
entropy

Article

A Discretization Approach for the Nonlinear
Fractional Logistic Equation

Mohammad Izadi 1,* and Hari M. Srivastava 2,3,4

1 Department of Applied Mathematics, Faculty of Mathematics and Computer,
Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran

2 Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada;
harimsri@math.uvic.ca

3 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 40402, Taiwan

4 Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street,
Baku AZ1007, Azerbaijan

* Correspondence: izadi@uk.ac.ir

Received: 14 October 2020; Accepted: 17 November 2020; Published: 21 November 2020 ����������
�������

Abstract: The present study aimed to develop and investigate the local discontinuous Galerkin
method for the numerical solution of the fractional logistic differential equation, occurring in many
biological and social science phenomena. The fractional derivative is described in the sense of
Liouville-Caputo. Using the upwind numerical fluxes, the numerical stability of the method is
proved in the L8 norm. With the aid of the shifted Legendre polynomials, the weak form is reduced
into a system of the algebraic equations to be solved in each subinterval. Furthermore, to handle
the nonlinear term, the technique of product approximation is utilized. The utility of the present
discretization technique and some well-known standard schemes is checked through numerical
calculations on a range of linear and nonlinear problems with analytical solutions.

Keywords: logistic differential equation; liouville-caputo fractional derivative; local discontinuous
Galerkin methods; stability estimate

1. Introduction

In studies of elementary population dynamics the simplest model for the growth of a population
is known as rate equation and structured by Malthus in (1798) [1]

$

&

%

dMptq
dt

“ r Mptq, t ą 0,

Mp0q “ M0,
(1)

where Mptq denotes the population at time t, the non-zero parameter r equals to r “ β´ α, where β

and α are the per capita birth and death rates respectively. Here, M0 is the population at time t “ 0.
The exact analytical solution of Malthus population model (1) is explained the constant population
growth rate Mptq “ M0ert. The Maithusian grow model is unrealistic over long times due to the fact
that the solution of the rate equation is not included two main factors such as spread of diseases and
the limitation on food supply. To model the effects of these factors in a population model, the logistic
equation was considered by P. R. Verhulst in 1838 [2]

dNptq
dt

“ rNptq
ˆ

1´
Nptq

K

˙

,
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where the variable Nptq “ Mptq{Mmax is the whole population and normalized to its maximum
attainable value Mmax, r denotes the intrinsic growth rate while the constant K ą 0 known as the
carrying capacity of the environment. By defining Xptq :“ Nptq{K and σ :“ rK, the standard logistic
equation can be rewritten as

$

&

%

dXptq
dt

“ σ Xptq
´

1´ Xptq
¯

, t ą 0,

Xp0q “ X0.
(2)

where X0 “ Mp0q{Mmax. The exact solution of this equation can be easily obtained as

Xptq “
X0

X0 ` p1´ X0qe´σt .

In the last decades, many efforts have been devoted to extend the integer-order models to the
corresponding fractional-order models, which are more descriptive and can provide a powerful and
valuable instrument for the explanation of hereditary and memory properties of several materials
and process [3,4]. Replacing the classical derivative operator in (2) by a fractional one, the fractional
logistic equation will be obtained. This model of population growth has been found applications in
numerous disciplines of science and engineering. For instance, the growth of tumors in medicine [5]
can be modelled as the fractional logistic equation (FLE). In addition, the milstone of various important
mathematical models is based on the fractional logistic equation such as two models in Radar signals [6]
and electroanalytical chemistry [7]. Several variations of the population growth model have been
studied in the literature [8]. In the present study, we are going to investigate the following logistic
population model of fractional order in the form

$

&

%

LC
a Dν

t Xptq “ σ Xptq
´

1´ Xptq
¯

“: σ Xptq gpXptqq, t ą 0,

Xp0q “ X0,
(3)

where the symbol LC
a Dν

t denotes the fractional derivative operator of Liouville-Caputo type and
ν P p0, 1s. It should be emphasized that in (3) we have used the function gpsq ” 1 ´ s, which
corresponds to the nonlinear logistic equation. However, to address the linear counterpart of this
equation we also consider gpsq ” 1. The issue of existence and the uniqueness of the solution of (3) is
discussed in detail in Reference [9].

It is known that for most fractional differential equations there is no possibility to find the exact
solutions analytically. Consequently, exploring an approximate or numerical technique is of primary
interest for such fractional equations. Many efforts have been made toward the exact analytical
solution of the problem (3). The first one is proposed by West [10], which is based on the Carleman
embedding technique. Later, it is shown that in Reference [11] the this analytical function is only
very close to the numerical solutions of the FLE. The other analytical methods for the FLE include the
fractional Taylor expansion method [12], a method based on Euler’s numbers [13], and the varational
iterative method [14]. Besides the analytical investigations, numerous computational approaches
have been proposed for the nonlinear FLE. Let us mention the predictor-corrector approaches [9,15],
the finite difference schemes [14,16], the spectral methods [17,18], the Bessel collocation method [19],
the Chebyshev wavelet method [20], the Laguerre collocation method [21], and the fractional spline
collocation method [22].

