e∑n

r=m φ( r,x ),

and:
µ[xm,n] =

∫
A−∞,m−1

eΦ(m,n,x)µ(dx).

These last equations highlight the connection between chains with complete connections and
Gibbs distributions in statistical physics. Indeed, the conditional probability P [ xm,n | x−∞,m−1 ] has
a “Gibbs” form where φ acts as an “energy” [90]. The correspondence is obtained considering “time” as a
one-dimensional “lattice” and the “boundary conditions” as the past of the stochastic process. In contrast
to statistical physics, there is no need to define a partition function (the potential is defined via transition
probabilities, and is thus normalised).

While, for chains with complete connections defined through transition probabilities, the present is
conditioned upon the past, Gibbs distributions, in general, also allow for conditioning “upon the future”.
More generally, Gibbs distributions in statistical physics extend to probability distributions on Zd where the
probability to observe a certain configuration of spins in a restricted region of space is constrained by the
configuration at the boundaries of this region. Therefore, they are defined in terms of specifications [7,93],
which determine finite-volume conditional probabilities when the exterior of the volume is known. In one
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spatial dimension (d = 1), identifying Z with a time axis, this corresponds to conditioning both in the
past and in the future. In contrast, families of transition probabilities with an exponential continuity
rate define the so-called left-interval specifications (LIS) [90,94]. This leads to nonequivalent notions
of “Gibbsianness” [95].

In contrast to the potentials studied up to now, the potential (19) is defined from transition
probabilities (18), which are not necessarily time-translation invariant. This is the reason why the potential
is noted φ(n, x), as it depends explicitly on time n and the configuration x. This case is closer to the setting
where potential or energy is not necessarily invariant when moving along a lattice in statistical physics,
therefore not constrained by the stationarity assumption made up to now. As we discuss in the next
section, this is quite helpful in the study of neuronal network dynamics.

3. Thermodynamic Formalism in Neuroscience

In this section, we make the connection between Thermodynamic Formalism and spiking neuronal
dynamics. From the standpoint of mathematics, there are at least two ways to consider spiking neuronal
networks. First, they can be considered as biological objects whose activity can be experimentally recorded
while using Multi-Electrode Arrays (MEA), often requiring sophisticated mathematical methods and
algorithms for data analysis [96,97]. Second, neuronal networks are characterised by dynamical models,
more or less derived from biophysics [35,36].

Here, we begin considering the statistical analysis of spike trains recorded from neuronal networks.
For this case, Thermodynamic Formalism provides a powerful and insightful method to analyse the
spatio-temporal statistics from experimental spike trains. We briefly mention that this formalism has
afforded us to develop algorithm for spike train analysis [49,89,98] leading to the software PRANAS [99]
freely available at https://team.inria.fr/biovision/pranas-software/, although we do not develop along
these lines in this paper. We focus then on a specific question. When dealing with a model of spiking
neurons, how much of the intrinsic dynamics of neurons, their interaction via synapses, and the influence
of stimuli, constrain the collective spatio-temporal spike statistics?

Neurons are (nonlinear) entities that evolve in a concerted way (as they interact via synapses) and
responding to external stimuli. The theoretical analysis of this high dimensional systems can be made
thanks to mathematical methods (dynamical systems, bifurcations theory, stochastic processes, partial
differential equations) or theoretical physics (statistical physics, nonlinear physics). Here, one might
be interested in what Thermodynamic Formalism can contribute when considering neuronal models
dynamics. In this spirit, we consider two models, the Integrate and Fire model and the Galves Löcherbach
model. Most of our presentation focuses on stationary situations that are characterised by equilibrium
states. Nevertheless, we consider the extension of Thermodynamic Formalism to non-stationary situations.

At the end of the section, we address a couple of open questions.

1. What is the natural alphabet for spiking neuron dynamics? As we shall see, although the binary
representation of spikes is a good candidate, it is too naive, as the relevant alphabet can be constructed
on time blocks of spikes. A subsidiary question is about the size (time depth) of these blocks.

2. Under which conditions can Thermodynamic Formalism machinery be faithfully applied to a spiking
neuronal network model?

3. What are the limits when the main theorems of Thermodynamic Formalism can and cannot be
applied and what are the consequences for neuronal dynamics and spike statistics?

3.1. Statistics of Spike Trains and Gibbs Distribution

The human brain is composed of about a hundred billion neurons that mostly communicate among
themselves together using sequences of spikes that are binary events (Sub-threshold oscillations also play

https://team.inria.fr/biovision/pranas-software/
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an important role [100] and in organs like the retina, where most neurons do not spike.) Although the
action potentials can vary in duration, amplitude, and shape, depending, e.g., on the type of neuron, they
have a stereotyped shape, so that they can be considered as identical events. The main physiological
reason for spike occurrence is that they can propagate information on different scales in the nervous
system (centimeters to one meter) essentially without attenuation (active conduction as opposed to passive,
Ohmic, conduction). However, from a contemporary point of view, spikes are also considered as events
constituting “bits” of information. In this paradigm, it is tempting to consider spike trains as objects
containing a “neural code” [37], i.e., a language that neurons use to communicate and that one could
decipher. This terminology should not be considered literally, because, as opposed to computer codes, spike
trains have a wide variability (e.g., the repetition of the same stimulus, even under controlled experimental
conditions does not induce the same sequence of spikes as a response). In addition, nothing guarantees
that there is only one code. When considered from the perspective of Thermodynamic Formalism, the
notion of neural codes can have several meanings. (1) Spike trains constitute a symbolic coding of voltage
dynamics (which depends on neuronal interactions and stimuli); and, (2) the way how neuronal dynamical
systems (especially, spike trains) are affected by stimuli, provides a way for downstream networks to infer
the stimulus (e.g., the retina encodes a visual scene in spike trains which are decoded by the visual cortex,
capable of reconstructing a representation of the visual scene). Here, we essentially want to address the
following questions: how to use Thermodynamic Formalism to fit experimental (or numerically generated)
spike train data and which Gibbs distribution is produced by a network of neurons whose dynamics
is known.

It is useful to consider spikes as instantaneous events (while the duration is about 1ms) and identify
the maximum in the action potential course as the “time of the spike” [101]. This implicitly assumes
that one considers dynamics on time scales larger than one millisecond. The binary representation is
obtained using a window of a constant “binning size” (of order 10–20 ms) over the continuous time course
of membrane potentials and count how many spikes there are per neuron within each time bin. Two or
more spikes may occur within the same time bin, in that case, the convention is to consider these events
equivalent to just one spike. This procedure [102] transforms experimental data into sequences of binary
patterns (see Figure 2) leading to the following symbolic description.

