
entropy

Article

Active Learning for Node Classification:
An Evaluation

Kaushalya Madhawa * and Tsuyoshi Murata

Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8552, Japan;
murata@c.titech.ac.jp
* Correspondence: kaushalya@net.c.titech.ac.jp

Received: 30 August 2020; Accepted: 12 October 2020; Published: 16 October 2020
����������
�������

Abstract: Current breakthroughs in the field of machine learning are fueled by the deployment of
deep neural network models. Deep neural networks models are notorious for their dependence on
large amounts of labeled data for training them. Active learning is being used as a solution to train
classification models with less labeled instances by selecting only the most informative instances
for labeling. This is especially important when the labeled data are scarce or the labeling process is
expensive. In this paper, we study the application of active learning on attributed graphs. In this
setting, the data instances are represented as nodes of an attributed graph. Graph neural networks
achieve the current state-of-the-art classification performance on attributed graphs. The performance
of graph neural networks relies on the careful tuning of their hyperparameters, usually performed
using a validation set, an additional set of labeled instances. In label scarce problems, it is realistic to
use all labeled instances for training the model. In this setting, we perform a fair comparison of the
existing active learning algorithms proposed for graph neural networks as well as other data types
such as images and text. With empirical results, we demonstrate that state-of-the-art active learning
algorithms designed for other data types do not perform well on graph-structured data. We study
the problem within the framework of the exploration-vs.-exploitation trade-off and propose a new
count-based exploration term. With empirical evidence on multiple benchmark graphs, we highlight
the importance of complementing uncertainty-based active learning models with an exploration term.

Keywords: machine learning; graph neural networks; node classification; active learning; graph
representation learning

1. Introduction

Supervised learning is an important technique used to train machine learning models that are
deployed in multiple real-world applications [1]. In a supervised classification problem, data instances
with ground truth labels are used for training a model that can predict the labels of unseen data
instances. Therefore, the performance of a supervised learning model depends on the quality and
quantity of training data, often requiring a huge labeling effort. Usually, the labeling of data instances
is done by humans. Labeling large amounts of data leads to a huge cost in both time and money.
The labeling cost is significantly high when the labeling task needs to be done by domain experts.
For example, potential tumors in medical images can be labeled only by qualified doctors [2,3].

With ever-increasing amounts of data, active learning (AL) is gaining the attention of researchers as
well as practitioners as a way to reduce the effort spent on labeling data instances. Usually, a fraction of
data instances are selected randomly and their labels are queried from an oracle (e.g., human labelers).
This set of labeled instances are used for training the classifier. This process is known as passive
learning [4] as the training data is selected at the beginning of the training process and it is assumed
to stay fixed. An alternative approach is to iteratively select a small set of training instances, retrieve

Entropy 2020, 22, 1164; doi:10.3390/e22101164 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-6488-6723
https://orcid.org/0000-0002-3818-7830
http://dx.doi.org/10.3390/e22101164
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/10/1164?type=check_update&version=2

Entropy 2020, 22, 1164 2 of 20

their labels, and update the training set. Then, the classification model is retrained using the acquired
labeled instances and this process is repeated until a good level of performance (e.g., accuracy) is
achieved. This process is known as active learning [5]. The objective of AL can be expressed as acquiring
instances that maximize model performance. An acquisition function evaluates the informativeness of
each unlabeled instance and selects the most informative ones. As quantifying the informativeness of
an instance is not straightforward, a multitude of approaches have been proposed in AL literature [5].
For example, selecting the instance the model is most uncertain about is a commonly used acquisition
function [6].

In this paper, we study the problem of applying AL for classifying nodes of an attributed graph
(The term “network” is used as an alternative term in the literature. We use the term graph since the
usage of the term network can be confused with neural networks in this paper.). This task is known as
node classification. Reducing the number of labeled nodes required in node classification can benefit a
variety of practical applications such as in recommender systems [7,8] and text classification [9] by
selecting only the most informative nodes for labeling. Parisot et al. [3] demonstrated the importance
of representing the associations between brain scan images of different subjects as a graph for the task
of predicting if a subject has Alzheimer’s disease. Features extracted from images are represented as
node attributes. This is an example for a node classification problem where labeling is expensive as
labeling a brain scan image is time-consuming and it can only be done by medical experts.

Node classification is an important task in learning from relational data. The objective of
this problem is to predict the labels of unlabeled nodes given a partially labeled graph. Different
approaches have been used for node classification including iterative classification algorithm (ICA) [10],
label propagation [11], and Gaussian random fields (GRF) [12]. Approaching node classification as a
semisupervised problem has contributed to state-of-the-art in classification performance [13–15]. In a
semisupervised learning problem, the learning algorithm can utilize the features of all data instances
including the unlabeled ones. Only the labels of unlabeled instances are not known. Semisupervised
learning is a technique that utilizes unlabeled data to improve the label efficiency. Combining AL with
semisupervised learning can increase the label efficiency further [16]. Graph neural network (GNN)
models have achieved state-of-the-art performance in node classification [17].

Similar to other neural network-based models, GNN models are sensitive to the choice of
hyperparameters. The common hyperparameters of a GNN model are learning rate, number
of hidden layers, and the size of hidden units of each hidden layer. Unlike model parameters,
the hyperparameters are not directly optimized to improve the model performance. Finding the most
suitable set of values for hyperparameters is known as hyperparameter tuning. It is usually performed
based on the performance of the model on a separate held-out labeled set known as the validation set.
It is possible to leave a fraction of labeled data as the validation set when labeled data is abundant.
However, in a label scarce setting, it is realistic to use all the available labeled instances for training the
model. Therefore, we further reduce the size of the labeled set by not using a validation set and using
fixed standard values for hyperparameters.

With the recent popularity of GNNs, several surveys on GNNs have been done [17–19].
These works provide a comprehensive overview of recent developments in graph representation
learning and its applications. Surveys on AL research have been done separately [20,21]. However,
as far as the authors know, a survey and a systematic comparison of existing AL approaches for the
task of node classification have not been done yet. Moreover, only a handful of graph datasets are
used for benchmarking such models. Most of the benchmark graphs are similar as they come from the
same domain. In this paper, we study commonly used AL acquisition functions on the problem of
node classification using a multitude of graph datasets belonging to different domains. As shown in
previous work [22], the performance of AL algorithms is not consistent across different datasets.

Entropy 2020, 22, 1164 3 of 20

Our main contributions are

1. we discuss the importance of performing AL experiments in a more realistic setting where an
additional labeled dataset is not used for hyperparameter tuning;

2. we perform a thorough evaluation of existing AL algorithms on the task of node classification of
attributed graphs in a more realistic setting; and

3. with empirical evidence on an extensive set of graphs with different characteristics, we highlight
that graph properties should be considered in selecting an AL approach.

2. Background

2.1. Node Classification

Node classification plays an important part in learning problems when the data is represented
as a graph. A graph G consists of V nodes and E edges connecting pairs of nodes. Edges of a graph
can be directional as well. However, we limit our study to undirected graphs. Node classification
is widely used in practical applications such as recommender systems [8,23], applied chemistry [24],
and social network analysis [25]. In a node classification problem, an attributed graph G = (V, E) with
N nodes is given as an adjacency matrix A ∈ RN×N and a node attribute matrix X ∈ RN×F. Here, F is
the number of attributes. An element aij ∈ A represents the edge weight between two nodes vi and
vj. If there is no edge connecting vi and vj, aij = 0. If the graph is undirected, the adjacency matrix
A is symmetric. The degree matrix D is a diagonal matrix defined as D = {d1, · · · , dN}, where each
diagonal element di is the row-sum of the adjacency matrix such that di = ∑N

j=1 aij. Each node vi has a
real-valued feature vector xi ∈ RN×F and vi belongs to one of the C class labels.

The objective of this problem is to predict the labels of unlabeled nodes VU given a small set
of labels VL. Earlier attempts for solving this problem relied on classifiers based on the assumption
that nodes connected by an edge are likely to share the same label [26,27]. A major weakness of such
classifiers is that this assumption restricts the modeling capacity and the node attributes are not used
in the learning process. The use of node attributes of an attributed graph significantly improves the
classification performance.