Many other numerical and approximation methods as well as computational approaches have
been developed and applied for the FDEs which are based upon various closely-related models of
real-world problems. For example, Baleanu et al. [23] made use of a Chebyshev spectral method based
on operational matrices, a remarkable survey of numerical methods can be found in [24], a study of
the fractional-order Bessel, Chelyshkov, and Legendre collocation schemes for the fractional Riccati
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equation was presented in [25], an operational matrix of fractional-order derivatives of Fibonacci
polynomials was developed in [26], an introductory overview and recent developments involving
FDEs was presented in [27], efficiency of the spectral collocation method in the dynamic simulation
of the fractional-order epidemiological model of the Ebola virus was investigated in [28], the Jacobi
collocation method and a spectral tau method based on shifted second-kind Chebyshev polynomilas
for the approximate solution of some families of the fractional-order Riccati differential equations
were discussed in [29,30], computational approaches to FDEs for the biological population model were
discussed in [31], the generalized Chebyshev and Bessel colllocation approaches for fractional BVPs
and multi-order FDEs were considered in [32,33], and a general wavelet quasi-linearization method
for solving fractional-order population growth model was developed and applied in [34].

In this work, we take a further step towards proposing a numerical method for solving the
FLE. We utilize a discontinuous finite element approach, i.e, the local discontinuous Galerkin (LDG)
discretization approach for the FLE (3). To apply the LDG scheme, we must rewrite a given FDEs
as a system of first-order ordinary differential equations (ODEs) with together a fractional integral.
Hence, the discontinuous Galerkin (DG) method is employed to discretize the resulting system as
well as the fractional integral. The first DG method was introduced by Reed and Hill [35] in 1973
for numerically solving neutron transport, that is, a time-independent linear hyperbolic equation.
Since then the DG schemes have been well implemented for the classical ODEs was started by the
work [36]. DG schemes as a subclass of finite element methods (FEMs) allow us to exploit discontinuous
discrete basis functions. These local basis functions are usually selected as piecewise polynomials.
Exploiting completely discontinuous basis functions offers great opportunities compared to traditional
FEMs when used to discretize differential equations. In summary, the main gains of the DG methods
are in terms of flexibility, accuracy as well as parallelizability, see cf. Reference [37].

To the best of our knowledge, the LDG approaches for the ODEs of fractional-order including
one-term and multi-terms were first discussed in Reference [38] and then have been applied to many
model problems [39–41]. It is worth mentioning that the success of LDG methods is based on the
designing of appropriate numerical fluxes at the interface elements. In this work, we utilize the upwind
numerical flux as natural choice for the FLE. By choosing the upwind fluxes we are able to prove the
numerical stability of the LDG scheme.

The rest of this paper is organized as follows. In the next Section, we review some fractional
calculus preliminaries and state some of their properties that will be used later on. The formulation of
the LDG scheme for the logistic equation is established in Section 3. Hence, the algebraic form of the
LDG scheme is obtained with the aid of shifted Legendre basis functions. The technique of product
approximation is also applied to deal with the nonlinear term in the weak formulation. In Section 4
we establish the numerical stability of the scheme in the linear case and a discussion about the error
estimation is made. In Section 5, the applicability and utility of the present numerical schemes are
verified by performing several simulations on two linear and nonlinear population growth and logistic
model problems. Finally, a conclusion is drawn in Section 6.

2. Fractional Calculus

Now, we present some fundamental and mathematical preliminaries of the fractional calculus
theory to be utilized in our subsequent sections, see References [3,4,27].

Definition 1. Let ν ě 0 is given. The (left) Riemann-Liouville fractional integral operator of order ν is given by

Iν f ptq ” aIν
t f ptq “

$

’

&

’

%

1
Γpνq

ż t

a
f ppq pt´ pqν´1 dp, ν ą 0, t ą 0,

f ptq, ν “ 0.

The integral operator Iν has many properties. Among others, we make use of the following
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(1) IνIβ f ptq “ Iν`β f ptq,
(2) Iν pc1 f ptq ` c2gptqq “ c1Iν f ptq ` c2Iνgptq, c1, c2 P R,

(3) Iνtγ “
Γpγ`1q

Γpγ`ν`1q t
ν`γ, γ ą ´1.

The corresponding definition of the right Riemann-Liouville fractional integral on the interval
rt, bs instead of ra, ts is given by

tIν
b f ptq “

1
Γpνq

ż b

t
f ppq pp´ tqν´1 dp, ν ą 0, t ą 0.

Definition 2. The fractional derivative Dν of f ptq in the Liouville-Caputo’s sense is defined as

Dν f ptq ” LC
a Dν

t f ptq “

$

’

&

’

%

1
Γpm´ νq

ż t

a

f pmqppq
pt´ pqν´m`1 dp, m´ 1 ă ν ă m, t ą 0,

f pmqptq, ν “ m, m P N.

We make use of the following [4]:

DνpCq “ 0 pC is a constantq, (4)

Dν tγ “

$

&

%

Γpγ` 1q
Γpγ` 1´ νq

tγ´ν, for γ P N0 and γ ě rνs, or γ R N0 and γ ą tνu,

0, for γ P N0 and γ ă rνs.
(5)

Here, we have used the ceiling and floor functions rνs, tνu respectively. It should be noted that,
two operators Iν and Dν are related through the following expression

Dν f ptq “ Im´νDm f ptq, D “
d
dt

. (6)

3. Discretized LDG Formulation

In order to formulate the LDG method for the logistic equation in (3), some basic notations will
first be introduced.