Denoting the discrete time index by n, the spike-state of neuron k is denoted by xk
n ∈ {0, 1}, depending

on whether the k-th neuron emits a spike during the n-th time bin or not. A spike pattern is the spike-state
of all the neurons in a network of N neurons at a given time bin, and it is denoted by xn :=

[
xk

n
]N

k=1.
A spike block denoted by xn,r := xnxn+1 · · · xr is a sequence of spike patterns. The length of the spike
block xn,r is r− n + 1. A spike train denoted by x is the spike block representing the whole sequence of
spike patterns. We consider spike trains of finite and infinite length. The set of all possible spike blocks of
length R in a network of N neurons is denoted by AN

R .
Thus, in comparison to the previous section, and especially Section 2.1, symbols here are spike blocks

of length R. The alphabet, previously denoted A, is denoted here AN
R , making explicit the dependence on

the number of neurons, N, and the block depth R. It is important to make this dependence explicit, as we
consider, later in this review, the effect of increasing N and R.
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Figure 2. From experimental spike trains to mathematical modelling. (A) Experimental set-up. MEA
detect spikes from living neuronal tissue. In this illustration, the retina of a mammalian is put into the
MEA and submitted to natural light stimuli. The membrane potential of retinal ganglion cells is recorded
and analysed to extract the spikes using spike sorting algorithms [96,97]. (B) Mathematical models of
biophysically inspired spiking networks can be used to study spike trains. Top. Neurons, considered here
as points in a lattice, interact via synaptic connections on an oriented weighted graph where the matrix
of weights is denoted W. Bottom. A prominent mathematical class of models is the Integrate and Fire
model where the membrane potential is modelled by a stochastic differential equation (black trajectory)
with threshold condition θ. The neuron is considered to spike whenever the membrane potential reaches
the threshold. Then, it is reset to some constant value. Binning time using windows of a few ms length,
one can associate the continuous-time trajectory of the membrane potential with a discrete-time sequence
of 0s and 1s characterising the spike state of the neuron in each time window. (C) Spike trains. Using the
binary representation at the bottom of (B) for each neuron in a network one obtains sequences of binary
spike patterns (spike trains) symbolically representing the underlying neuronal dynamics.

3.2. Conditional Probabilities for Spike Trains

The probability that a biological neuron, embedded in a network, emits a spike in a given
time bin depends on the history of all variables determining the evolution of the neural network
(voltage, conductances, concentrations of ions, neurotransmitters, etc.). Most of these variables are
not experimentally accessible. Even if they were, there would be no hope of predicting, from this huge
amount of information, the statistics of spikes. Dealing with neuronal models, the situation is simpler as
there are fewer variables to control and their dynamics are known explicitly. However, even in this case,
it is generally not possible to access spike statistics from dynamics. A simplification is to consider that
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the probability of a spike pattern only depends on the spikes emitted in the past by the network. This
way, one can ignore the hidden dynamics of inaccessible variables and compute the statistics from what
can be measured. Still, characterising the probability of a spike pattern given the history of the system, is
generally out of reach (with, at least, two exceptions described in the next section).

The idea is to characterise the spike train statistics through a family of transition probabilities of
the form:

P(xn+1 | xn−R,n) ≡ eφ( xn−R,n+1 ) > 0. (20)

where R is the memory of the spike sequence, i.e., the time horizon on which the present depends on the
past. Having these transition probabilities and an initial condition (or initial distribution), one can define a
Markov chain (or a chain with infinite memory if R→ +∞). It is possible, for some models, to explicitly
write these probabilities. In Equation (20), we have assumed that all transition probabilities are strictly
positive. This is necessary to ensure the uniqueness of the corresponding Gibbs distribution. Subsequently,
one can associate to (20) a range R potential φ ( xn−R,n ) > −∞. On experimental grounds, the problem is
to estimate these probabilities from data. Since there are 2NR possible spike blocks, for N and/or R big
(e.g., N R > 20) it becomes rapidly impossible to estimate these transition probabilities from experimental
data while using a frequentist approach, as most of these transitions do not even occur within the finite
experimental sample.

However, one can try to guess the form of these transition probabilities. One possibility is to start with
an ad-hoc form, capturing the main features of neuronal dynamics. A canonical example is the Generalised
Linear Model (GLM) [103], where the transition probabilities take the form:

Pn(xi
n+1 | xn−R,n) = f

(
bi + ∑

j∈Bi

(
Hij ∗ rj

)
(n)

)
(21)

where f is a non-linear function. The term bi is a constant fixing the baseline firing rate of neuron i. Hij
is the memory kernel, ∗ is the convolution product, and rj(n) is the spike train of neuron j before time n.
In this case, the memory kernel considers the spikes between n− R and n, but R can go arbitrarily to the
past. Here we do not consider the influence of a time-dependent external stimulus.

As we show in Section 4.3 this form can be established for discrete-time Integrate and Fire models.
Equation (21) gives an Ansatz for the marginal probability that neuron i spikes at time n + 1, given the
history of the network. Equation (20), provides the joint probability of having the spike pattern at time
n + 1, and is obtained assuming that neurons are conditionally independent. This can be justified if one
assumes that, due to synaptic transmission and delays, neurons do not have the time to interact within
one time bin. This means that time bins must not be too large and/or synapses must not be too fast (like
gap junctions [104]).

Remark 3. The GLM, instead of describing conditional probabilities, characterises the spike rate or conditional
intensity of an auto-regressive Poisson process.

A second approach is based on the variational principle (14), maximising entropy under constraints.
Both of the approaches can be addressed from the perspective of Thermodynamic Formalism.
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3.3. The Hammersley–Clifford Theorem

In our representation spikes take a binary value 0 or 1. Thus, any potential of range R is a function
taking a finite set of values. A general theorem from Hammersley and Clifford [105,106] states that any
range-R observable, in particular, the potential φ ( xn−R,n ), can be written in the form

φ ( xn−R,n ) = ∑
l

φl ml(xn−R,n), (22)

where the coefficients φl correspond to the decomposition of φ in the space of finite range R-observables.
This is analogous to Equation (5), with two main differences. First, the linear combination in (5) is used
as an example making a link with Thermodynamics and the Maximum Entropy principle. Here, the
decomposition (22) is a systematic expansion of any potential of range R defined over spike sequences.
Second, in contrast to (5), the observables, denoted fk in (5) only consider finitely many values.

Equation (22) is a linear decomposition on a basis of eigenfunctions referred to from now on as
monomials [107]. They have the form:

ml(xn−R,n) =
d

∏
k=1

xnk
ik

.

where nk = 1, . . . , N is a neuron index, and ik = n− R, . . . , n a time index. Thus, ml(xn−R,n) = 1 if and only
if, in the spike sequence xn−R,n neuron nk spikes at time ik for all k = 1, . . . , d. Otherwise, ml(xn−R,n) = 0.
The number d is the degree of the monomial; degree one monomials have the form xn1

i1
, taking the value 1 if

and only if neuron n1 spikes at time i1. Degree two monomials have the form xn1
i1

xn2
i2

, taking the value
1 if and only if neuron n1 spikes at time i1 and neuron n2 spikes at time i2, and so on. Thus, monomials
provide a notion of spike interactions, similar to spins interactions in magnetic systems. For example,
monomials of degree two correspond to pairwise interactions, like, e.g., in an Ising model. In contrast to
the Ising model, the interactions that are considered here may involve time delays between spikes.

There are 2NR monomials for N neurons and a given range R. One can index them by an integer l in
one-to-one correspondence with the set of pairs (ik, nk). The advantage of the monomial representation is
that it focuses on spike events, which is natural for spiking neuronal dynamics. Thus, the Hammersley
Clifford decomposition gives a canonical way to write any range R potentials as a linear combination of
monomials of maximum degree R. This includes the GLM potential which can be embedded in the same
framework [104].

As emphasised above, the Hammersley Clifford decomposition is analogous to the expression of
thermodynamic potentials as a sum of products of an intensive quantity (e.g., temperature) with an
extensive one (e.g., the energy). Depending on the physical constraints of the problem, one defines a
thermodynamic ensemble, where the average value of extensive quantities (energy, number of particles,
volume, magnetisation) is prescribed. Whereas, the first principles allow for guessing the form of the
potential in thermodynamics, there is no such recipe in neuroscience. Moreover, one cannot use the
complete expansion (22) on practical grounds, simply because large degree monomials have a vanishing
empirical probability. More precisely, the average value of a monomial of degree d decays exponentially
fast with d. This leads to two problems. (i) How to determine (from data) the constraints which are
necessary to correctly characterise the spike train statistics? (ii) Are there constraints that are equivalent?
(i) can be addressed in the context of information geometry [108] while (ii) can be approached using
cohomology [107]. We do not further develop these aspects here, but rather refer the reader to the
cited articles.
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The variational principle (4) (or its finite version (12)) provides a systematic way of inferring Gibbs
distributions from empirical average values of spike interactions (monomials). We make the construction
explicit in the next subsections.