2.2. Graph Neural Networks (GNNs)

A GNN is a neural network architecture specifically designed for learning with attributed
graphs. GNN models [14,28,29] achieve state-of-the-art performance on the node classification problem
providing a significant improvement over previously used embedding algorithms [30,31]. What sets
GNNs apart from previous models is their ability to jointly model both structural information and
node attributes. In principle, all GNN models consist of a message passing scheme that propagates
feature information of a node to its neighbors. Most GNN architectures use a learnable parameter
matrix for projecting features to a different feature space. Usually, two or more of such layers are used
along with a nonlinear function (e.g., ReLU). Let G be an undirected attributed graph represented by
an adjacency matrix A and a feature matrix X. By adding self-loops to the adjacency matrix we get
Ã = A + I and its degree matrix D̃ = D + I. Using this notation, the graph convolutional network
(GCN) model [14] can be expressed as

H̃(k) = D̃−1/2 ÃD̃−1/2H(k−1), (1)

where D̃−1/2 ÃD̃−1/2 is the normalized adjacency matrix. Then, the hidden representation of a layer
H(k) is obtained by multiplying the feature matrix H̃(k) with a parameter matrix θ and applying an
activation function σ as

H(k) = σ(H̃(k)θ(k)). (2)

Entropy 2020, 22, 1164 4 of 20

With normalized adjacency matrix Â = D̃−1/2 ÃD̃−1/2 a two-layer GCN model [14] can be expressed as

YGCN = softmax
(

Â ReLU
(

ÂXθ(0)
)

θ(1)
)

, (3)

where X is the node attribute matrix and θ(0) and θ(1) are the parameter matrices of two neural layers.
The softmax function defined as softmax(x) = exp(x)/ ∑C

c=1 exp(xc) normalizes the output of the
classifier across all classes. Rectified linear unit (ReLU) is a commonly used activation function where
ReLU(x) = max(0, x).

Wu et al. [29] showed that a simplified GNN model named SGC can achieve competitive
performance on most attributed graphs at a significantly lower computational cost. They obtained this
model by removing hidden layers and nonlinear activation functions in the GCN model. This model
can be written as

YSGC = softmax
(

ÂkXθ
)

, (4)

where Ak is the kth power of the adjacency matrix A. The parameter k determines the number of hops
the feature vectors are propagated to. This approach is similar to propagating node attributes over
the k-hop neighborhood and then performing logistic regression. Using a 2-hop neighborhood (k = 2)
often results in good performance.

2.3. Active Learning

In this paper, we consider the pool-based AL setting [5]. In a pool-based AL problem, the labeled
dataset L is much smaller compared to a large pool of unlabeled items U . We can acquire the
label of any unlabeled item by querying an oracle (e.g., a human annotator) at a uniform cost
per item. Suppose we are given a query budget K, such that we are allowed to query labels of a
maximum of K unlabeled items. We use the notation fθ to denote a classification model with trainable
parameters θ. The probability of an instance q belonging to class c predicted by this model is written as
Pθ(ŷq = c|x,DL). We calculate this likelihood as

Pθ(ŷq = c|x,DL) = softmax
(

fθ(xq)
)
[q=c] . (5)

AL research has contributed to a multitude of approaches for training supervised learning models
with less labeled data. We recommend the work in [5] as a detailed review of existing AL research.
The objective of AL approaches is to select the most informative instance for labeling. This task is
performed with the use of an acquisition function, where the acquisition function decides which
unlabeled example should be labeled next. Existing acquisition functions can be grouped into a few
general frameworks based on how they are formulated. In this section, we describe a few commonly
used AL frameworks.

2.3.1. Uncertainty Sampling

Uncertainty sampling [32] is one of the most widely used AL approaches. The active learner
selects the instance for which the classifier predicts a label with the least certainty. The information
entropy of the label predictions is usually used to quantify the uncertainty of the model for a given
instance xq such that

H(yq|x,DL) = −
C

∑
c=1

Pθ(ŷq = c|xq,DL)log
(

Pθ(ŷq = c|xq,DL)
)

. (6)

The instance corresponding to the maximum entropy is selected for querying

q∗ = arg max
q

H(yq|xq,DL). (7)

Entropy 2020, 22, 1164 5 of 20

The entropy computed over model predictions of a neural network does not correctly represent the
model uncertainty for unseen instances. Even though Bayesian models are good at estimating the
model uncertainty, Bayesian inference can be prohibitively time-consuming. Gal and Ghahramani [33]
demonstrated that using dropout [34] at evaluation time is an approximation to a Bayesian neural
network and this can be used to calculate the model uncertainty. Gal et al. [35] used this Bayesian
approach to perform uncertainty sampling for active learning on image data with convolutional neural
networks (CNN). Additionally, Gal et al. [35] performed a comparison of various acquisition functions
proposed for quantifying the model uncertainty of CNN models. It is shown that uncertainty sampling
is prone to select outliers [20].

Bayesian Active Learning by Disagreement (BALD) [6] is another uncertainty-based acquisition
function used with Bayesian models. BALD algorithm selects the instance that maximizes the mutual
information between the predictions and the model posterior. This can be written as

q∗ = arg max
q

H(yq|xq,DL)−Eθ∼p(θ|DL)
[
H(yq|xq, θ,DL)

]
. (8)

The left side term of the Equation (8) is the entropy of the model prediction and the right side
term is the expectation of the model prediction over the posterior of the model parameters. If the
model is certain of its predictions for each draw of parameter values, the right side term becomes
smaller. In this case the active learner selects the examples xq for which the model is most uncertain
of its predictions (high H(yq|xq,DL)), but the model is confident for individual parameter settings
(low Eθ∼p(θ|DL)

[
H(yq|xq, θ,DL)

]
) .

2.3.2. Query by Committee (QBC)

Query by committee (QBC) [36] is a simple method that outperforms uncertainty sampling in
many practical settings. This method maintains a committee of models trained on the same labeled
dataset. Each model in the committee predicts the label of an unlabeled instance. The instance for
which label predictions of the most number of committee members (models) disagrees is selected as
the most informative instance. However, QBC is not a popular choice when AL is used with deep
neural network (DNN) models since training a committee of DNN models is time-consuming.

2.3.3. Expected Error Reduction (EER)

Expected Error Reduction (EER) [37] is an AL approach that directly calculates the expected
generalization error of a model trained on labeled instances including unlabeled instances L ∪ (xq, yq).
Then, the active learner queries the instance which minimizes the future generalization error. However,
this approach involves the retraining of a model for each unlabeled instance xq with each label c ∈ C,
making it one of the most time-consuming AL approaches. Therefore, the EER approach has been
limited to simple classification algorithms such as Gaussian random fields (GRF) for which faster
online retraining is possible.

3. Active Learning for Graph Classification Problems

Compared to application of AL on other types of data such as image and text data, only a limited
number of AL models has been developed for graph data. Previous work on applying AL on graph
data [38–40] is tightly coupled with earlier classification models such as Gaussian random fields,
in which the features of nodes are not being used. Therefore, selecting query nodes uniformly in
random coupled with a recent GNN model can easily outperform such AL models. AL models which
utilize recent GNN architectures [41,42] are limited. Moreover, a comprehensive comparison of AL
algorithms proposed for other domains of data has not been done yet.

In Table 1, we provide an extensive comparison of the literature on AL approaches proposed for
node classification. We compare each work with respect to the following attributes.

Entropy 2020, 22, 1164 6 of 20

• AL approach
• Classifier: Classification model used for predicting the label of a node
• Attributes: Whether the node classifier uses node attributes
• Adaptive: Whether the active learner is updated based on the newly labeled instances
• Labels: Whether the active learner uses node labels in making a decision

In addition to generic approaches proposed for AL, there have been a few works that are
specifically designed for graph-structured data. These algorithms use graph-specific metrics for
selecting nodes for labeling. In addition to the attributes of data instances, graph topology provides
useful information. For example, the degree centrality of a node represents how a particular data
instance is connected with others. Table 1 demonstrates that most of the previous AL approaches
proposed for node classification do not use the node attribute information. Moreover, some
works [40,43] ignore the label information as well.

Table 1. Summary of existing work for active node classification on attributed graphs. The work
by Gadde et al. [43] does not use the labels of the nodes. Therefore, this method does not use a classifier.
We use the following abbreviations in the table. LR—Logistic Regression, GRF—Gaussian Random
Fields, LP—Label Propagation, SC—Spectral Clustering, NA—Not Applicable.