Let us consider (3) on L “ p0, Tq for some given T ą 0. To rewrite (3) as a first-order system,
we introduce two new variables z0ptq “ Xptq and z1ptq “

dXptq
dt and use the relation (6) to get

$

’

’

’

’

&

’

’

’

’

%

z1ptq ´
dz0ptq

dt
“ 0,

0Ip1´νq
t z1ptq ´ σ z0ptq

´

1´ z0ptq
¯

“ 0,

z0p0q ´ X0 “ 0,

(7)

with ν P p0, 1s and t P L. By ∆ we denote a partitioning of the interval L into J subintervals Ll “ ptl´1, tlq

for l “ 1, . . . , J. The grid points of ∆ will be denoted as

0 “: t0 ă t1 ă . . . ă tJ´1 ă tJ :“ T.

By hl we mean the length of each Ll , that is, hl “ tl ´ tl´1 for l “ 1, 2, . . . , N. The maximum length
of these element is taken as h :“ maxJ

l“1 hl . We associate the mesh ∆ with the broken Sobolev spaces

H1
∆ “ tw : L Ñ R

ˇ

ˇ w|Ll P H1pLlq, l “ 1, 2, . . . , Ju.

and
S∆ “ tw : L Ñ R

ˇ

ˇ w|Ll P L2pLlq, l “ 1, 2, . . . , Ju,
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By using these function spaces, let assume that the solutions of system (7) belong to
corresponding spaces

´

z0ptq, z1ptq
¯

P H1
∆ ˆ S∆.

It should be noted that the elements of space H1
∆ may be discontinuous in t at discrete time level

t1. In this respect, at the mesh grid points, defining the left-sided as well as the right-sided limits of a
function w is necessary, where w : L Ñ R is a piecewise continuous function. By w´n and w`n , we let
the left- and right-sided limits of w at tl

w`l “ w`ptlq “ wpt`l q :“ lim
sÑ0`

wptn ` sq, w´l “ w´ptlq “ wpt´l q :“ lim
tÑ0´

wptn ` sq.

For any positive integer number r, we denote by PrpLlq the space of polynomials of degree less
or equal than r on the element Ll P ∆. We then let the approximate solutions z0ptq, z1ptq belong to a
subspace Vprq Ă H1

∆, which is a finite dimensional space. This subspace is defined as the space of
discontinuous and piecewise polynomial functions

Vprq “ tw : L Ñ R
ˇ

ˇ w|Ll P PrpLlq, l “ 1, 2, . . . , Ju.

We further define Z0ptq and Z1ptq as the DG approximations to the exact solutions z0ptq and z1ptq
of the system (7) respectively on the element Ll . Below, we make use of the following notations

pw, vql :“
ż

Ll

w v dt, xw, vyl :“
ż tl

0
w v dt, }w}l :“

b

xw, wyl .

For obtaining the weak DG formulation, we first multiply the first equation in (7) by a test function
w0 P Vprq and integrate over Ll . By applying the integrating by parts we get

´

Z1ptq, w0

¯

l
`

´

Z0ptq,
dw0

dt

¯

l
´Z0pt´l qw0pt´l q `Z0pt`l´1qw0pt`l´1q “ 0. (8)

Hence, the second integral equation in (7) is multiplied by a test function w1 P Vprq and integrate
over Ll . To advance the solution in time, we replace Z0pt`l´1q by the upwind flux Z0pt´l´1q in (8).
Thus, the discrete formulation for finding Z0,Z1 P Vprq takes the following form for all w0, w1 P Vprq,
and l “ 1, 2, . . . , J

$

’

’

’

&

’

’

’

%

´

Z1ptq, w0ptq
¯

l
`

´

Z0ptq, w10ptq
¯

l
´Z0pt´l qw0pt´l q `Z0pt´l´1qw0pt`l´1q “ 0,

´

0Ip1´νq
t Z1ptq, w1ptq

¯

l
´ σ

´

Z0ptq, w1ptq
¯

l
` σ

´

Z2
0 ptq, w1ptq

¯

l
“ 0,

Z0pt´0 “ 0q ´ X0 “ 0.

(9)

It should be noted that, to start computations on the first element L1 “ pt0, t1qwe use the given
initial condition Z0pt´0 q “ X0. Hence, by utilizing the upwind flux as the natural choice, we are able
to solve the resultant equations element by element on each subinterval Ll for l “ 1, 2, . . . , J. In each
element, we just need to invert a local matrix of size pr` 1q ˆ pr` 1q in place of a global matrix of size
Jpr` 1q ˆ Jpr` 1q.

Algebraic Formulation

Since the functions in Vprq may be discontinuous across interfaces of the element, various local
bases can be selected for finite element approximation in (9). Let us choose a basis in the space PrpLlq
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formed by functions φl
0, φl

1, . . . , φl
r. Thus the numerical approximations Z0 of z0 and Z1 of z1 in every

element Ll can be expressed as

Z0ptq “
q
ÿ

i“0

αl
i φl

iptq, Z1ptq “
q
ÿ

i“0

βl
i φl

iptq, t P Ll . (10)

Here, the coefficients αl
i ,β

l
i , i “ 0, . . . , r denote the degrees of freedom to be sought in each Ll ,l “

1, . . . , J. To proceed, we take the test functions in each element Ll in the form wj “ φl
jptq for j “ 0, 1, . . . , r

and l “ 0, 1, . . . , J. Now, by specifying the basis functions as we done below, the discrete LDG
formulation (9) is reduced to a algebraic system of equations.

For practical implementation of the LDG scheme (9) for the FLE (3), we use the set of orthogonal
Legendre polynomials for the space Vprq. Let us recall that, the i’th degree Legendre polynomials Pipsq
can be generated by the well-known Rodriguez formula

Pipsq “
1

2ii!
di

dsi ps
2 ´ 1qi.