3.3.1. Finite Memory, Markov Chains and Gibbs Distributions

We now explicitly show how to build a Gibbs measure from a finite set of experimental averages as
constraints of the maximum entropy variational problem. We assume that these constraints involve events
(monomials) over a memory depth R. We build the corresponding Markov chain while using the material
of Section 2.3.2. We associate to each spike block xn,n+R−1 an integer wn,

wn =
R−1

∑
r=0

N

∑
k=1

2k−1+Nrxk
n+r, (23)

we write wn ∼ xn,n+R−1. In this way a sequence of spike patterns (spike block) can be encoded as
sequences of integers, that define the alphabet. Next, we define the incidence matrix (“grammar”) between
symbols of the alphabet. Not all transitions between symbols are legal or allowed. A transition between
the two symbols denoted by wn → wn+1 or wn, wn+1 is legal if the corresponding blocks overlap according
to this pattern, i.e., they have the block xn+1 . . . xn+R−1 in common (see Figure 3).

Figure 3. Spike blocks transition. Example of legal transition wn → wn+1 between blocks of range four
(R = 4). The two blocks are wn ∼ xn,n+3 and wn+1 ∼ xn+1,n+4 and have the block xn+1xn+2xn+3 in light
blue in common.

This defines an incidence matrix I(w′, w) = 1 if the transition between symbols w′ and w is legal and
0 otherwise. This incidence matrix defines the grammar of allowed and forbidden words or sequences of
symbols. From this incidence matrix, we define the Perron–Frobenius transfer matrix Lψ in the same way,
as in (15). In order to obtain the unique Markov transition matrix of maximum entropy, we follow the
procedure that is explained in Section 2.3.2.

Thus, for a given choice of monomials, we associate a potential of the form (22), where the λls that do
not correspond to a chosen monomial are set to 0. Subsequently, one computes the empirical average of
the chosen monomials from data. From the Perron–Frobenius theorem, there is a unique Gibbs measure,
the Markov measure µλ of the Markov chain, which solves the variational problem (14), giving a statistical
model of data, minimizing the KL divergence between the empirical measure and µλ. Here, λ is the set
of parameters λl that achieve the variational principle. These parameters can be numerically computed,
either by using the explicit form of the measure (17) [49] or by while using the MonteCarlo methods [89].
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The software PRANAS allows for the handling of spike train statistics by numerically computing the Gibbs
distribution, solving (14) for up to 100 neurons [99].

3.3.2. Spectral Gap and Thermodynamic Limit

For a potential of finite range R and a finite number of neurons provided λl > −∞, for all l in (22),
the Perron–Frobenius theorem guarantees the uniqueness of the Gibbs measure µλ solving the variational
principle (14). Moreover, the pressure being a real analytic function for finite range potentials, is infinitely
differentiable with respect to parameters and there is an exponential decay of correlations with respect to
time. This last aspect is due to the gap in the spectrum of the transfer matrix (15). These properties may
not hold if either R→ +∞ or, if N → ∞ (corresponding to a thermodynamic limit) where the potential
may lose regularity. Here, one has to consider Thermodynamic Formalism in infinite dimension, on the
functional space of continuous functions. The case R→ +∞ corresponds to a potential with infinite range
associated, in our case, to spike statistics with infinite memory. This is discussed in the next section and in
Section 4, where we show that neuronal models can have such an unbounded memory. More generally,
the limits N → ∞ or R → +∞ can induce important effects, such as phase transitions, which will be
commented upon further in the discussion section.

4. Spiking Neuronal Network Models: The Leaky Integrate-and-Fire and Beyond

There are many models for neuronal dynamics both at the level of individual neurons and neuronal
networks [35,36,109]. Here, we consider a canonical example of such a model. The first model proposed to
the scientific community was introduced by Lapicque in 1907 [110]. The main interest was to make a nice
link between dynamics, coding, and spikes, paving the way to use Thermodynamic Formalism in order to
analyse the spike train statistics.

4.1. Dynamics and Spikes

A fundamental equation in neuronal membrane potential dynamics is the conservation of electric
charge, written in its most canonical form, as follows:

C
dV
dt

= −∑
X

gX (V −VX) + I(t),

where C is the membrane capacitance of the neuron and V is its membrane potential. The sum ∑X holds on
ionic currents of the form iX = −gX (V −VX) involving specific ionic channels permeable to specific ions
(e.g., Na+, K+, Cl−, Ca2+). Here, we include the neuron’s intrinsic currents’ (e.g., sodium and potassium
currents triggering a spike [111]) and synaptic currents [109]. The conductance, gX, of channels of type
X depends, in general, non-linearly on activation variables, themselves dependent on the voltage. VX is
the Nernst reversal potential, i.e., the value of the membrane potential at which the current iX reverses
its direction. Finally, I(t) is an external current that can mimic, e.g., an injection by an electrode or an
external stimulus.

In its simplest form, for a single isolated neuron, this equation takes the form:

C
dV
dt

= − 1
R

V + I(t), (24)

where R is the membrane resistance and the term g = 1
R corresponds to a unique passive conductance. In

this case, we consider only a leak current where the leak reversal potential is set to 0. This is the equation
of an RC circuit, which is quite simple, but quite far from a real neuron, as this equation does not even
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produce spikes. To circumvent this problem, one introduces a threshold, θ, such that Equation (24) holds
whenever V(t) < θ (sub-threshold dynamics), corresponding to the “ntegrate” phase. In contrast, for all
times t(r) such that V(t(r)) = θ, two effects take place: (i) The membrane potential of the neuron is reset
instantaneously to a rest value, here 0, without a loss of generality; (ii) a spike is recorded at times t(r)
called “spike times”. This is the “fire” phase (see Figure 2B, bottom).

While this is a simple artificial way to generate spikes, there is a huge price to pay on mathematical
grounds because the threshold introduces a singularity set in the phase space where the dynamic is not
differentiable. We develop this aspect below.

The generalisation of (24) to a network of N neurons is straightforward. Adding the contribution of
synaptic currents, Ik

(syn)(t), building the network interactions, we obtain:

Ck dVk

dt
+

1
R

Vk = Ik
(syn)(t) + Sk(t) + σBξk(t), if Vk(t) < θ, (25)

where Ck is the membrane capacitance of neuron k, Vk, its membrane potential. The resistance R is
assumed to be the same for all neurons. In the synaptic current,

Ik
(syn)(t) = ∑

j,r
Wkj α

(
t− tj

(r)

)
, (26)

the parameter Wkj represents the synaptic strength (“weight”) from the pre-synaptic neuron j to the
post-synaptic neuron k (see Figure 2B). Synaptic weights can be negative (inhibition) or positive (excitation).
By convention, Wkj = 0 if there is no connection from j to k. This way, the sum in (26) holds for j = 1 . . . N.

The function α represents the time profile of the postsynaptic current induced by a pre-synaptic
spike [112]. It has been experimentally observed that the tail of this function is exponential. On
mathematical grounds this is essential. The sum in Equation (26) considers all the spike times tj

(r) emitted
by all the pre-synaptic neurons j before time t. When considering the asymptotic regime t→ −∞ (to get
rid of initial conditions) this sum may contain an infinite number of terms. Thus, in order to ensure the
sumability of this series one needs α to decay sufficiently fast (here exponentially fast).