Work AL Approach Classifier Attributes Adaptive Labels Year

Zhu et al. [26] EER GRF No No Yes 2003
Macskassy [44] EER + Heuristics GRF No Yes Yes 2009
Bilgic et al. [39] QBC LR No Yes Yes 2010
Gu and Han [38] EER LP No No Yes 2012
Ji and Han [40] Variation Minimization GRF No No No 2012
Ma et al. [45] Uncertainty GRF No No Yes 2013
Gadde et al. [43] SC NA No No No 2015
Cai et al. [41] Uncertainty + Heuristics GCN Yes Yes Yes 2017

3.1. Active Learning Framework

In this problem, we start with an extremely small set of labeled instances. We are given a query
budget K such that we are allowed to query K number of nodes to retrieve their labels. In each
acquisition step, we select a node and retrieve its label from an oracle (e.g., a human labeler). The GNN
model is retrained using the training set including the newly labeled instance. We repeat this process
K times. The basic framework is shown in Algorithm 1. Here, fθ is any node classification algorithm
with parameters θ and we can use different acquisition functions (e.g., uncertainty sampling or QBC)
as g.

Algorithm 1 Active learning for node classification.

Input: Graph G = (A, X), Query budget K, Initial labels YL
Output:An improved model fθ

for i← 1 to nq = K do

Select the best unlabeled instance q∗ with an acquisition function g
Retrieve its label Yq∗

Update label set YL ← YL ∪Yq∗

Retrain the model θ ← arg minθ l(fθ(G), YL)
end for
Return θ

3.2. The Importance of Exploration

After each acquisition step, the classifier is trained on a limited number of labeled instances,
which in turn are selected by the active learner. Therefore, the selected labeled instances tend to bias

Entropy 2020, 22, 1164 7 of 20

towards instances evaluated to be “informative” by the active learner. Therefore, the distribution of
labeled instances is often different from the true underlying distribution. The active learner cannot
observe the consequences of selecting an instance which has lower “informativeness”. This leads the
active learner to converge to policies that are not able to generalize for unlabeled data. This problem is
amplified by the lack of hyperparameter tuning. A simple approach to overcome this limitation is to
query a few instances in addition to the ones maximizing our selection criteria. This step is known as
“exploration” while selecting the instance maximizing the criteria is “exploitation”. For example, if our
criterion is model entropy, the exploration step involves acquiring labels of a few instances which
do not have the maximum entropy. Intuitively, an active learner should perform more exploration
initially, so it can have a better view of the true distribution of data.

This problem is known as the exploration vs. exploitation trade-off in sequential decision-making
problems. Solving this trade-off requires the learner to acquire potentially suboptimal instances
(i.e., exploration) in addition to the optimal ones. This problem is studied under the framework
of multi-armed bandits (MAB) problems [46]. In a MAB problem, a set of actions are given and
selecting an action results in observing a reward drawn from a distribution that is unknown to
the learner. The problem is to select a sequence of actions that maximize the cumulative reward.
A multitude of approaches is used in solving online learning problems modeled as MAB problems.
ε-greedy, upper confidence bounds (UCB) [47], and Thompson sampling [48] are a few of the frequently
used techniques.

We compare the performance of each active learner using two different exploration techniques:
ε-greedy and count-based exploration.

3.2.1. ε-Greedy

ε-greedy is used as the simplest method of introducing exploration into an MAB algorithm.
In the case of AL, with probability ε the active learner randomly selects an unlabeled instance for
querying its label. The most informative instance is selected by an acquisition function with probability
(1− ε). A key problem with this approach is that, as each unlabeled instance is selected with uniform
probability, some of the labeled instances can be wasteful. This phenomena is known as undirected
exploration [49].

3.2.2. Count-Based Exploration

In MAB problems, count-based exploration addresses the problem of undirected exploration by
assigning a larger probability to actions that have been selected fewer times compared to the remaining
actions. Based on the principle of optimism in the face of uncertainty, a count-based exploration
algorithm computes an upper confidence bound (UCB) [47] and selects the action corresponding to
the maximum UCB. We adopt the notion of count-based exploration as the number of labeled nodes
in the neighborhood of an unlabeled node. We define the exploration term of an instance i as the
logarithm of the number of unlabeled neighboring nodes of i. This term encourages the learner to
sample nodes from neighborhoods with less number of labeled nodes. As this term and the informative
metric used in the acquisition function (e.g., entropy) are on different scales, we normalize both of
these quantities into [0, 1] range and get φexp(i) and φinf(i), respectively. We linearly combine these
normalized quantities to get the criterion for acquiring nodes as

φ(i) = (1− γt) · φinf(i) + γt · φexp(i), (9)

where the exploration coefficient γt is a hyperparameter that balances exploration and exploitation.
Setting γt to 0 corresponds to pure exploration disregarding the feedback of the classifier. On the
other hand, γt = 1 is equivalent to pure exploitation selecting a node based only on the uncertainty
sampling (e.g., entropy).

Entropy 2020, 22, 1164 8 of 20

4. Experiments

4.1. Data

We evaluate the performance of all algorithms on 11 real-world datasets belonging to different
domains. as shown in Table 2. In Table 2, we list the datasets used in experiments with several graph
properties. These datasets belong to different domains such as citation networks, product networks,
co-author networks, biological networks, and social networks.

Table 2. Dataset statistics. Labeling rate as a percentage of total nodes is shown within brackets.
Avg. deg.: Average degree, Avg. CC: Average clustering coefficient, rD: Degree assortativity, rL:
Label assortativity.

Dataset Nodes Classes Avg. Deg. Avg. CC rD rL Features Labels (%)

CiteSeer 2110 6 2.84 0.17 0.007 0.67 3703 12 (0.56)
PubMed 19,717 3 6.34 0.06 −0.044 0.69 500 6 (0.03)
n CORA 2485 7 4.00 0.24 −0.071 0.76 1433 14 (0.56)
Amazon Comp. 13,752 10 36.74 0.35 −0.057 0.68 767 20 (0.14)
Co-author Phy 34,493 5 14.38 0.38 0.201 0.87 8415 10 (0.03)
Co-author CS 18,333 15 8.93 0.34 0.113 0.79 6805 30 (0.16)
Disease 1044 2 2.00 0.0 −0.544 0.68 1000 4 (0.38)
Wiki-CS 11,701 10 36.94 0.47 −0.065 0.58 300 20 (0.17)
PPI-Brain 3480 121 31.94 0.17 −0.064 0.09 50 35 (1.0)
PPI-Blood 3312 121 32.91 0.18 −0.061 0.09 50 33 (1.0)
PPI-Kidney 3284 121 31.70 0.18 −0.067 0.09 50 33 (1.0)
Github 37,700 2 15.33 0.17 −0.075 0.38 4005 4 (0.01)

CiteSeer, PubMed, and CORA [50] are commonly used citation graphs. Each of these undirected
graphs is made of documents as nodes and citations as edges between them. If one document cites
another, they are linked by an edge. The bag-of-words features of the text content of a document
correspond to the attributes of a node.

Co-author CS and Co-author Physics are co-authorship graphs constructed from Microsoft
Academic Graph [51]. Authors are represented as nodes and two authors are linked by an edge
if they have co-authored a paper. Node features correspond to the keywords of the papers authored by
a particular author. An author’s most active field of study is used as the node label.

Amazon Computers is a subgraph of the Amazon co-purchase graph [52]. Products are
represented as nodes, and two nodes are connected by an edge of those two products that are frequently
bought together. Node attributes correspond to product reviews encoded as bag-of-words features.
The product category is used as the node label.

The disease dataset [53] simulates the SIR disease propagation model [54] on a graph. The label
of a node indicates whether a node is infected or not and the features indicate the susceptibility to
the disease.

The Wiki-CS dataset [55] is a graph constructed from Wikipedia articles corresponding to
computer science. A Wikipedia article is a node of this graph and two nodes are connected by
an edge if one article has a hyperlink to the other. GloVe word embeddings [56] obtained from the text
content of an article is used as the feature vector of the node corresponding to that article.