The Legendre polynomials satisfy the following relations [17]

ż 1

´1
Pipsq Pjpsqds “

2δij

2i` 1
, Pip1q “ 1, Pipsq “ p´1qiPip´sq, i, j ě 0, (11a)

p2i` 1qPipsq “
dPi`1psq

ds
´

dPi´1psq
ds

, (11b)

where δij denotes the Kronecker delta. The first property shows that these set of orthogonal polynomials
are orthogonal with respect to weighting function wptq ” 1 on p´1, 1q. The Legendre polynomial Pipsq
of degree i can be explicitly expressed as follows

Pipsq “
Mi
ÿ

k“0

cik si´2k, cik :“
1
2i p´1qk

ˆ

i
k

˙ˆ

2i´ 2k
i

˙

,

where Mi “ i{2 or pi ´ 1q{2, whichever is an integer. Due to the fact that these polynomials are
orthogonal on r´1, 1s, we map them onto the element Ll by using the following change of variable

s :“
2t´ tl´1 ´ tl

hl
, t P Ll .

Let the resultant shifted Legendre polynomials denoted by Liptq. Thus, the explicit form of Liptq
of degree i takes the form

Liptq “
Mi
ÿ

k“0

cik

´2t´ tl´1 ´ tl
hl

¯i´2k
.

By means of the binomial formula, one can further simplify the last expression as follows

Liptq “
Mi
ÿ

k“0

i´2k
ÿ

m“0

Cikm tm, (12)

where the coefficients Cikm are defined as

Cikm :“
p´1qi`k`m p2i´ 2kq!

2i pi´ kq! k! l! pi´ 2k´mq!

´ tl ` tl´1
tl ´ tl´1

¯i´2k´ 2
tl ` tl´1

¯m
.
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Now, we choose φl
iptq “ Liptq in (10) for l “ 1, 2, . . . , J, where Li is the shifted Legendre polynomial

of degree i in t defined in (12). With this transformation, the unknown values αl
i ,β

l
i in (10) can be

interpreted as the Legendre coefficients of the expansion of Z0,Z1. Hence, by the virtue of the Legendre
properties (11) and inserting (10) into the discrete formulation (9) we have for l “ 1, . . . , J as

r
ÿ

i“0

βl
i

´

Liptq, Ljptq
¯

l
`

r
ÿ

i“0

αl
i

´

Liptq, L1jptq
¯

l
´

r
ÿ

i“0

αl
i `

r
ÿ

i“0

αl´1
i p´1qj “ 0,

r
ÿ

i“0

βl
i

´

0Ip1´νq
t Liptq, Ljptq

¯

l
´ σ

r
ÿ

i“0

αl
i

´

Liptq, Ljptq
¯

l
` σ

´”

r
ÿ

i“0

αl
i Liptq

ı2
, Ljptq

¯

l
“ 0,

(13)

for j “ 0, . . . , r. To proceed, we need to deal with two main difficulties involving the integral and
nonlinear terms that appear in (13). To tackle the integral term, the properties (1)–(3) of fractional
integration in Section 2 is used to obtain

0Ip1´νq
t Liptq “

Mi
ÿ

k“0

i´2k
ÿ

m“0

Cikm 0Ip1´νq
t tm “

Mi
ÿ

k“0

i´2k
ÿ

m“0

C1ikm tm`1´ν, C1ikm :“ Cikm
Γpm` 1q

Γpm` 2´ νq
.

Next, the explicit form (12) is utilized for Ljptq and then 0Ip1´νq
t Liptq will be inserted into the

inner product. Now, by integration over Ll we obtain

di,j :“
´

0Ip1´νq
t Liptq, Ljptq

¯

l
“

Mi
ÿ

k“0

i´2k
ÿ

m“0

Mj
ÿ

k1“0

j´2k1
ÿ

m1“0

C2ikmjk1m1

´

tm`m1`2´ν
l ´ tm`m1`2´ν

l´1

¯

, (14)

with the coefficients
C2ikmjk1m1 :“ C1ikm Cjk1m1{pm`m1 ` 2´ νq.

The nonlinear term in (13) can be computed using the Legendre polynomials. For instance, if r “ 1
we may write it as a product of two vectors

nDC
j :“

´

Z2
0 ptq, Ljptq

¯

l
“

”

rαl
0s

2, 2αl
0α

l
1, rαl

1s
2
ı

¨

ż

Ll

”

L2
0ptq,L0ptqL1ptq,L2

1ptq
ıT
Ljptqdt,

for j “ 0, 1. Therefore, it is not a difficult task to calculate nDC
j by direct computation (D.C.) using the

shifted Legendre polynomials on each Ll for different j. Of course one may exploit the symbolic toolbox
in Matlab to facilitate the process of integration of these polynomials. Alternatively, to handle the
nonlinear term in (13), the product approximation (P.A.) technique [42] is used in the following manner

Z2
0 ptq “

”

r
ÿ

i“0

αl
i Liptq

ı2
«

r
ÿ

i“0

rαl
is

2 Liptq.

This technique enables us to write the nonlinear part as

nPA
i,j :“

´

Z2
0 ptq, Ljptq

¯

l
“

r
ÿ

i“0

rαl
is

2
´

Liptq, Ljptq
¯

l
. (15)

Now, it suffices to calculate the two first terms in (13). To this end, we compute the elements of the
mass matrix as

mi,j :“
´

Liptq, Ljptq
¯

l
“

ż

Ll

LiptqLjptqdt “

#

hl
2i`1 , i “ j,
0, i ‰ j.