Equation (25) holds in the sub-threshold regime. The term Sk(t) represents an external stimulus, and
ξk(t) is white noise whose amplitude is modulated by σB. When the membrane potential of neuron k
reaches the firing threshold at a firing time tk

(r), for some r, i.e., Vk(tk
(r)) ≥ θ, the neuron k fires an action

potential and its membrane potential is reset to a fixed reset value instantaneously (see Figure 2 B).
While Equations (25) and (26) look rather simple, the right hand side of Equation (25) depends, via (26)

on a possibly uncountable set of events (the spike times) corresponding to a possible infinite history of the
voltage dynamics of the network. In this sense, these equations do not represent a classical dynamical
system, where the knowledge of the variables at a given time allows one to compute the variables’ value
at a future time by integrating the flow. Here, we require knowledge of the spike history, back to the last
time where the neuron was reset to make the integration. This history can go quite far into the past, with a
dependence decaying like the tail of the function α.

In order to circumvent these problems, we need to first get rid of the fact that spike times belong a priori
to an uncountable set. There are two alternatives. The first one, briefly explored in this section, consists
of discretising time as done e.g., in [113]. This leads to important results related with Thermodynamic
Formalism (see [23,114] for details). The second alternative, to keep time continuous, is commented on the
discussion section.
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4.2. A Discrete Time Version of the Leaky-Integrate and Fire Model

The time discretisation of the model (25) reads:
Vk

n+1 = γ Vk
n + ∑N

j=1 Wkj xj
n + Sk

n + σBξk
n, if Vk

n < θ, Integrate phase;

Vk
n+1 = 0 and xk

n = 1, if Vk
n ≥ θ, Firing phase.

(27)

For simplicity, we have assumed that all neurons have the same capacitance Ck = C, and set
γ = 1− dt

τ , where (τ is the characteristic time scale of the membrane response, dt is an integration time
step which has to be much smaller than τ to preserve the physical relevance, whereas it has to be strictly
positive to have a time-discretization scheme.) τ = R C, with 0 < γ < 1, and then taken dt = 1. We have
assumed that synapses are instantaneous. Subsequently, the synaptic input is ∑j Wkjx

j
n, that correspond

to the pre-synaptic neuron j that acts on the post-synaptic neuron k whenever j spikes, xj
n = 1. If, at

some discrete-time n, Vk
n exceeds the threshold θ, the membrane potential is reset at time n + 1 and a

spike is recorded at n for neuron k, i.e., xk
n = 1. Below the threshold, the random dynamical system is

ruled by (27). Sk
n is the time discretization of the external stimulus. ξk

n are independent standard Gaussian
random variables.

It is easy to integrate Equation (27) conditionally upon a fixed spike sequence x. A trajectory V ={
Vk

n , k = 1 . . . N, n ∈ Z
}

is compatible with this spike sequence if χ
(

Vk
n > θ

)
= xk

n, ∀k = 1 . . . N, n ∈ Z,
where χ ( A ) is the indicator function of the logical event A, χ ( A ) = 1 if A is true, χ ( A ) = 0 otherwise.
We discuss the compatibility condition in more detail in Section 4.4, when dealing with symbolic coding.
For the moment, assume that V and x are compatible. We note τk(x, n) = max

{
l, l < n | xk

l = 1
}

the last
time before n where neuron k has spiked, thus whose voltage was reset to 0. Then:

Vk
n+1 =

N

∑
j=1

Wkj ηkj(n, x) +
n

∑
l=τk(x,n)

γn−lSk
l + σB

n

∑
l=τk(x,n)

γn−lξk(l), (28)

where:

ηkj(n, x) =
n

∑
l=τk(x,n)

γn−l xj
l ,

integrates the influence of pre-synaptic neuron j on the time interval [ τk(x, n) + 1, n ]. Each spike emitted
by this neuron, at times l in this time interval, contributes with a weight γn−l and there is no contribution
at times where xj

l = 0. The condition γ < 1 implies an exponential decay in the spike history dependence
with characteristic time:

τγ = −
[

1
log γ

]
.

Likewise, ∑n
l=τk(x,n) γn−lSk

l integrates the stimulus influence on neuron k and σB ∑n
l=τk(x,n) γn−lξk(l)

is the integrated noise term. This is a Gaussian random variable, with mean zero and variance

σ2
B

1−γ2(n+1−τk(x,n))

1−γ2 . In (28), the dependence on the initial condition does not appear because we assume the
initial time to be n0 → −∞. So, either neuron k has spiked in the time interval ]−∞, n] and the voltage
is reset to 0, or it has not spiked, but the initial condition dependence decays like γn−n0 which vanishes
when n0 → −∞.
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4.3. Gibbs Distribution of the Discrete Lif Model

Thanks to the integrated Equation (28) and because the integrated noise is Gaussian it is now easy to
compute the probability that neuron k spikes at time n + 1 given the history x, P

(
xk

n+1 = 1 | x−∞,n

)
=

P
(

Vk
n+1 ≥ θ | x−∞,n

)
:

P
(

xk
n+1 = 1 | x−∞,n

)
= f

 θ −∑N
j=1 Wkj ηkj(n, x)−∑n

l=τk(x,n) γn−lSk
l

σB

√
1−γ2(n+1−τk(x,n))

1−γ2

 (29)

where f (z) =
∫ +∞

z
e−

u2
2√

2π
dz. Here, we have used a small abuse of notation. The conditioning upon x−∞,n

means, in fact, the conditioning upon the sequence xn−1,R(x), where R(x) = min { k = 1 . . . N|τk(x, n) }.
We condition upon the spike history prior to n back to the last time where all neurons had been reset at
least once. While, for Equation (29). we just need to consider the history back to τk(x, n), the conditioning
upon xn−1,R(x) is necessary when considering the conditional join probability of spiking patterns. The
joint probability is conditionally independent given the past:

P ( xn+1 | x−∞,n ) =
N

∏
k=1

(
xk

n+1 P
(

xk
n+1 = 1 | x−∞,n

)
+
(

1− xk
n+1

) (
1− P

(
xk

n+1 = 1 | x−∞,n

) ) )
.

(30)
Let us comment this result. Equation (30) is the transition probability, of the form (20), where the

normalised Gibbs potential φ can be explicitly written, in terms of the synaptic interactions and the
parameter σB controlling the noise amplitude. However, note that, in contrast to (20), where the memory
of the spike sequence was fixed independently of x, here the memory depends of x, providing a variable
length Markov chain [115,116]. Actually, R(x) is an unbounded function of x as one can find, for all
r ∈ {−∞, n }, a sequence x, such that R(x) = r (take the sequences where all xk

n = 0, k = 1 . . . N, n > r
and xk

r = 1 for at least one k). Thus, we have to deal with the extension of Markov chains, to chains with
unbounded memory introduced in Section 2.7. The existence and uniqueness of a Gibbs distribution
compatible with this chain is guaranteed by the exponential decay of the memory controlled by γ < 1 [23].
In this case, the potential fulfills the conditions described in Section 2.7. Finally, in (30), the transition
probabilities explicitly depend on time because of the stimulus dependent term. They are, therefore, not
translation invariant. While the extension of Gibbs distributions to non time-translation invariant chains
can be rigorously done (upon the exponential decay of memory [90]), we restrict ourselves now to the
case without stimulus (Sk

n = 0, ∀k = 1 . . . N, n ∈ Z) to apply Thermodynamic Formalism, until Section 4.5,
where we discuss linear response.