Each protein–protein interaction (PPI) graph represents physical contacts between proteins in
a human tissue (brain, blood, and kidney) [57,58]. Unlike other datasets, in PPI graphs a protein
(node) can have multiple functions as its label, making this a multi-label classification problem.
Learning the protein function (cellular function from gene ontology) involves learning about node
roles. Several properties of a protein such as positional gene sets, motif gene sets and immunological
signatures are used as node attributes in a PPI graph.

Github is a social network dataset constructed from developer profiles on Github who have at least
10 public repositories [59]. Details of a developer such as location, employee, and starred repositories

Entropy 2020, 22, 1164 9 of 20

are represented as node attributes. Two nodes are linked by an edge if those two developers mutually
follow each other on Github. The label of a node indicates whether a developer is primarily working
on machine learning or web development projects.

From each dataset, we randomly select two nodes belonging to each label as the initial labeled set
VL. We use 5% of the rest of the unlabeled nodes as the test set. The set of remaining unlabeled nodes
VU qualify to be queried. The size of the initial labeled set and its size as a fraction of the total nodes
(labeling rate) are shown in Table 2.

Graph Properties

In some real-world graphs, such as social and communication networks, nodes tend to cluster
together creating tightly knit groups of nodes. This phenomenon is known as clustering and the
clustering coefficient [60] quantifies the amount of clustering present in a graph. The local clustering
coefficient of a node i is calculated as

Ci =
number of triangles connected to node i

number of triples centered around node i
. (10)

Average clustering coefficient is calculated as the average of local clustering coefficients of all nodes of
a graph.

In real-world graphs, nodes tend to connect with other nodes with similar properties. In network
science literature this phenomenon is known as “assortative mixing” [61]. Assortativity coefficient
quantifies the amount of assortative mixing present in a graph. Assortativity coefficient can be
calculated with respect to any node attribute. We calculate the label assortativity (rL) with

rL =
∑i eii −∑i aibi

1−∑i aibi
, (11)

where eij denotes the fraction of edges connecting a node with label i with a node with label j.
For multi-label graphs, we calculate label assortativity for each label separately and take the average.
A higher label associativity indicates that a node tends to connect with another node with the same
label. As shown in Table 2, citation and co-author graphs exhibit high assortativity. It is easier to
predict labels in a graph exhibiting high assortativity since neighbors of a node tend to have the same
label as the node. Many node classification models are based on this assumption. However, the PPI
graphs show low assortativity indicating that nodes with the same label are not necessarily in the same
neighborhood. This is due to the fact that the function of a protein (i.e., node) depends on the role of a
node in that graph rather than its neighboring proteins (i.e., nodes). Using degree centrality as a node
attribute degree assortativity rD of each node can be computed in a similar manner. Average degree
assortativity of a graph indicates whether a high degree node prefers to connect with other high
degree nodes.

4.2. Experimental Setup

4.2.1. Node Classification Model

Recent studies demonstrated that GNN-based classifiers significantly outperform previous
classifier algorithms such as GRFs. Therefore, we restrict our study of AL to GNN-based learning
models. In our experiments, we consider two types of graph neural network architectures: GCN [14]
and SGC [29]. SGC is a simplified GNN architecture that does not include a hidden layer and
nonlinear activation functions. As the goal of AL is to reduce the number of labeled instances used for
training, we do not use a separate validation set for fine-tuning the hyperparameters of a GNN model.
In addition, it is shown that tuning hyperparameters while training a model with AL can lead to label
inefficiency [62].

Entropy 2020, 22, 1164 10 of 20

For all datasets, we use the default hyperparameters used in GNN literature (e.g., learning
rate = 0.01). We use the following algorithms in our experiments.

• Random: Select an unlabeled node randomly,
• PageRank: Select the unlabeled node with the largest PageRank centrality,
• Degree: Select the unlabeled node with the largest degree centrality,
• Clustering coefficient: Select the unlabeled node with the largest clustering coefficient,
• Entropy: Calculate the entropy of predictions of the current model over unlabeled nodes and

select the node corresponding to the largest entropy.,
• BALD [6,35]: Select the node which has the the largest mutual information value between

predictions and model posterior, and
• AGE [41]: Select the node which maximizes a linear combination of three metrics: PageRank

centrality, model entropy and information density.

Here, PageRank, degree, and clustering coefficient-based sampling do not use node attributes or
the feedback from the classification model. On the other hand, entropy BALD are uncertainty-based
acquisition functions that calculate an uncertainty metric using the performance of the classifier trained
using the current training set. We acquire the label of an unlabeled node and retrain the GNN model
by performing 50 steps of adam optimizer [63]. We perform 40 acquisition steps (query budget = 40)
and repeat this process on 30 different randomly initialized training and test splits for each dataset.
Test dataset is often unbalanced. Therefore, accuracy is not suitable to be used as the performance
metric. We report the average F1 score (macro-averaged) over the test set in each experiment. F1-score is
the harmonic mean of the precision and recall metrics. Macro-F1 score is calculated by first calculating
F1-scores for each class separately and then taking the average of class-wise F1-scores.

4.2.2. Packages and Hardware

We use the NetworkX library [64] for representing and processing graphs. We use the Pytorch [65]
implementations of GCN [14] and SGC [29] node classification models. All experiments are run on
a computer running Ubuntu 18.04 OS on an Intel(R) Core i9-7900X CPU @ 3.30GHz processor with
64GB memory and a NVIDIA GTX 1080-Ti GPU.

5. Results and Discussion

5.1. Performance Comparison of AL Approaches

In this section, we compare the performance of acquisition functions which use only a single type
of approach. Figures 1 and 2 show how the performance of the node classification model varies with
the number of acquisitions.

As shown in previous works, AGE [41], the current state-of-the-art AL algorithm, performs well
on citation networks (CiteSeer, CORA, and PubMed). However, the performance of this algorithm
is suboptimal on other datasets such as Wiki-CS. The citation datasets possess similar characteristics.
For example, average degree centrality of them is in the same range as shown in Table 2. Therefore,
selecting AL algorithms based on their performance on a handful of graphs from the same domain
may result in suboptimal algorithms.

Entropy 2020, 22, 1164 11 of 20

0 5 10 15 20 25 30 35 40
Acquired nodes

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
M

ac
ro

-F
1

Random
BALD
Entropy
PageRank
Degree
Clustering

(a)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.55

0.60

0.65

0.70

0.75

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(b)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.50

0.55

0.60

0.65

0.70

0.75

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(c)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(d)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.70

0.72

0.74

0.76

0.78

0.80

0.82

M
ac

ro
-F

1
Random
BALD
Entropy
PageRank
Degree
Clustering

(e)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(f)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.2

0.3

0.4

0.5

0.6

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(g)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.40

0.45

0.50

0.55

0.60

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(h)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.20

0.25

0.30

0.35

0.40

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(i)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.20

0.25

0.30

0.35

0.40

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(j)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.15

0.20

0.25

0.30

0.35

0.40

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(k)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.50

0.55

0.60

0.65

0.70

0.75

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(l)

Figure 1. Macro-F1 score (test) of active learning algorithms with number of acquisitions. A two-layer
graph convolutional network (GCN) is used as the graph neural network (GNN) model. (a) CiteSeer.
(b) PubMed. (c) CORA. (d) Amazon Computers. (e) Co-author CS. (f) Co-author Physics. (g) Disease.
(h) Wiki-CS. (i) PPI-Brain. (j) PPI-Blood. (k) PPI-Kidney. (l) Github.

Entropy 2020, 22, 1164 12 of 20

0 5 10 15 20 25 30 35 40
Acquired nodes

0.35

0.40

0.45

0.50

0.55

0.60
M

ac
ro

-F
1

Random
BALD
Entropy
PageRank
Degree
Clustering

(a)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.50

0.55

0.60

0.65

0.70

0.75

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(b)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.55

0.60

0.65

0.70

0.75

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(c)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.50

0.55

0.60

0.65

0.70

0.75

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(d)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.70

0.72

0.74

0.76

0.78

0.80

0.82

M
ac

ro
-F

1
Random
BALD
Entropy
PageRank
Degree
Clustering

(e)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(f)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.2

0.3

0.4

0.5

0.6

0.7

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(g)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(h)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(i)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(j)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.37

0.38

0.39

0.40

0.41

0.42

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(k)

0 5 10 15 20 25 30 35 40
Acquired nodes

0.55

0.60

0.65

0.70

0.75

0.80

M
ac

ro
-F

1

Random
BALD
Entropy
PageRank
Degree
Clustering

(l)

Figure 2. Macro-F1 score (test) of active learning algorithms with number of acquisitions. SGC model is
used as the GNN model. (a) CiteSeer. (b) PubMed. (c) CORA. (d) Amazon Computers. (e) Co-author CS.
(f) Co-author Physics. (g) Disease. (h) Wiki-CS. (i) PPI-Brain. (j) PPI-Blood. (k) PPI-Kidney. (l) Github.