(16)
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Finally, the entries of the stiffness matrix

si,j “
´

Liptq, L1jptq
¯

l
“

ż

Ll

LiptqL1jptqdt,

need to be calculated. In the new coordinate, we recursively employ the Legendre property (11b)
to derive

hl
2
L1i`1ptq “ p2i` 1qLiptq ` p2pi´ 1q ` 1qLi´2ptq ` p2pi´ 4q ` 1qLi´4ptq ` ¨ ¨ ¨ .

By applying the orthogonality relation (11a) to the preceding equation and then simplifying the
involved integral in si,j, we finally get

si,j “

#

2, if i ą j and pi` jq is even,
0, otherwise.

(17)

Using (14)–(17), one may write (13) in the matrix-vector multiplication form for l “ 1, . . . , J as follows

#

MMMβββl ` pSSS´EEEqαααl “ bbbl ,

DDDβββl ´ σMMMpαααl ´ααα2,lq “ 0,
(18)

where the unknown vectors αααl ,βββl , and ααα2,l are defined

αααl “
´

αl
0, . . . ,αl

r

¯T
, βββl “

´

βl
0, . . . ,βl

r

¯T
, ααα2,l “

´

rαl
0s

2, . . . , rαl
rs

2
¯T

.

Note in (18) that the components of matrix EEE are ei,j :“ 1 while that of MMM, SSS, NNN and DDD are
mi,j, si,j, ni,j, and di,j respectively for i, j “ 0, . . . , r as defined above. Moreover, the components of the
known vector bbbl are

bi :“ p´1qi`1Z0pt´l´1q, i “ 0, 1, . . . , r.

Clearly, the value of Z0pt´l´1q is already known from the preceding time interval Ll´1. Obviously
this value at the first time interval is computed as X0, the initial condition. Also, the obtained
system (18) is a nonlinear algebraic system of equations have to be solved in each Ll for l “ 1, . . . , J.
This system can be solved for example, via Newton type schemes. It is known that this method
converges quadratically whenever the approximation is close to the actual solution of the given
nonlinear system. Using the D.C. approach, we also arrive at a nonlinear system of equation in the
general form FFFpαααl ,βββlq “ 000 to be solved in each interval Ll . As we show in the numerical experiments,
this approach is more accurate than the corresponding P.A. approach.

4. Numerical Stability and Error Estimates

Now, we are going to establish the stability of proposed LDG scheme when applied to the logistic
equation in the linear case by considering gptq ” 1 in (3). In this case we have

#

LC
a Dν

t Xptq “ σ Xptq, ν P p0, 1q.

Xp0q “ X0.
(19)

Without loss of generality, let us assume that σ ă 0. The numerical scheme of (19) is to find
Z0,Z1 P Vprq such that
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$

’

’

’

&

’

’

’

%

Z0pt´l qw0pt´l q ´Z0pt´l´1qw0pt`l´1q ´
´

Z1ptq, w0ptq
¯

l
´

´

Z0ptq, w10ptq
¯

l
“ 0,

´

0Ip1´νq
t Z1ptq, w1ptq

¯

l
“ σ

´

Z0ptq, w1ptq
¯

l
,

Z0pt´0 q ´ X0 “ 0,

(20)

for all w0, w1 P Vprq, and l “ 1, 2, . . . , J. Let us state the next lemma, which based on the semigroup
properties of fractional integral operators and will be used below, a proof of which can be found
in Reference [38].

Lemma 1. Suppose that ν P p0, 1q, then we have

A

0I1´ν
t u, u

E

l
“

A

0I
1´ν

2
t u, tI

1´ν
2

tl
u
E

l
“ cos

´

p1´ νqπ

2

¯

}u}2
H

1´ν
2 pr0,tlsq

.

Let us assume that rZ0, rZ1 P Vprq be the approximate solutions of Z0,Z1 respectively. Now,
the numerical errors are defined as EXi :“ rZi ´Zi for i “ 0, 1. It can be seen that rZ0 and rZ1 both
satisfy (20). If we subtract Equation (20) from the same equations with rZ0 and rZ1, the following error
equations will be obtained

$

’

&

’

%

EX0pt
´
l qw0pt´l q ´ EX0pt

´
l´1qw0pt`l´1q ´

´

EX1ptq, w0ptq
¯

l
´

´

EX0ptq, w10ptq
¯

l
“ 0,

´
1
σ

´

0Ip1´νq
t EX1ptq, w1ptq

¯

l
“ ´

´

EX0ptq, w1ptq
¯

l
,

(21)

which holds for all w0, w1 P Vprq. Taking w0 “ EX0 and w1 “ EX1 in (21) followed by collecting these
two equations, we conclude that

E2
X0
pt´l q ´ EX0pt

´
l´1q EX0pt

`
l´1q ´

´

EX0ptq, E1X0
ptq

¯

l
´

1
σ

´

0Ip1´νq
t EX1ptq, EX1ptq

¯

l
“ 0.

To deal with the third term, we utilize the identity
´

u, du
dt

¯

l
“ pu2pt´l q ´ u2pt`l´1qq{2 with u “ EX0 .