Note that (29) bares a strong resemblance to the GLM Ansatz (21).

4.4. Markov Partition and Symbolic Coding

In this section, we consider the deterministic discrete-time neuronal network model obtained
considering (25) with σB = 0, studied in detail in [114]. The threshold θ of the voltage in a network of N
neurons induces a natural partition of RN , P = ∏N

k=1 Pxk , where xk ∈ { 0, 1 }, P0 =]− B, θ[,P1 = [θ, B]
where the bound B depends on synaptic weights [114,117]. If Vk

n ∈ P0, it evolves according to the
sub-threshold dynamics (25) and it does not emit a spike at time n. In contrast, if Vk

n ∈ P1, it emits a spike
at time n and its trajectory is set back to P0 at time n + 1. Thus, P is a natural partition in the sense that
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it informs about the spikes of each neuron. Therefore, to each trajectory V ≡
{

Vk
n , k = 1 . . . N, n ∈ Z

}
,

there is associated an infinite spike sequence x such that xk
n = 0⇐⇒ Vk

n ∈ P0 and xk
n = 1⇐⇒ Vk

n ∈ P0.
This partition can be used to generate a Markov partition [114], but, in general, the Markov partition

is not P but a finite refinement Q of P . What ensures that a Markov partition exists is that (27) is
contracting. More precisely, it contracts, in one step, at speed γ for directions (neurons) such that Vk < θ,
and it contracts, with an infinite speed, for directions such that Vk ≥ θ (reset). However, this generates
discontinuities in the mapping (27), and a singularity set S =

{
V ∈ RN | ∃k ∈ { 1 . . . N } , Vk = θ

}
, where

the map associated with (27), hereafter denoted by G, is discontinuous. Thus, G is piecewise continuous
and piecewise contracting.

Now, recall that Q is a Markov partition for the dynamics with contracting map G if its elements
satisfy G(Qn) ∩Qn′ 6= ∅⇒ G(Qn) ⊂ Qn′ . In other words, the image of Qn is included in Qn′ whenever
the transition n → n′ is legal. Here, in general, the elements of P do not satisfy this condition. This
is because the image of a domain of P usually intersects in several domains (in this case, the image
intersects the singularity set). From the neural network’s perspective this means that, in general, it is
not possible to know the spiking pattern at time n + 1 knowing the spiking pattern at time n. There are
several possibilities, depending on the membrane potential values and not only on the firing state of the
neurons. Of course, if, say Pn is such that G (Pn ) intersects several domains Pn1 , . . . ,Pnl one can take
the preimages of these domains G−1 (Pnr ) to construct a refinement of P , such that the Markov partition
requirement is satisfied in one iteration of the map. However, nothing guarantees that, at the second
iteration, some elements of this new partition will not intersect the singularity set under G2.

Can we find a finite refinement of P , such that the trajectory of the partition elements never intersects
several partition elements? It is shown in [114] that this property is satisfied for generic values of the
synaptic weights Wij. Essentially, it is based on the fact that the distance between the Ω-limit set of (27)
and the singularity set S , is generically positive. In other words, each point in the partition elements Qn

has a local stable manifold with a finite diameter.
As a consequence, the deterministic discrete-time neuronal network model (27) admits a Markov

partition, a refinement of the natural partition, providing a symbolic coding of the membrane potential
trajectories in terms of spike sequences. In particular, once the initial condition dependence has been
removed, the evolution (28) (without noise) is only constrained by the stimulus. Thus, (28) provides a
coding scheme of the stimulus in terms of spike sequences. The Markov partition is made of spike blocks,
with finite memory depth R, which can be used to apply Thermodynamic Formalism in the presence of
noise. However, R—the memory depth of the corresponding Markov chain—depends on the parameters
and, in particular, the synaptic weights.

In addition, note that the presence of a singularity set induces a weak form of initial conditions.
Although the dynamic is contracting, a small perturbation of a trajectory can induce an evolution
drastically different from the unperturbed trajectory, if the perturbation crosses the singularity set.
In this case, e.g., there is a neuron, k, which does not spike, at time n in the unperturbed trajectory,
and spikes at time n in the perturbed one, inducing a completely different evolution (cascade effect). This
phenomenon has been exposed in the context of spiking neurons, where the coexistence of stable and
unstable dynamics is investigated [118]. The singularity set also induces the existence of ghost orbits,
∃k ∈ { 1 . . . N } , ∀n > 0, Vk

n < θ and lim supn→+∞ Vk
n = θ. However, ghost orbits are non-generic in a

topological and a measure-theoretic sense. As a corollary, the Ω-set is generically composed of finitely
many periodic orbits with a finite period (whose length depends on parameters of the model, in particular,
synaptic weights).
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4.5. Extensions

4.5.1. Explicit Form of the Potential GLM vs. MaxEnt

Model (27) makes a link between the dynamics of a neuronal network and the transition
probabilities (20), where the dependence on the model parameters (in particular, synaptic weights, and
stimuli) is explicit. We have an explicit potential for this model, which, here, takes a GLM-like form (29),
but is more general, as in contrast to the GLM, the effective interactions depend on time via powers of
the leak term γ. This potential can also be written in terms of monomials using the Hammersley–Clifford
decomposition (3.3), through a series expansion of the function f . This procedure generates a series of
monomials with coefficients that can be explicitly computed (using the fact that, from the monomials

definition (22)
(

xnk
ik

)m
= xnk

ik
, for any integer m > 0). These coefficients are proportional to powers of

γ < 1, so their strength decays exponentially fast, allowing for truncating the potential to a finite number
of terms, which produce canonical Markov approximations of different orders [92]. One obtains, to the
lowest order, a Bernoulli potential, then pairwise terms, and so on.

4.5.2. Linear Response

Another interesting consequence of the analysis of this model is that the potential may depend on a
time dependent stimulus. When considering that the stimulus is of small amplitude and additive, one
can take a Taylor expansion of the potential as powers of the stimulus allowing one to go beyond the
stationarity assumption central to equilibrium statistical mechanics and Thermodynamic Formalism. In
this case, it is possible to show that the variations in the spike statistics induced by the stimulus, can
be described in terms of a linear response theory [119–122]. The main result is that the variation, in the
average of an observable f , resulting from the application of a stimulus reads:

δµ [ f ] (n) ≡ µS [ f ] (n)− µ(sp) [ f ] =
(

K f ∗ S
)
(n),

where µ(sp) is the Gibbs distribution in spontaneous activity (without stimulus), and µS is the Gibbs
distribution in the evoked activity regime (with stimulus), µS [ f ] (n) means the average of f with respect
to µS, which depends on time (if the stimulus does), and µ(sp) [ f ] means the average of f with respect
to µ(sp), which does not depends on time. This variation in average is given by a convolution between
a kernel K f , depending on f (which can be expressed in terms of time correlation functions between
monomials) and of the stimulus. The coefficients in the expansion of K f depend on the parameters
constraining dynamics (e.g., the synaptic weights in (27)). The correlations are computed with respect to
the invariant Gibbs measure µ(sp). In addition, the influence of monomials in the expansion decreases with
their order, so that one can obtain a reasonable approximation of the convolution kernel only considering
averages of order two monomials (time dependent pairwise correlations). Therefore, this is sa result in the
form of a fluctuation-dissipation “theorem” in statistical physics, with the difference that one considers
time dependent correlations. This formula has proven to give astonishingly good results when computing
the response to a time dependent stimulus in the model (27) [122].