5.2. Comparison of Exploration Strategies

In this experiment, we run uncertainty sampling algorithms: BALD and entropy with ε-greedy and
count-based exploration terms. In the count-based exploration policy, we set the exploration coefficient
β to 0.5. In Tables 3 and 4, we present the performance of GCN and SGC classifiers when 40 nodes are
acquired using each of the acquisition functions. Entropy-Count and BALD-Count correspond to max
entropy sampling and BALD policy combined with count-based exploration term. The values in bold
indicate that the performance of an algorithm is significantly better (at 5% significance level) than the rest
of the algorithms on that dataset. We calculate the statistical significance between the performance of two
algorithms using paired t-test. If no single algorithm is significantly better than the rest, all statistically
significant values are marked in bold. We summarize the results in Table 5 and show the best performing
AL algorithm along with the classifier. Uncertainty-based acquisition functions, when combined with
the count-based exploration term (Entropy-Count and BALD-Count), achieve the best performance on
average on four datasets. It highlights that encouraging the active learner to select nodes in less explored
neighborhoods is effective than selecting a node in random as the exploration step (ε-greedy).

Entropy 2020, 22, 1164 13 of 20

Table 3. Average F1-score of different acquisition functions. Forty query instances are selected (average of 30 runs). Standard deviation is shown underneath the
macro-averaged F1-score. Classifier: GCN. Rand—Random, Ent—Entropy, PR—PageRank, Deg—Degree, CC: Clustering coefficient.

Dataset Rand Ent BALD PR Deg CC Ent ε-Greedy BALD ε-Greedy Ent Count BALD Count AGE

CiteSeer 58.4 ± 6.9 60.1 ± 8.1 58.6 ± 5.1 54.4 ± 3.4 53.8 ± 4.3 53.6 ± 7.0 59.4 ± 4.2 52.0 ± 5.7 60.3 ± 4.2 59.1 ± 4.7 61.5 ± 3.7

CORA 74.1 ± 5.1 73.9 ± 6.6 71.4 ± 7.4 71.8 ± 5.1 70.2 ± 4.9 74.5 ± 5.5 75.1 ± 4.1 70.4 ± 6.4 73.3 ± 5.4 72.9 ± 3.6 74.5 ± 7.7

PubMed 76.4 ± 4.0 74.1 ± 3.0 75.7 ± 3.8 75.3 ± 3.3 71.8 ± 3.7 76.8 ± 1.4 74.2 ± 4.2 74.1 ± 4.1 77.3 ± 1.7 75.7 ± 4.4 74.5 ± 2.2

Coauthor CS 82.4 ± 2.3 78.9 ± 3.4 80.6 ± 3.6 79.7 ± 3.6 80.7 ± 2.5 81.9 ± 3.7 78.2 ± 4.4 81.2 ± 2.3 80.3 ± 4.9 82.1 ± 2.5 83.9 ± 2.2

Coauthor Phy 85.2 ± 3.3 84.1 ± 3.2 83.8 ± 2.8 85.2 ± 1.8 77.1 ± 2.1 86.4 ± 2.9 85.5 ± 2.7 83.4 ± 3.5 86.9 ± 2.9 83.7 ± 2.8 87.9 ± 2.6

Amazon Comp. 76.1 ± 5.4 74.2 ± 3.4 66.8 ± 7.6 65.2 ± 8.1 60.2 ± 15.6 76.7 ± 4.1 73.1 ± 6.0 70.8 ± 8.1 75.4 ± 3.8 73.3 ± 7.5 74.2 ± 5.9

Disease 57.1 ± 7.1 67.1 ± 8.7 67.2 ± 8.7 59.4 ± 8.8 53.2 ± 9.1 20.8 ± 5.1 61.0 ± 10.7 66.5 ± 9.4 65.8 ± 9.2 67.2 ± 7.2 63.3 ± 8.0

Wiki-CS 57.1 ± 7.1 55.0 ± 5.1 62.4 ± 2.5 59.4 ± 3.1 58.2 ± 2.2 60.5 ± 3.7 61.0 ± 10.7 63.3 ± 2.9 57.0 ± 3.3 62.1 ± 3.7 57.7 ± 4.9

PPI Brain 25.6 ± 6.5 21.4 ± 6.3 31.6 ± 6.1 41.1 ± 2.1 41.0 ± 2.4 19.3 ± 6.6 22.3 ± 6.0 30.0 ± 8.9 22.2 ± 5.0 35.3 ± 6.1 22.3 ± 6.2

PPI Blood 27.7 ± 3.2 22.9 ± 5.7 31.0 ± 6.5 42.4 ± 1.6 41.4 ± 1.9 21.0 ± 5.8 26.5 ± 4.9 36.9 ± 4.6 23.6 ± 5.4 37.4 ± 4.3 23.3 ± 5.6

PPI Kidney 25.7 ± 2.9 18.7 ± 6.8 27.9 ± 9.6 42.1 ± 1.6 41.1 ± 2.2 16.3 ± 5.9 18.8 ± 7.0 33.5 ± 3.3 29.2 ± 1.7 37.6 ± 3.4 19.4 ± 4.8

Github 74.0 ± 8.0 77.1 ± 1.9 74.5 ± 2.4 71.1 ± 2.9 62.3 ± 4.8 75.4 ± 1.8 77.3 ± 1.6 74.4 ± 2.2 76.4 ± 2.2 73.8 ± 2.3 73.9 ± 2.1

Entropy 2020, 22, 1164 14 of 20

Table 4. Average F1-score of different acquisition functions. Forty query instances are selected (average of 30 runs). Standard deviation is shown underneath the
macro-averaged F1-score. Classifier: SGC. Rand - Random, Ent—Entropy, PR—PageRank, Deg—Degree, CC: Clustering coefficient.

Dataset Rand Ent BALD PR Deg CC Ent ε-Greedy BALD ε-Greedy Ent Count BALD Count AGE

CiteSeer 55.5 ± 4.6 59.9 ± 4.7 58.0 ± 4.0 55.0 ± 3.4 53.4 ± 5.3 53.4 ± 7.4 56.3 ± 5.6 56.0 ± 4.6 60.0 ± 6.3 56.6 ± 4.8 60.4 ± 5.6

CORA 76.1 ± 3.7 75.4 ± 4.0 71.4 ± 2.3 71.4 ± 5.1 69.3 ± 3.4 74.9 ± 6.1 73.9 ± 6.1 73.8 ± 4.4 76.7 ± 6.1 74.2 ± 3.1 74.7 ± 6.4

PubMed 75.8 ± 3.6 74.8 ± 2.3 77.5 ± 2.6 76.7 ± 2.5 72.3 ± 6.4 60.7 ± 7.9 75.3 ± 3.7 77.2 ± 2.4 76.6 ± 2.8 78.0 ± 1.7 77.7 ± 3.4

Coauthor CS 81.7 ± 2.9 76.8 ± 3.4 81.9 ± 3.9 81.3 ± 4.1 81.4 ± 4.0 81.9 ± 3.7 76.9 ± 4.1 82.6 ± 3.7 77.2 ± 4.7 82.7 ± 4.8 83.2 ± 2.9

Coauthor Phy 86.5 ± 3.3 84.1 ± 2.4 90.2 ± 0.9 86.7 ± 2.9 79.3 ± 3.7 88.1 ± 2.7 84.1 ± 3.1 89.6 ± 2.6 87.5 ± 3.6 90.4 ± 1.4 88.9 ± 2.1

Amazon Comp. 77.3 ± 4.1 73.4 ± 4.2 74.2 ± 5.3 71.9 ± 3.5 73.5 ± 6.1 78.3 ± 3.6 75.8 ± 5.4 74.5 ± 6.7 74.3 ± 3.2 74.9 ± 5.3 75.6 ± 3.8