Hence, we multiply the preceding equation by two. Adding and subtracting E2
X0
pt´l´1q to the modified

equation and rearranging the terms to obtain

´

EX0pt
`
l´1q ´ EX0pt

´
l´1q

¯2
`

´

E2
X0
pt´l q ´ E2

X0
pt´l´1q

¯

´
2
σ

´

0Ip1´νq
t EX1ptq, EX1ptq

¯

l
“ 0.

By summing over elements for l “ 1, . . . , J, we get

E2
X0
pt´J q ´ E2

X0
pt´0 q `

J
ÿ

l“1

´

EX0pt
`
l´1q ´ EX0pt

´
l´1q

¯2
´

2
σ

A

0Ip1´νq
t EX1ptq, EX1ptq

E

J
“ 0.

By using Lemma 1, we have established the following stability of the LDG in the L8 norm for (20)
(see also References [38,40]:

Lemma 2. We have the following L8 stability of the LDG scheme (20) and for the numerical errors hold

E2
X0
pt´J q “ E2

X0
pt´0 q ´

J
ÿ

l“1

´

EX0pt
`
l´1q ´ EX0pt

´
l´1q

¯2
`

2
σ

cos
´

p1´ νqπ

2

¯

}EX1}
2

H
1´ν

2 pr0,tJsq
(22)

We close this section by pointing out some facts about the order of convergence of the proposed
LDG scheme. In Reference [38] it is shown that the solution can be calculated with optimal order
of convergence pr ` 1q in the L2 norm. In this work the mechanism of superconvergence is also
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discussed. The authors observed the superconvergence of order pr` 1q `mintr, νu at downwind point
of each element.

5. Numerical Results and Discussions

In this section, we present some results of computations using the proposed LDG scheme
described in the preceding sections to test their accuracy and efficiency when applied to the logistic
equation. To assess the accuracy of the present numerical algorithms, we calculate the difference
between the true exact and numerical solutions whenever the exact solution is available. For this
purpose, we also consider a linear fractional population model and then we solve the fractional logistic
equation numerically.

In order to asses the numerical scheme more qualitatively, by EOC we denote the estimated order
of convergence calculated through defining

EOC :“ log2

´ Eaphq
Eaph{2q

¯

,

where Eaphq is the absolute error corresponding to the step-size h. Moreover, to test the validity
and accuracy of proposed LDG method and to make a comparison between our numerical model
results with the results of other existing methods, we employ the predictor-corrector PECE method of
Adams-Bashforth-Moulton type considered in Reference [43] as well as the implicit product integration
of trapezoidal type described in Reference [24]. All experimental computations have been done by
using MATLAB R2017a.

5.1. Linear Model

In this section, we consider a linear test problem to show the effectiveness of the proposed LDG
approach. For this purpose, we consider the fractional population growth

#

LC
a Dν

t Xptq “ σν Xptq, t ą 0,

Xp0q “ X0,
(23)

where 0 ă ν ď 1 and σ ą 0. This model problem is previously studied in Reference [22] and can be
considered as a generalization of the Malthusian model (1) to the fractional-order derivative. By the
aid of the Laplace transform, the exact analytical solution of the initial-value problem can be obtained
in terms of well-known Mittag-Leffler function [10]

Xptq “ X0 Eνpσ
ν tνq, Eνpzq “

8
ÿ

k“0

zk

Γpk ν` 1q
.

Note that by taking ν “ 1 the exact solution becomes Xptq “ X0 eσ t.
To start computation, we take σ “ 1 for simplicity and set X0 “ 3{4. By considering ν “ 1 and

J “ 1, the approximate solutions for r “ 3, 6, and r “ 9 on the interval 0 ď t ď 2 are obtained as follows

Z0,3ptq “ 0.4233870968 t3 ´ 0.1814516129 t2 ` 1.0887096774 t` 0.7016129032,

Z0,6ptq “ 0.003185535427 t6 ´ 0.00147024712 t5 ` 0.04410741361 t4 ` 0.1140555342 t3 ` 0.3795910747 t2

` 0.7492022902 t` 0.7500339451,

Z0,9ptq “ 0.00000608710804 t9 ´ 0.00000288336716 t8 ` 0.0002076022472 t7 ` 0.0009466489455 t6

` 0.006344760802 t5 ` 0.0311919123 t4 ` 0.1250209298 t3 ` 0.3749959904 t2 ` 0.7500003306 t

` 0.7499999933.
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These approximations together with the corresponding absolute errors are depicted in Figure 1.
Clearly, as r increased, more accurate results will be obtained. Note, in all cases, the step size is taken
as h “ 2. Moreover, we emphasize that numerical solutions for this model problem based on the
fractional spline collocation scheme have been proposed in Reference [22] with achieved absolute
errors larger than 1ˆ 10´4, see Figure 2 in this paper. The parameters used in this approach related
to ν “ 1 were M1 “ 26, 27, 28, N1 “ 37, 69, 133, which obviously are much more greater than our
used parameters.
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Figure 1. The approximated LDG with exact solutions (left) and the corresponding absolute errors
(right) for J “ 1, ν “ 1, σ “ 1, X0 “ 0.75, and different r “ 3, 6, 9.

Additionally, to justify our numerical model results, a comparison in Table 1 has been performed
between the previous work on PECE [15,43] in terms of the number of (sub)intervals J is used in the
computation. In this comparison, we compute the numerical solutions corresponding to Xp2q as well as
absolute errors |Xp2q ´Z0p2q| in these methods via different values of J “ 2i for i “ 0, 1, . . . 7. For our
LDG method we take r “ 2 and ν “ 1. The last column in each method reports the corresponding
EOC. The exact value of Xp2q up to 30 digits is

Xp2q “ 5.54179207419798736111715697916.