4.6. The Galves-Löcherbach Model

Here, we present a second example, where the Gibbs potential can be computed. This model is
known as the Galves–Löcherbach model introduced by Antonio Galves and Eva Löcherbach in [91] (see
also [123,124]). This model is a generalization of [22], but considering an infinite (countable) network of
neurons interacting in time with memory of variable length.
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The model is built when considering a stochastic chain (Xt)t∈Z taking values in {0, 1}I , where I is a
countable set of neurons. The probability of a spike depends on the accumulated activity of the system
since the last spike, thus, each spike depends on a variable length history, defining also a non-Markovian
stochastic process. Extensions of this model have been made considering the hydrodynamic limit of the
interacting neuronal system [125], classifying the collective behavior according to parameter values [126],
and the generalization to the continuous time [127,128].

For each neuron i ∈ I and each time t ∈ Z, let τi(x, t) denote the last time before t at which neuron i
fired a spike in the spike train x:

τi(x, t) = sup
{

s < t : xi
s = 1

}
,

and suppose that the synaptic weights Wij have the uniform summability property:

sup
i∈I

∑
j

∣∣Wij
∣∣ < ∞.

The joint probabilities are conditionally independent given the past:

P (xt | x−∞,t−1) = ∏
i∈I

P
(

xi
t | xτi(x,t),t−1

)
, (31)

where the probability of neuron i having a spike at time t is given by:

P
(

xi
t | xτi(x,t),t−1

)
= hi

∑
j

Wij

t−1

∑
s=τi(x,t)

gj(t− s)xj
s

 . (32)

where gj(t− s) plays the role of the exponential α-kernel in (26). The transition probabilities (32) have the
form of a GLM model.

Under technical conditions of the functions hi and gj and Wij, there exists a unique probability
measure consistent with (31) and (32) (see Theorem 1 of [91]). To prove this claim, they use a Kalikow-type
decomposition of the infinite order transition probabilities. This type of decomposition has also
been considered in Ref [91,129,130]. The setup considered in this work extends to infinite size and
infinite memory.

5. Discussion and Perspectives

In this review, we introduce different ideas and tools from Thermodynamical Formalism and show
how they can be applied in theoretical neuroscience. As a summary, we grouped these approaches
depending on two main characteristics. The first one is the number of neurons N that affect the cardinality
of the alphabet considered and the range R of the potential (memory in transition probabilities) associated
to the equilibrium measure characterising the system. This is represented in Table 1. The infinite number
of neurons and infinite range cases are further discussed in Section 5.2.

While there have been interesting applications of Thermodynamic Formalism to neuroscience, there
are interesting ideas and developments still to come. In this concluding section we raise questions,
challenges and new avenues for the application of Thermodynamic Formalism to theoretical neurosciences.
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Table 1. Types of Gibbs measures potentially found in experimental data analysis or in the analysis of
mathematical models of networks of interacting spiking neurons.

Thermodynamic Formalism and Gibbs Measures

Number of neurons Memory of the potential

Memoryless Finite Infinite

Finite Boltzmann-Gibbs Gibbs in the sense of
Bowen

Chains with complete
connections

Infinite Countable state
Bernoulli

Countable state
Markov

Chains with variable
length

5.1. Thermodynamic Formalism for More Biologically Plausible Neuron Models

In this review, we have considered rather academic models of neuronal networks, where, especially,
time is considered to be discrete. There are good reasons for that. As we remarked at the beginning of
Section 3, we were considering models, like the Integrate-and-Fire, where spikes arise instantaneously,
in continuous time, thereby providing a possibly uncountable set of potential spike trains. The question is
whether we are dealing here with a realistic property of biological neuronal networks or with an artifact
created by the instantaneous reset. Real spikes have a duration (a few ms) and a refractory period (also a
few ms), so, for a fixed initial condition, spike trains produced by a continuous-time neuronal network are
countable. Now, it might be that the set of spike trains depend continuously on the initial condition, so
that we are still left with an uncountable set of spikes.

It is out of the scope of this review to discuss from a biological perspective, whether or not neuronal
networks have the cardinality of the continuum (see [101,117,131] for a discussion on this topic). Instead,
we have considered a strategy consisting of discretizing time, avoiding the problem of potentially
uncountable spikes. Here, we briefly mention another strategy, allowing for associating a countable
set of spike trains to continuous time networks with a countable set of spike trains. We first make the
remark that the instantaneous reset of voltage is physical and biological nonsense, inducing pathologies in
the dynamics [132]. On this basis, we use a convenient mathematical trick that is explained in the next
paragraph, which can certainly be criticized on phenomenological grounds [131], especially when the
dynamical system representing the neuronal activity is deterministic.

After spiking, a biological neuron stays at rest a certain time (refractory period). Accordingly, the
trick is the following. Fix δ > 0 and define a spiking variable xk

n ∈ { 0, 1 }, where n is an integer, where
xk

n = 1 if neuron k emits a spike in the time interval [nδ, (n + 1)δ[ and xk
n = 0 otherwise. Recall that tk

(r)
denotes the time at which neuron k emits its r-th spike . This reads:

xk
n =

{
1, if ∃r, tk

(r) ∈ [nδ, (n + 1)δ[;

0, otherwise.

Spiking variables are therefore time-discrete events with a time resolution δ. When Vk reaches the
threshold at time tk

(r) it is reset to 0, and stays there until time (n + 1)δ. After this, follows the sub-threshold

evolution (25) until the next time where Vk reaches the threshold. Note that, in this modelling, δ can
be quite small when compared to the time scales of the dynamics. In this way, the set of spike trains x
becomes at most countable.

This trick can be used to generalise the Integrate-and-Fire model into a conductance-based
Integrate-and-Fire model, which was introduced by Rudolph and Destexhe in [133] and mathematically
studied in [23,24,117], where the synaptic conductance depends on the spike history. One can still show
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that a unique Gibbs distribution with infinite range potential exist in this case, characterising the spike
train statistics. The potential can be explicitly computed as a function of network parameters, even in the
presence of a time-dependent stimulus.

Now, would Thermodynamic Formalism apply to more realistic neuronal models, like
Hodgkin–Huxley [111], FitzHugh–Nagumo [134,135], Morris–Lecar models [136]? (see [36,109,137] for
a complete presentation of canonical neuronal models). In these models, closer to biology, the spikes
have a time course and, thus, are not considered as point events. However, we do not know any result
establishing, e.g., the existence of Markov partitions and symbolic coding for these models and this seems
to be out of reach for the moment. Still, one can bin the time and proceed as done in experiments where
voltage is a time-continuous signal. Thus, one can still use the approach used in (20) to characterise the
spike train statistics.

A natural question in this context is what is the link between spike train statistics and the underlying
dynamical model, with “hidden” dynamical variables, such as membrane potential, but also, e.g.,
activation/inactivation variables? If we think in terms of spike coding, the alternative is the following.
Either spike trains contain all the necessary information to characterise the dynamics, e.g., the spike
response to a stimulus, and then characterising (20) is sufficient. Or, there is additional information, not
conveyed by spikes (e.g., sub-threshold oscillations [100,138,139]), and the "neural code" is not entirely
contained in the spikes, somewhat ruining the hope of encoding neuronal messages purely in terms of
spikes. This question is much more general than the validity of the Thermodynamic Formalism approach
for these models.

What Thermodynamic Formalism brings to the analysis of these models is twofold: (1) a way
to rigorously handle probabilistic representations of spikes (20); and, (2) to provide conceptual and
mathematical tools to analyse spiking neuronal network models, like (27), where a dynamical system
formulation of biophysical variables can be mathematically related to spike coding and spike train statistics.