Disease 55.4 ± 8.7 68.2 ± 6.1 67.2 ± 7.1 59.7 9.5 58.5 ± 8.9 17.8 ± 4.5 63.4 ± 7.5 67.4 ± 8.5 67.1 ± 9.7 66.2 ± 8.4 66.4 ± 11.1

Wiki-CS 59.8 ± 6.3 55.5 ± 3.6 64.7 ± 4.0 62.9 ± 3.6 61.3 ± 3.1 55.4 ± 6.6 57.5 ± 5.3 63.8 ± 2.4 56.5 ± 5.8 65.6 ± 3.1 50.4 ± 5.7

PPI Brain 36.9 ± 2.2 38.4 ± 2.4 40.0 ± 1.4 41.0 ± 1.4 41.8 ± 1.2 34.6 ± 3.6 38.2 ± 2.0 40.3 ± 1.4 40.6 ± 1.0 41.6 ± 1.2 33.2 ± 2.7

PPI Blood 34.6 ± 2.2 37.2 ± 3.7 39.5 ± 2.6 42.3 ± 2.3 41.7 ± 2.1 35.7 ± 1.7 37.0 ± 3.6 39.0 ± 2.9 39.8 ± 2.0 40.8 ± 2.1 39.4 ± 2.2

PPI Kidney 39.1 ± 1.8 38.8 ± 2.6 39.9 ± 1.4 42.3 ± 1.8 41.7 ± 2.0 37.0 ± 1.4 40.0 ± 1.7 39.9 ± 1.4 40.4 ± 2.1 41.0 ± 1.8 41.0 ± 1.7

Github 76.4 ± 2.5 77.4 ± 2.1 71.4 ± 2.5 69.7 ± 2.8 58.0 ± 5.6 76.8 ± 1.4 77.4 ± 2.2 72.8 ± 1.5 75.8 ± 2.7 72.9 ± 1.5 73.3 ± 4.0

Table 5. The best performing model according to Tables 3 and 4.

Data Without Exploration With Exploration

Macro-F1 Model Classifier Macro-F1 Model Classifier

CiteSeer 61.5 AGE GCN 61.5 AGE GCN
CORA 76.1 Random SGC 76.7 Entropy Count SGC
PubMed 77.7 AGE SGC 78.0 BALD Count SGC
Coauthor CS 83.9 AGE GCN 83.9 AGE GCN
Coauthor Phy 90.2 BALD SGC 90.4 BALD Count SGC
Amazon Comp. 78.3 Clustering SGC 78.3 Clustering SGC
Disease 68.2 Entropy SGC 68.2 Entropy SGC
Wiki-CS 64.7 BALD SGC 65.6 BALD Count SGC
PPI Brain 41.8 Degree SGC 41.8 Degree SGC
PPI Blood 42.4 PageRank GCN 42.4 PageRank GCN
PPI Kidney 42.3 PageRank SGC 42.3 PageRank SGC
Github 77.4 Entropy SGC 77.4 Entropy SGC

Entropy 2020, 22, 1164 15 of 20

5.3. Running Time

Table 6 shows the execution time each algorithm spends to acquire a set of 40 unlabeled instances
on average. AGE, the current state-of-the-art, is several magnitudes slower compared to the rest of
the algorithms. The clustering step performed to compute the information gain is responsible for the
additional time. The time complexity of this step grows O(n2) with the number of vertices n of a graph
making AGE not suitable for large attributed graphs. For example, the AGE algorithm is 80 times
slower than random sampling for the Amazon Computers graph but achieves inferior performance.
Additionally, the SGC model can be trained in a relatively less time compared to the GCN model and
this difference is significant for larger graphs such as Wiki-CS and co-authorship graphs. However,
in AL problems, the time spent for selecting an unlabeled example is a minor concern since the labeling
time is more valued.

Table 6. Running time (seconds): average execution time to acquire 40 unlabeled instances. We run all
experiments on a single NVIDIA GTX 1080-Ti GPU. PR: PageRank, CC: Clustering coefficient.

Clf. Dataset Rand Ent PR Deg CC AGE BALD ε-Greedy Count

Ent BALD Ent BALD

GCN

CiteSeer 4.2 4.8 4.8 4.7 4.9 4.8 4.8 4.8 4.8 4.8 4.8
PubMed 6.9 7.6 25.4 7.3 32 1125.9 7.9 7.5 7.8 7.6 7.9
CORA 4.2 4.5 4.6 4.4 14.5 26.8 4.5 4.5 4.5 4.5 4.5
Coauthor CS 20.4 22.3 40.8 21.9 39.3 2154 .2 23.7 22.3 23.6 22.4 23.6
Coauthor Phy 46.1 50.5 116.4 48.5 98.6 2436.9 50.8 50.4 50.7 50.5 50.8
Amazon Comp. 17.5 19.1 31.8 18.8 33.8 1688.9 19.2 19.1 19.1 19.1 19.2
Disease 4.1 4.3 4.2 4.1 4.2 8.7 4.3 4.3 4.3 4.3 4.3
Wiki-CS 15.3 16.6 30.0 28.3 33.0 410.8 16.7 16.6 16.6 16.7 16.7
PPI Brain 8.3 8.9 11.5 10.2 10.9 133.3 9.0 8.4 8.6 8.4 8.7
PPI Blood 7.9 8.2 10.4 9.4 9.9 130.2 8.4 8.2 8.4 8.3 8.5
PPI Kidney 7.3 7.8 9.8 8.0 8.8 129.4 7.7 7.7 7.7 7.8 7.9
Github 57.1 69.2 211.8 102.9 121.4 6810.0 72.1 69.6 71.1 70.5 73.2

SGC

CiteSeer 1.7 1.9 5.6 1.8 2.7 18.3 1.9 1.9 1.9 1.9 1.9
PubMed 2.0 2.2 3.9 2.2 21.1 1229.2 2.2 2.2 2.2 2.2 2.2
CORA 3.8 4.8 5.8 4.7 2.3 23.7 4.9 4.8 4.8 4.8 4.9
Coauthor CS 16.8 19.8 33.2 19.3 37.9 2098.2 19.8 19.8 19.8 19.8 19.8
Coauthor Phy 35.6 40.7 90.4 39.8 88.7 2232.3 40.8 40.4 40.5 40.7 40.7
Amazon Comp. 12.2 14.7 17.2 16.9 17.1 1134.6 14.8 14.6 14.7 14.8 14.8
Disease 1.4 1.4 1.5 1.4 1.4 6.0 1.4 1.4 1.4 1.4 1.4
Wiki-CS 1.9 2.0 13.6 8.2 18.3 400.5 2.1 2.0 2.0 2.1 2.1
PPI Brain 4.4 4.5 5.1 4.8 4.9 142.2 4.6 4.4 4.6 4.5 4.7
PPI Blood 4.1 4.3 4.9 4.7 4.8 139.4 4.4 4.3 4.3 4.4 4.5
PPI Kidney 3.9 4.1 4.4 4.3 4.5 135.6 4.1 4.1 4.1 4.1 4.2
Github 22.3 24.5 166 78.3 106.2 4905.1 25.8 24.4 25.4 24.6 26.0

5.4. Discussion

As shown in Table 5, the performance of acquisition functions is diverse such that no single
approach can be considered the best for all datasets. Sampling nodes based on graph properties
leads to good performance depending on the graph structure. We make several key observations on
how average clustering coefficient and label assortativity of a graph impact the performance of AL
acquisition functions as following.

Graphs with high level of clustering. Amazon computers, co-authorship graphs, and Wiki-CS
graphs have larger average clustering coefficients. For these datasets, sampling the node with the
largest clustering coefficient outperforms sampling with other node centrality measures.

Graphs with medium level of clustering. CiteSeer, CORA, Github, and PPI graphs possess a
medium level of average clustering in the range of 0.1 to 0.2. On CORA, CiteSeer, and Github datasets
uncertainty-based acquisition functions and their variants obtain the best performance. However,
the performance of PPI graphs is quite different since their label assortativity values are significantly
low compared to all other datasets.

Entropy 2020, 22, 1164 16 of 20

Graphs with low level of clustering. Pubmed and the disease graphs have the lowest average
clustering coefficients. In most cases, the use of clustering coefficient to select the nodes for querying
lead to suboptimal results. However, sampling with clustering coefficient on PubMed dataset obtained
good performance when the GCN model was used as the node classifier.