Table 1. Comparison of absolute errors in LDG with r “ 2 and PECE for different number of interval J
and ν “ 1. Numbers in bold show that the correct digits are obtained by the LDG.

LDG PECE

J Z0p2q |Xp2q ´Z0p2q| EOC Numerical Error EOC

1 5.625000000000 8.3208´2 ´ 3.750000000000 1.7918`0 ´

2 5.543701171875 1.9091´3 5.45 4.687500000000 0.8543`0 1.07
4 5.541845071676 5.2998´5 5.17 5.229675292969 0.3121`0 1.45
8 5.541793647744 1.5735´6 5.07 5.446685392454 9.5107´2 1.71

16 5.541792122228 4.8030´8 5.03 5.515562177333 2.6230´2 1.86
32 5.541792075682 1.4842´9 5.02 5.534910274764 6.8817´3 1.93
64 5.541792074244 4.6126´11 5.01 5.540030137766 1.7619´3 1.97

128 5.541792074199 1.4380´12 5.00 5.541346351966 4.4572´4 1.98

The observed EOC seen for PECE in Table 1 is approximately 2 as was proved in Reference [43].
However, the superconvergence EOC about 5 («2r + 1) is clearly achieved for our results.
This comparison indicates the thoroughness of the proposed method.
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The numerical solutions for various values of ν “ 0.65, 0.75, 0.85, 0.95 using r “ 5 and J “ 1 are
depicted in Figure 2, left plot. In all plots, the exact solutions are indicated by a solid line while the
numerical counterpart are visualized by (coloured) dotted, dashed, and dash-dotted curves. Note that
the computational domain is r0, 1s, which implies that the time step is h “ 1. It can be seen from
Figure 2 that the numerical solution obtained by the present LDG scheme has a good accuracy even
using a relatively large time step and a low degree of the approximating polynomials. Furthermore,
an appropriate choice of these computational parameters can improve the approximation accuracy.
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Figure 2. The approximated LDG with exact solutions (left) and the corresponding absolute errors
(right) for J “ 1, r “ 5, σ “ 1, X0 “ 0.75, and various values of ν “ 0.65, 0.75, 0.85, 0.95.

Finally, for the linear model problem (23), we investigate the standard L1 approximation
method [44] and its variant known as the fast L1 method [45]. To implement these approaches,
we use a uniform mesh with the step size h “ 1{1000 on the interval r0, 1s. In the LDG scheme, we
utilize J “ 1 or h “ 1 and r “ 5 as the results shown in Figure 2. The numerical model results are
presented in Table 2 for ν “ 0.75 and ν “ 0.5. For each ν, the corresponding exact solutions are also
reported in the last column.

Table 2. Comparison of numerical solutions in LDG with r “ 5, h “ 1 and L1/fast L1 schemes with
h “ 10´3 for some t P r0, 1s and ν “ 0.75, 0.5.

ν “ 0.75 ν “ 0.5

t LDG L1 Fast L1 Exact LDG L1 Fast L1 Exact

0.2 1.0536 1.0524 1.0524 1.053507 1.3420 1.3459 1.3345 1.349263
0.4 1.3512 1.3486 1.3486 1.350342 1.8370 1.8176 1.8176 1.822532
0.6 1.6963 1.6945 1.6945 1.697186 2.3489 2.3525 2.3525 2.359660
0.8 2.1128 2.1087 2.1087 2.112499 2.9957 2.9845 2.9845 2.994627
1.0 2.6134 2.6091 2.6091 2.614400 3.7385 3.7427 3.7427 3.756735

5.2. Nonlinear Model

We now consider the FLE (3) on r0, 1s with the initial condition given by X0 “ 1{2 and the
parameter σ “ 1{2. Using ν “ 1, the analytical exact solution of the logistic equation is given by

Xptq “
1

1` e´t{2
.

The simulation results for this example can be found in Figures 3 and 4 for the number of elements
equals to J “ 5 and the polynomial degree r “ 2. In Figure 3, we take ν “ 1 to compare the numerical
results to the exact solution. Furthermore, we also use different approaches to treat the nonlinear term
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in the weak formulation, that is, the D.C. and P.A., which are utilized to compute nDC
j and nPA

i,j in (15).
As one can see that from Figure 3 that a slightly more accurate result is obtained by means of direct
computation rather than product approximation, however, as mentioned it is more time-consuming.
In order to observe the behaviour of numerical solutions more closely, a magnification of these solutions
at t “ 0.4 is done in Figure 3. The exact solution is depicted by a solid line.
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D.C.

Figure 3. Numerical solutions of LDG scheme using P.A. and D.C. approaches with h “ 0.2, σ “ 0.5,
X0 “ 0.5, and ν “ 1.0. The magnification of solutions at time t “ 0.4 is plotted in the box. The exact
solution is displayed by a solid line.