5.2. Phase Transitions

Several studies have shown that the population of vertebrate retinal ganglion cells responding to
naturalistic stimulus is poised near a “critical state” [73,74]. From the maximum entropy joint distribution
(13), a family of Gibbs distributions can be built introducing a parameter 1/β (analogous to the inverse
temperature), which scales all of the Lagrange multipliers of the inferred Hamiltonian. When β → 0
(infinite temperature), the uniform distribution is obtained, and when β→ +∞ (zero temperature), the
Dirac delta supported at the spike configuration(s) of minimal energy is obtained. 1/β = 1 corresponds
to the inferred maximum entropy distribution from data. These studies have only analysed memoryless
Gibbs distributions (13).

From this representation, it is possible to compute the fluctuations (variance) of the energy Uλ as
a function of the “temperature” parameter T. This quantity can be obtained as the second derivative of
the pressure, Equation (6), which is, in thermodynamics, related to the heat capacity CT . On numerical
grounds, this quantity can be computed while using MonteCarlo simulations and plotted as a function of
the “temperature” T = 1

β , for different network sizes, (see Figure 4).
The form of CT versus T plot, for maximum entropy models of Ising type obtained from the recording

of retinal ganglion cells responding to naturalistic stimuli are shown in Figure 4 (redrawn from [74]). It
can be observed that there is a clear, increasing peak at T = 1, which starts to manifest itself when larger
and larger groups of neurons are considered. This presumable divergence of the heat capacity (or variance
of U) when N → ∞ (thermodynamic limit) is interpreted as a second order phase transition (a so-called
“critical regime” [140]).
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The behavior of the specific heat that is observed in Figure 4 suggests that the heat capacity of a
maximum entropy distribution, fitted over an increasingly large group of neurons in the retina, diverges.
This phenomenon has been considered to be a “signature of criticality" (details of this study and a
discussion about whether criticality is functional for retinal ganglion cells can be found in Ref. [74]). Some
criticism regarding this approach to diagnostic criticality has appeared arguing that the maximum entropy
principle is likely to yield models that are close to singular values of parameters, akin to critical points
in physics where phase transitions occur. Statistically distinguishable models tend to accumulate close
to critical points, where the susceptibility (inverse Fisher Information) diverges in infinite systems [141].
These ideas have also been applied to numerical simulations of a canonical feed-forward population model
showing that the specific heat diverges whenever the average correlation strength is independent of the
population size [75], as in the random subsampling of correlations used in [74]. Additionally, note that,
for spike trains obtained from discrete Markov processes, binning generates a stochastic process with
unbounded memory akin to inducing spurious phase transitions [102].

Figure 4. Signatures of criticality Generic plot of heat capacity CT versus temperature T for maximum
entropy models built constraining firing rates and pairwise correlations of retinal ganglion cells responding
to naturalistic stimuli [74]. A clear peak appears at T = 1 when groups of an increasingly large number of
neurons are considered (thermodynamic limit).

This interesting approach leads, nevertheless, to several questions in the context of
Thermodynamic Formalism.
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• Does this signature of criticality extend to Gibbs distributions with potentials of range R > 1,
i.e., with memory? How does it depend on R? We are not aware of any experimental results
addressing this issue. This question is related to the following:

• What is this signature of criticality from the point of view of Thermodynamic Formalism? The
occurrence of a second-order phase transition mathematically means that the pressure is C1 but not
C2 when some limit is taken. Here, we have two possible limits: the range of the potential R tends
to infinity or the number of neurons N tends to infinity. These two limits could also be addressed
simultaneously and they do not necessarily commute. For potentials associated to finite R and N
the Perron-Frobenius theorem guarantees the existence and uniqueness of the Gibbs measure and
the analyticity of the pressure can also be proved, preventing phase transitions. When R or N are
infinite, the properties of the RPF operator Section 2.3.2 characterises the presence or absence of
phase transitions. Indeed, there are conditions ensuring a spectral gap for this operator, ensuring
the exponential decay of correlations. Now, Equation (7) characterise the second derivative of the
pressure as a time series of correlations, which converge when the correlations decay exponentially.
On the opposite side, the non-summability of time correlation function implies the non-existence of
the second derivative, and thus, of a second-order phase transition. Therefore, a possibility to have a
second-order phase transition is when the spectral gap property for the RPF operator when R→ +∞
or N → +∞ is absent. In statistical mechanics, second-order phase transitions can be characterised
by how the zeros of the partition function, written as a polynomial, pinch the real axis (Lee-Yang
phenomenon) [142–144]. In our case, when R > 1, the object of interest is not the partition function,
but rather the largest eigenvalue of Lφ, which has to stay analytic in the limit R, or N,→ +∞. The
absence of the spectral gap property presents an analogy with the Lee-Yang phenomenon, although
we do not know about results establishing a deeper link.
• Can we relate known examples of dynamical systems exhibiting phase transitions to models in

neuroscience? Another possible example to be interpreted in neuroscience is the Dyson model [145],
in which there exists a phase transition in the sense of spontaneous magnetisation when the
temperature goes to zero, due to an infinite range potential whose correlation does not decay
exponentially fast. In our case, the range of the potential should be taken in time, keeping (possibly)
the number of neurons finite. Other examples exist of rigorous characterisations of phase transitions
in the thermodynamic description of Pomeau–Manneville intermittent maps, passing from an
integrable density function associated with the measure to heavy-tailed densities [146]. An interesting
result may hint at the connection between the topological Markov map of the interval and stochastic
chains of infinite order or chains with complete connections. Ref [147] presents how to build a
topological Markov map of the interval whose invariant probability measure is the stationary law of
a given stochastic chain of infinite order. This is interesting in this context because as we presented
in (27), there are mathematical models of spiking neurons whose spike statistics are represented
by chains of infinite order. This result or its inverse i.e, how to build a stochastic chain of infinite
order from a topological Markov map may hint at conditions in the parameters or conditions of the
mathematical models of spiking neurons to exhibit second order phase transitions.

• What could the dynamical or mechanistic origins of a second-order phase transition be in a
spiking neuronal network model? Handling experimental data is of course important, but for long
experiments with living neuronal tissue, one cannot control the size of the sample, the stationarity
of data, and so on. Accordingly, assume that we have been able to find an example of a Gibbs
distribution exhibiting a second-order phase transition when R→ +∞ or N → +∞. Can we build a
spiking dynamical system, with finite R and N, which has this Gibbs distribution in the limit R, or N,
→ +∞, so that we observe a phase transition in the model? Then, what are the mechanistic origins
(in the neuronal dynamics) of second-order phase transitions? It could be an interesting example
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to study the existence of a second-order phase transition in a simple neuronal model. Returning
back to the discrete LIF model, the failure in the second-order differentiability of the pressure means
the loss of exponential mixing, which, in the model (27) can arise in, at least, two cases. First, if
γ = 1− ε, ε → 0. This is a way to obtain a potential with increasing range as ε → 0 with loss the
summability of correlations. The corresponding orbits (reminiscent of the ghost orbits discussed in
Section 4.4) are such that it may take a long time for some neurons to be reset. Thereby, the memory
to be considered is very long. However, this is a case hardly interpretable from the neuroscience
perspective. A second possibility is to analyse how the pressure depends on the spectrum of the
synaptic weights matrix and to check whether there are cases (e.g., small world or scale-free lattices),
where the spectral gap of the RPF vanishes.