Graphs with low label assortativity. Out of all graph datasets, PPI graphs exhibit the lowest label
assortativity. As most of the graphs used in node classification literature exhibit high label assortativity,
commonly used node classification models are build on the assumption that neighbors of a node may
have the same label. Therefore, such models are not confident in predicting the labels of unlabeled
nodes, specially when the training data is scarce. On PPI graphs, we observe that performing AL by
sampling the query nodes based on PageRank and degree centrality contributes to the best performing
models. However, one limitation in calculating the label assortativity is that node labels need to be
known beforehand. When we are given an unlabeled graph, one way to overcome this problem is we
can use similar labeled graphs belonging to the same domain to approximate the label assortativity.

6. Conclusions

In this paper, we studied the application of the active learning framework as a method to make
node classification on attributed graphs label efficient. We have performed an empirical evaluation
of state-of-the-art active learning algorithms on the node classification task using twelve real-world
attributed graphs belonging to different domains. In our experiments, we initiate the active learner
with an extremely small number of labeled instances. Additionally, we assumed a more realistic
setting in which the learner does not use a separate validation set. Our results highlight that no
single acquisition function can be performs consistently well on all datasets and the performance
of acquisition functions depend on graph properties. We further show that selecting an acquisition
function based on the performance on a handful of attributed graphs with similar characteristics result
in suboptimal algorithms. Notably, our results point that SGC, a simpler variant of GNN performs
better and efficiently on most datasets compared to more complex GNN models.

A key takeaway of this research is that AL is beneficial in reducing the labeling cost of
semisupervised node classification models and the choice of an AL acquisition function depends
on the properties of the graph data at hand. Using an extensive set of graph datasets with a wide
variety of characteristics, we showed that there is no single algorithm that works across different
graph datasets possessing different graph properties. We further made the observation that using
node PageRank and degree centrality of nodes achieve the best performance on graphs with low
label assortativity.

Moreover, the current state-of-the-art active learning algorithm (AGE) [41] uses a combination
of multiple acquisition functions and it is several magnitudes slower than all other acquisition
functions that were used in this paper. Therefore, it is not suitable for large real-world attributed
graphs. Lack of hyperparameter tuning and a minuscule number of training instances lead to
classifiers that cannot generalize well for unlabeled data. We expressed this problem as balancing the
exploration-vs.-exploitation trade-off and propose introducing an exploration term into acquisition
functions. We evaluated the performance of two exploration terms using multiple real-world graph
datasets. The introduction of this exploration term into existing uncertainty-based acquisition
functions make their performance competitive with the current state-of-the-art AL algorithm for
node classification on some datasets. As future work, we would like to explore how AL can be utilized
for other graph-related learning tasks.

Author Contributions: Conceptualization, K.M.; methodology, K.M.; software, K.M.; validation, K.M.; formal
analysis, K.M.; investigation, K.M.; writing—original draft preparation, K.M.; writing—review and editing, T.M.;
visualization, K.M.; supervision, T.M.; funding acquisition, T.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by JSPS Grant-in-Aid for Scientific Research(B) (Grant Number 17H01785) and
JST CREST (Grant Number JPMJCR1687).

Entropy 2020, 22, 1164 17 of 20

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript.

DNN Deep neural network
GCN Graph convolutional network
GNN Graph neural network
SGC Simplified graph convolution
AL Active learning
CNN Convolutional neural network
BALD Bayesian Active Learning by Disagreement
QBC Query by committee
EER Expected error reduction
GRF Gaussian random fields
AGE Active graph embedding
PR PageRank
UCB Upper confidence bound

References

1. Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; MIT Press: Cambridge, MA,
USA, 2018.

2. Hoi, S.C.; Jin, R.; Zhu, J.; Lyu, M.R. Batch mode active learning and its application to medical image
classification. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA,
USA, 25–29 June 2006; pp. 417–424.

3. Parisot, S.; Ktena, S.I.; Ferrante, E.; Lee, M.; Guerrero, R.; Glocker, B.; Rueckert, D. Disease prediction
using graph convolutional networks: Application to Autism Spectrum Disorder and Alzheimer’s disease.
Med. Image Anal. 2018, 48, 117–130. [CrossRef]

4. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms;
Cambridge University Press: Cambridge, UK, 2014.

5. Settles, B. Active Learning Literature Survey; Technical Report; University of Wisconsin-Madison Department
of Computer Sciences: Madison, WI, USA, 2009.

6. Houlsby, N.; Huszár, F.; Ghahramani, Z.; Lengyel, M. Bayesian Active Learning for Classification and
Preference Learning. arXiv 2011, arXiv:1112.5745.

7. Rubens, N.; Elahi, M.; Sugiyama, M.; Kaplan, D. Active Learning in Recommender Systems. In Recommender
Systems Handbook; Springer: Berlin/Heidelberg, Germany, 2015; pp. 809–846.

8. Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W.L.; Leskovec, J. Graph convolutional neural
networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 974–983.

9. Yao, L.; Mao, C.; Luo, Y. Graph convolutional networks for text classification. In Proceedings of the
AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33,
pp. 7370–7377.

10. Neville, J.; Jensen, D. Iterative classification in relational data. In Proceedings of the AAAI-2000 Workshop
on Learning Statistical Models From Relational Data, Austin, TX, USA, 31 July 2000; pp. 13–20.

11. Zhu, X.; Ghahramani, Z. Learning from Labeled and Unlabeled Data with Label Propagation; Technical Report;
Carnegie Mellon University: Cambridge, MA, USA, 2002.

12. Zhu, X.; Ghahramani, Z.; Lafferty, J.D. Semi-supervised learning using gaussian fields and harmonic
functions. In Proceedings of the 20th International Conference on Machine Learning (ICML-03), Washington,
DC, USA, 21–24 August 2003; pp. 912–919.

13. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast
Localized Spectral Filtering. In Proceedings of the 2016 Conference on Neural Information Processing
Systems, Barcelona, Spain, 5–10 December 2016; pp. 1–14.

http://dx.doi.org/10.1016/j.media.2018.06.001

Entropy 2020, 22, 1164 18 of 20

14. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings
of the International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

15. Veličković, P.; Fedus, W.; Hamilton, W.L.; Liò, P.; Bengio, Y.; Hjelm, R.D. Deep Graph Infomax. arXiv 2018,
arXiv:1809.10341.

16. Fazakis, N.; Kanas, V.G.; Aridas, C.K.; Karlos, S.; Kotsiantis, S. Combination of Active Learning and
Semi-Supervised Learning under a Self-Training Scheme. Entropy 2019, 21, 988. [CrossRef]

17. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks.
IEEE Trans. Neural Netw. Learn. Syst. 2020.

18. Zhou, J.; Cui, G.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of
methods and applications. arXiv 2018, arXiv:1812.08434.

19. Zhang, Z.; Cui, P.; Zhu, W. Deep learning on graphs: A survey. IEEE Trans. Knowl. Data Eng. 2020. [CrossRef]
20. Settles, B.; Craven, M. An analysis of active learning strategies for sequence labeling tasks. In Proceedings

of the 2008 Conference on Empirical Methods in Natural Language Processing, Honolulu, HI, USA,
25–27 October 2008; pp. 1070–1079.

21. Fu, Y.; Zhu, X.; Li, B. A survey on instance selection for active learning. Knowl. Inf. Syst. 2013, 35, 249–283.
[CrossRef]

22. Baram, Y.; Yaniv, R.E.; Luz, K. Online choice of active learning algorithms. J. Mach. Learn. Res. 2004,
5, 255–291.

23. Huang, Z.; Chung, W.; Ong, T.H.; Chen, H. A graph-based recommender system for digital library.
In Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital libraries, Portland, OR, USA,
14–18 July 2002; pp. 65–73.

24. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry.
arXiv 2017, arXiv:1704.01212.

25. Bhagat, S.; Cormode, G.; Muthukrishnan, S. Node classification in social networks. In Social Network Data
Analytics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 115–148.