In the next experiment, we plot the absolute errors when utilizing two approaches D.C. and P.A.,
as one observes in Figure 4. The computational parameters are the same as those applied for Figure 3.
In Figure 4, the left plot corresponds to the D.C. and the right plot is when we use P.A. technique.
Note that in all plots we have divided further each interval Ll into ten subinterval uniformly to see the
behaviour of the corresponding curves more precisely.
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Figure 4. Absolute errors of LDG versus time using D.C. (left) and P.A. (right) approaches with h “ 0.2,
σ “ 0.5, X0 “ 0.5, ν “ 1.0, and r “ 2. In the left and right plots, the upwind and downwind points are
highlighted by black pentagon.
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Let us interpret the numerical errors depicted in Figure 4. On the left picture in which the P.A.
technique is used, the smallest errors are obtained at upwind points. Almost the same magnitude
of errors is achieved at downwind points. On the contrary, on the right picture without using the
P.A. this process is reversed. This implies that the minimum values of absolute errors are achieved at
downwind points and there exist considerable difference between them and the errors obtained at
upwind points in each Ll . In the next experiments, we compare the numerical errors achieved at the
final point T “ 1.0, which is clearly a downwind point in the first approach.

In Tables 3 and 4, we summarize the numerical results related to Xp1q and its numerical
approximation Z0p1q are obtained by the LDG procedure (9). Here, we use r “ 1, 2 and a different
choice of the number of grid points J “ 1, 2, 4, 8 and 16 are utilized. In these tables, we further compare
the performance of two different D.C. and P.A. approaches. All calculations are shown with 10 decimal
places of accuracy. In the last column of each table, the estimated order of convergence (EOC) is given.
The exact value is Xp1q “ 0.622459331201855.

Table 3. Comparison of absolute errors in LDG with r “ 1 using P.A. and D.C. for different number of
interval J and ν “ 1. Numbers in bold show that the correct digits are obtained by the LDG.

P.A. D.C.

J Z0p1q |Xp1q ´Z0p1q| EOC Z0p1q |Xp1q ´Z0p1q| EOC

1 0.6234038976 0.9445664060´3 ´ 0.6224742460 0.1491482269´4 ´

2 0.6226973939 0.2380627190´3 1.99 0.6224610781 0.1746857403´5 3.09
4 0.6225290166 0.6968541429´4 1.77 0.6224595421 0.2108842001´6 3.05

Table 4. Comparison of absolute errors in LDG with r “ 2 using P.A. and D.C. for different number of
interval J and ν “ 1. Numbers in bold show that the correct digits are obtained by the LDG.

P.A. D.C.

J Z0p1q |Xp1q ´Z0p1q| EOC Z0p1q |Xp1q ´Z0p1q| EOC

1 0.6233820141 0.9226828763´3 ´ 0.6224593588 0.2759267670´7 ´

2 0.6226943815 0.2350503824´3 1.97 0.6224593321 0.9149985214´9 4.91
4 0.6225286311 0.6929984936´4 1.76 0.6224593312 0.2863453918´10 5.00

It can be seen from Tables 3 and 4 that using r “ 1 and r “ 2 in the D.C. approach, the results are
accurate respectively to 6 and 10 decimal places for only J “ 4 intervals. In other words, achieving
an order of accuracy equal to 3 and 5 is possible if one uses the LDG scheme with r “ 1, 2 degree of
polynomials and for a small number of elements. These EOC are also confirmed the superconvergence
order at downwind points previously reported in Reference [38]. Note that by utilizing the P.A.
technique, the obtained EOC is equal to 2. We emphasize also that using the scheme PECE for the
nonlinear logistic equation the EOC at most 2 will be achieved and of course a larger number of
intervals J is required. In the next plot, we examine the behaviour of the absolute errors in the log scale
for various polynomial degrees as well as with respect to the number of elements J, see Figure 5.
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Figure 5. Absolute-errors versus polynomial degrees r for J “ 1, 2, 4 (left) and against the number of
elements J for r “ 0, 1, 2, 3 (right) evaluated at T “ 1.0 and for ν “ 1.

In the next experiment we show the impact of the fractional derivative on the approximated
obtained solutions. In Figure 6 we present the approximated solutions at J “ 4, r “ 3 with different
values of the fractional derivatives ν “ 0.65, 0.75, 0.85, 0.95 as well as ν “ 1.0. In these plots, we also
compare the performance of two P.A. and D.C. approaches for these values of ν. In each case,
for ν “ 1.0 the exact solution is also shown by a solid line. To justify our computed results, the implicit
product-integration of trapezoidal (IPIT) rule with the step size h “ 1{256 is used [24].

From both depictions in Figure 6, one can observe that the numerical solutions for ν P p0, 1q are
approaching to the solutions correspond to ν “ 1 for which the exact solution is known. Of course,
more reliable results is obtained through the D.C. as previously tested for ν “ 1 in Tables 3 and 4.
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Figure 6. The approximated LDG solutions versus time using P.A. (left) and D.C. (right) approaches
with J “ 4, r “ 3, σ, X0 “ 0.5, and various values of ν “ 0.65, 0.75, 0.85, 0.95, 1.0.

6. Conclusions

In this work, an approximation algorithm based on the LDG scheme is developed for the
fractional-order logistic equation occurring in many biological and chemical phenomena. To be more
precise, our numerical scheme based on discontinuous Galerkin finite element concept with Legendre
basis functions yields to a set of nonlinear equations to be solved in each subinterval. The numerical
stability in the linear case is proved and the order of convergence is also discussed. Beside the direct
computation of the nonlinear term, the technique of product approximation is also utilized and then
their performance are compared for various J, r and ν. We have tested the performance of the LDG
scheme on the linear as well as nonlinear growth and logistic differential equations of fractional order.
Comparing our numerical results with the PECE indicates that the present approaches produce an
accurate approximation for the underlying model problems.
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