From the perspective of the maximum entropy distributions built from experimental data of spiking
neurons, there have been interesting applications of the Gibbs distributions that were obtained to answer
questions related to the retinal code that are not related to criticality [148]. From the maximum entropy
joint distribution the conditional distributions can be computed, and questions about the redundancy
of the neural code can be addressed such as how predictable is the activity of each neuron based on the
knowledge of the activity of other neurons in the population. Can we find a subset of neurons J that
together predict with high accuracy the spiking behaviour of the neuron i? Mathematically can be written
in this way p(xi = 1 | {xj}j∈J), where J is a subset of neurons in the population of spiking neurons.
Other questions related to the neural coding and dimensionality reduction can be addressed studying the
energy landscape Uλ(x) of (13). For example, the the local minima of an energy landscape correspond
to metastable states and several configurations may correspond to the same “valley“ near each local
minima. Transitions between valleys have be studied in the context of “retinal coding” (see details in [148]).
Alternative methodologies using the maximum entropy principle to study network of sensory neurons
have been used in order to classify intrinsic interactions from extrinsic correlations [46] and to reveal the
excitatory and inhibitory correlations [45].

5.3. What Else Do Thermodynamic Formalism and Gibbs Distributions May Tell Us about Neuroscience?

The relationship between mathematics and physics has been historically symbiotic and
Thermodynamic Formalism is an interesting example of how ideas from physics may help to solve
problems and introduce ideas into the field of mathematics. The history of Thermodynamic Formalism
also shows how purely mathematical results can be obtained as corollaries of physical laws, inverting the
frequently assumed relationship between physics and mathematics [149].

However, in the case considered in this review—the link between Thermodynamic Formalism and
neuroscience—the mathematical problem is motivated by biology, not by physics. While Eugene Wigner
argues in favour of the “The unreasonable effectiveness of mathematics in the natural sciences” [150],
Israel Gelfand, after spending several years working in mathematical problems related to biology, replied
with “The unreasonable ineffectiveness of mathematics in biology.” [151]. While there are reasons to
argue that this is still the case, it is less clear if one can blame the field of mathematics or just the fact that
we have not yet used the right tools or frameworks. In the quest for these “right tools”, there is a long
tradition of using ideas from statistical physics to study neural networks, and in particular, to represent
the emergence of collective behaviour from microscopic interactions, with the hope that statistical aspects
of the collective behaviour will be independent of the details in these systems. This gave rise to major
branches of theoretical neuroscience, like dynamic mean-field methods [29,152–154] or the Maximum
Entropy approach [38,49,148,155], mainly coming from physicists. Although there are considerably less
articles using mathematical methods to rigorously analyse the collective behaviour of neuronal networks
some promising approach have been recently proposed based on large deviations [156,157], Kalikow-type
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decomposition [91,158], stochastic processes [159–163], dynamical systems [137,164], etc. As we have
developed in this review, Thermodynamic Formalism could also be one of these tools, providing interesting
connections between mathematics and physics, dynamics and statistics, applied to neuroscience.

Especially, we have described how Thermodynamic Formalism: (1) provides a conceptual and
operational (i.e., allowing to develop algorithms and software [99]) framework to analyse experimental
spike train data; (2) allows to derive explicit expressions linking spike statistics to neuronal networks
dynamics; (3) extends to non stationarity via linear response theory; and, (4) proposes a realm to address
questions related to criticality.

Here, we would like to propose some other extensions, not yet explored so staying at the level of ideas,
all based on the power of Thermodynamic Formalism to make explicit and operational links between
dynamics, statistics and symbolic coding.

1. Geometry of the state space. A prominent aspect of Thermodynamic Formalism, that we haven’t
discussed yet in this review, is its link to the characterisation of the geometry of attractors and,
especially, fractal sets [165,166]. For example, the composition of contracting mappings along
symbolic orbits defines the so-called Iterated Function Systems (IFS) [167] generating fractal sets
with tunable geometry and structure. Now, it is interesting to remark that Integrate and Fire
models are actually piecewise contracting dynamical systems having a structure similar to IFS where
the contracting pieces are symbolically encoded by spike blocks [114]. It would be interesting to
investigate, along these lines, the structure of attractors in Integrate and Fire models, and how orbits,
encoded by spike blocks, are related to the geometry of attractors (the Ω-limit set).

2. Transitions between attractors. The concept of attractor is actually central in describing brain
dynamics [168,169]. Especially, a current trend in neuroscience is to associate to brain states
attractors (or ghost attractors, see [170] and references therein). The transitions between these
states corresponds to transition during tasks or spontaneous activity [171–174]. It is relatively
natural to characterise such transitions by Markov chains [175], which is the first step toward the
application of Thermodynamic Formalism and analysing these transitions from a statistical and
statistical physics perspective.

3. Non-stationarity and link with generating functional formalism. As we mentioned,
Thermodynamic Formalism is constructed from a variational approach based on entropy and,
thus, requiring time translation invariance. We have briefly described how we can depart from
this constraint while using linear response theory. It would be interesting to explore beyond this
point and consider general types of response to stimuli (not requiring a small perturbation, as
in linear response). For this, one would have to construct a Thermodynamic Formalism based
on the optimisation of a quantity, which is not the entropy. This is somehow what generating
functional approaches like the dynamic mean-field theory does (see introduction), although using
other constraining hypotheses (essentially to be able to describe the infinite size limit by a Gaussian
process). It would be interesting to try to close the gap between these two approaches (e.g., via large
deviations theory).

One of the biggest challenges in science of the XXI century is to understand the brain functions within
a conceptual framework that are capable of unifying the multi-scale dynamics that take place in the brain.
This framework should also make sense in the light of the overwhelming amount of experimental data
capable of predicting macroscopic phenomena, such as motor behaviour or visual experience from the
activity of billions of neurons.

Physicists have been able to make a deep connection between mechanics, statistical physics,
and thermodynamics. A similar quest is presumably guiding the research of (some) theoretical and
experimental neuroscientists. While there is still a long way to go before achieving this goal (as some argue



Entropy 2020, 22, 1330 34 of 42

we are still searching for principles [176]), during the last decades, mathematicians have been playing a
relevant role in the rigorous description of neural phenomena, clarifying and raising conceptual problems
in neuroscience.

We hope that theoretical tools and ideas from Thermodynamic Formalism and its current application
in neuronal dynamics and spike train statistics will lead to a better and unified understanding of the neural
phenomena. We also hope that the present review may serve as an encouragement for the mathematical
community that is interested in applications of Thermodynamic Formalism in order to study these
interesting and important problems.
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Abbreviations

The following abbreviations are used in this manuscript:

KL Kullback-Leibler
MEP Maximum Entropy Principle
RPF Ruelle-Perron-Frobenius
LDP Large Deviation Principle
SCGF Scaled Cumulant Generating Function
GLM Generalized Linear Model
LIF Leaky Integrate-and-Fire
MEA Multi-Electrode Arrays
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xk
n Spike-state of neuron k at time n

xn Spike pattern at time n
xn1,n2 Spike block from time n1 to n2

An,n+m Configuration space of spike blocks of m spike patterns
AN

R Configuration space of N neurons and spike blocks of R spike patterns
Eν( f ) Expected value of the observable f w.r.t. the probability measure ν

AT( f ) Empirical average of the observable f considering T spike patterns
H[µ] Entropy of the probability measure µ

λk Lagrange multiplier parameter
Uλ Potential or Energy function
F[Uλ] Pressure associated to the potential Uλ

µψ Equilibrium measure associated to the potential ψ

Snφ Birkhoff sums associated to the potential φ

Γ f Scaled cumulant generating function of the observable f
I f Rate function of the observable f
Lφ Ruelle-Perron-Frobenius operator associated to the potential φ

wn Integer associated to the spike block xn,n+R−1
C f ,g(n) Correlation function between the observables f and g at time n
ml Monomial l
CT Heat capacity
Vk Voltage of neuron k
θ Threshold
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