26. Zhu, X.; Lafferty, J.; Ghahramani, Z. Combining Active Learning and Semi-supervised Learning using
Gaussian Fields and Harmonic Functions. In Proceedings of the ICML 2003 Workshop on the Continuum
from Labeled to Unlabeled Data in Machine Learning and Data mining, Washington, DC, USA, 21–24 August
2003; Volume 3.

27. Zhou, D.; Bousquet, O.; Lal, T.N.; Weston, J.; Schölkopf, B. Learning with local and global consistency.
In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada,
13–18 December 2004; pp. 321–328.

28. Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R. Gated Graph Sequence Neural Networks. In Proceedings of
the International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016.

29. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying Graph Convolutional Networks.
In Proceedings of the 36th International Conference on Machine Learning, PMLR, Beach, CA, USA,
10–15 June 2019; pp. 6861–6871.

30. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online Learning of Social Representations. In Proceedings of
the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY,
USA, 24–27 August 2014; pp. 701–710.

31. Yang, Z.; Cohen, W.; Salakhudinov, R. Revisiting Semi-Supervised Learning with Graph Embeddings.
In Proceedings of the International conference on machine learning, New York, NY, USA, 14–19 June 2016;
pp. 40–48.

32. Lewis, D.D.; Catlett, J. Heterogeneous uncertainty sampling for supervised learning. In Machine Learning
Proceedings 1994; Elsevier: Amsterdam, The Netherlands, 1994; pp. 148–156.

33. Gal, Y.; Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep
Learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA,
19–24 June 2016; Volume 48, pp. 1050–1059.

34. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

35. Gal, Y.; Islam, R.; Ghahramani, Z. Deep Bayesian Active Learning with Image Data. In Proceedings of
the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70,
pp. 1183–1192.

http://dx.doi.org/10.3390/e21100988
http://dx.doi.org/10.1109/TKDE.2020.2981333
http://dx.doi.org/10.1007/s10115-012-0507-8

Entropy 2020, 22, 1164 19 of 20

36. Seung, H.S.; Opper, M.; Sompolinsky, H. Query by committee. In Proceedings of the Fifth Annual Workshop
on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 287–294.

37. Roy, N.; McCallum, A. Toward Optimal Active Learning through Monte Carlo Estimation of Error
Reduction. In Proceedings of the 18th International Conference on Machine Learning, Williamstown,
MA, USA, 28 June–1 July 2001; pp. 441–448.

38. Gu, Q.; Han, J. Towards Active Learning on Graphs: An Error Bound Minimization Approach. In Proceedings
of the 2012 IEEE 12th International Conference on Data Mining, Brussels, Belgium, 10 December 2012;
pp. 882–887.

39. Bilgic, M.; Mihalkova, L.; Getoor, L. Active Learning for Networked Data. In Proceedings of the 27th
International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 79–86.

40. Ji, M.; Han, J. A Variance Minimization Criterion to Active Learning on Graphs. In Proceedings of the
Artificial Intelligence and Statistics, La Palma, Canary Islands, 21–23 April 2012; pp. 556–564.

41. Cai, H.; Zheng, V.W.; Chang, K.C.C. Active Learning for Graph Embedding. arXiv 2017, arXiv:1705.05085.
42. Gao, L.; Yang, H.; Zhou, C.; Wu, J.; Pan, S.; Hu, Y. Active Discriminative Network Representation Learning.

In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden,
13–19 July 2018; AAAI Press: Menlo Park, CA, USA, 2018; pp. 2142–2148.

43. Gadde, A.; Anis, A.; Ortega, A. Active semisupervised learning using sampling theory for graph signals.
In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, New York, NY, USA, 24–27 August 2014; pp. 492–501.

44. Macskassy, S.A. Using graph-based metrics with empirical risk minimization to speed up active learning
on networked data. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Paris, France, 28 June–July 2009; pp. 597–606.

45. Ma, Y.; Garnett, R.; Schneider, J. σ-Optimality for active learning on gaussian random fields. In Proceedings
of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–8 December 2013;
pp. 2751–2759.

46. Lattimore, T.; Szepesvári, C. Bandit Algorithms; Cambridge University Press: Cambridge, UK, 2020.
47. Auer, P. Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res. 2002,

3, 397–422.
48. Thompson, W.R. On the likelihood that one unknown probability exceeds another in view of the evidence of

two samples. Biometrika 1933, 25, 285–294. [CrossRef]
49. Thrun, S.B. The role of exploration in learning control. In Handbook of Intelligent Control: Neural, Fuzzy and

Adaptive Approaches; Van Nostrand Reinhold: New York, NY, USA, 1992; pp. 1–27.
50. Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective Classification in Network

Data. AI Mag. 2008, 29, 93–93. [CrossRef]
51. Shchur, O.; Mumme, M.; Bojchevski, A.; Günnemann, S. Pitfalls of Graph Neural Network Evaluation.

In Proceedings of the Relational Representation Learning Workshop (NeurIPS 2018), Montréal, QC, Canada,
3–8 December 2018.

52. McAuley, J.; Targett, C.; Shi, Q.; Van Den Hengel, A. Image-based Recommendations on Styles and
Substitutes. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development
in Information Retrieval, Santiago, Chile, 9–13 August 2015; pp. 43–52.

53. Chami, I.; Ying, Z.; Ré, C.; Leskovec, J. Hyperbolic Graph Convolutional Neural Networks. In Advances
in Neural Information Processing Systems 32; Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F.D.,
Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 4868–4879.

54. Anderson, R.M.; Anderson, B.; May, R.M. Infectious Diseases of Humans: Dynamics and Control;
Oxford University Press: Oxford, UK, 1992.

55. Mernyei, P.; Cangea, C. Wiki-CS: A Wikipedia-Based Benchmark for Graph Neural Networks. arXiv 2020,
arXiv:2007.02901.

56. Pennington, J.; Socher, R.; Manning, C. GloVe: Global Vectors for Word Representation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar,
25–29 October 2014; Association for Computational Linguistics: Stroudsburg, PA, USA, 2014; pp. 1532–1543.
[CrossRef]

57. Zitnik, M.; Leskovec, J. Predicting multicellular function through multi-layer tissue networks. Bioinformatics
2017, 33, 190–198. [CrossRef]

http://dx.doi.org/10.1093/biomet/25.3-4.285
http://dx.doi.org/10.1609/aimag.v29i3.2157
http://dx.doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.1093/bioinformatics/btx252

Entropy 2020, 22, 1164 20 of 20

58. Oughtred, R.; Stark, C.; Breitkreutz, B.J.; Rust, J.; Boucher, L.; Chang, C.; Kolas, N.; O’Donnell, L.; Leung, G.;
McAdam, R.; et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 2019, 47, D529–D541.
[CrossRef]

59. Rozemberczki, B.; Allen, C.; Sarkar, R. Multi-scale Attributed Node Embedding. arXiv 2019, arXiv:1909.13021.
60. Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440–442.

[CrossRef]
61. Newman, M.E. Mixing patterns in networks. Phys. Rev. E 2003, 67, 026126. [CrossRef] [PubMed]
62. Ash, J.T.; Zhang, C.; Krishnamurthy, A.; Langford, J.; Agarwal, A. Deep Batch Active Learning by

Diverse, Uncertain Gradient Lower Bounds. In Proceedings of the International Conference on Learning
Representations (ICLR), Addis Ababa, Ethiopia, 26–30 April 2020.

63. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
64. Hagberg, A.; Swart, P.; S Chult, D. Exploring Network Structure, Dynamics, and Function Using NetworkX;

Technical Report; Los Alamos National Lab.(LANL): Los Alamos, NM, USA, 2008.
65. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.;

Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. In Proceedings
of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019;
pp. 8026–8037.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/nar/gky1079
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1103/PhysRevE.67.026126
http://www.ncbi.nlm.nih.gov/pubmed/12636767
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Node Classification
	Graph Neural Networks (GNNs)
	Active Learning
	Uncertainty Sampling
	Query by Committee (QBC)
	Expected Error Reduction (EER)

	Active Learning for Graph Classification Problems
	Active Learning Framework
	The Importance of Exploration
	-Greedy
	Count-Based Exploration

	Experiments
	Data
	Experimental Setup
	Node Classification Model
	Packages and Hardware

	Results and Discussion
	Performance Comparison of AL Approaches
	Comparison of Exploration Strategies
	Running Time
	Discussion

	Conclusions
	References

