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Abstract: The main result of this paper is a proof using real analysis of the monotonicity of the
topological entropy for the family of quadratic maps, sometimes called Milnor’s Monotonicity
Conjecture. In contrast, the existing proofs rely in one way or another on complex analysis.
Our proof is based on tools and algorithms previously developed by the authors and collaborators to
compute the topological entropy of multimodal maps. Specifically, we use the number of transverse
intersections of the map iterations with the so-called critical line. The approach is technically simple
and geometrical. The same approach is also used to briefly revisit the superstable cycles of the
quadratic maps, since both topics are closely related.
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1. Introduction

Topological entropy is one of the main quantifiers of complexity in continuous dynamics. First of
all, it is a tight upper bound of all measure-preserving dynamics generated by a given continuous
self-map of a compact metric space [1]. Furthermore, in metric spaces, topological entropy measures the
growth rate of the number of ever longer orbits up to a small error [2]. Its analytical calculation is only
feasible in some special cases, though. For one-dimensional dynamics, where transformations can be
supposed to be continuous and piecewise monotone (multimodal) for practical purposes, a number of
numerical algorithms based on symbolic representations of the orbits have been developed. Examples
include kneading invariants [3], min-max symbols [4], ordinal patterns [5], context trees [6] and
more. Precisely, this paper is the outgrowth of previous work by the authors and collaborators on the
numerical computation of the topological entropy of multimodal maps using min-max symbols [7–9].
At the heart of our algorithms is the number of transverse intersections (i.e., “X-crossings”) of a
multimodal map and its iterates with the so-called critical lines. In this paper we also show the
potential of this concept in regard to theoretical issues. To this end, we revisit two well-traveled topics
in one-dimensional dynamics:

(i) The monotonicity of the topological entropy for the family of quadratic maps;
(ii) Some basic properties of the periodic orbits of its critical point (superstable cycles).

Next, we elaborate a bit on these two topics.
The family of quadratic maps (or quadratic family) is composed of the logistic maps fµ(x) =

4µx(1− x), 0 ≤ µ ≤ 1, or, for that matter, any other dynamically equivalent maps; actually, we
will use the maps qt(x) = t − x2, 0 ≤ t ≤ 2, because they are algebraically handier. When the
topological entropy of multimodal maps was studied in the 1980s, the numerical results indicated
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that the topological entropy of the quadratic family was a monotone function of the parameter.
This property entered the literature as Milnor’s Monotonicity Conjecture, although what he actually
conjectured was the connectivity of the isentropes (i.e., the sets of parameters for which the topological
entropy is constant) of the cubic maps in [10], when the monotonicity of the topological entropy for
the quadratic family had already been proved by himself (in collaboration with W. Thurston) [3] as
well as by other authors [11–13]. According to [14,15], all these proofs use that the quadratic map can
be extended to the complex plane and require tools from complex analysis. At variance, the proof
of Milnor’s Monotonicity Conjecture presented in this paper (Section 4, Theorem 2) uses only real
analysis. The conjecture was later generalized to multimodal maps and was recently proved in [15].

Points where a multimodal map achieves its local extrema are generically called critical points
(also when the map is not differentiable there); for example, the critical point of fµ is x = 1/2 for all
µ, while the critical point of qt is x = 0 for all t. Orbits generated by any of the critical points play
an important role not only in symbolic dynamics (via, e.g., the kneading invariants) but also in the
stability of fixed points and periodic attractors. Thus, unimodal maps with a negative Schwarzian
derivative (except at the critical point) and an invariant boundary, such as the quadratic maps, have at
most one stable periodic orbit, namely, the one (if any) whose attraction basin contains the critical
point [16,17]; these are the periodic attractors that can be seen in the bifurcation diagram (Section 3).
On the other hand, if the critical point of a quadratic map is eventually periodic, then the periodic
cycle is unstable [11].

However, we will only touch upon stability in passing. The reason why we include the superstable
cycles of the quadratic maps in this paper is two-fold. First and least, the mathematical techniques
used to deal with both topics, entropy monotonicity and superstable cycles, are similar, so we can
easily exploit this fact. More importantly, the relationship between these topics is deeper than might be
thought. Indeed, Thurston’s Rigidity, a result on the periodic orbits of the critical points of quadratic
maps, implies Milnor’s Monotonicity Conjecture for the quadratic maps and it is necessary (in a
generalized version) to prove the case of polynomial maps of higher degrees [15]. Here we will give
only a general idea of this relationship. In addition, we will briefly discuss the “dark lines” through
the chaotic bands of the bifurcation diagram of the quadratic family, which relate to the orbit of
the critical point, as well as the parameter values for which the critical point is eventually periodic
(Misiurewicz points).

This paper is organized as follows. In Section 2 we introduce the mathematical background
needed for the following sections. In particular, we introduce the expression of the topological
entropy for multimodal maps via the number of transverse crossings of its iterates with the critical
lines. More specific concepts and tools that refer to the family of the quadratics maps (Section 3) are
discussed in Section 3.1 (root branches) and Section 3.2 (smoothness domains of the root branches).
Root branches have many interesting properties but we only address those we need for our purposes.
The materials of Sections 2 and 3 will then be used in two complementary ways. The proof in Section 4
that the smoothness domains of the root branches are half-intervals lead to the monotonicity of the
topological entropy for the quadratic family. The bifurcation points of some root branches lead to the
basic properties and parameter values of the superstable cycles of the quadratic family (Section 5.1).
The latter topic will be completed with a short digression on the eventually periodic orbits of the
critical point (Section 5.2).

2. Mathematical Preliminaries

2.1. Multimodal Maps

Let I be a compact interval [a, b] ⊂ R and f : I → I be a piecewise monotone continuous map.
Such a map is called l-modal if f has local extrema at precisely l interior points c1 < ... < cl . Moreover,
we assume that f is strictly monotone in each of the l + 1 intervals

I1 = [a, c1), I2 = (c1, c2), ..., Il = (cl−1, cl), Il+1 = (cl , b].



Entropy 2020, 22, 1136 3 of 23

The points c1, ..., cl are called critical or turning points and their images f (c1), ..., f (cl) are the critical
values of f . These maps are also referred to as multimodal maps (for a general l) and unimodal maps
(if l = 1). We denote the set of l-modal maps byMl(I), or justMl if the interval I is clear from the
context or unimportant for the argument. f ∈ Ml(I) is said to have positive (resp. negative) shape
if f (c1) is a maximum (resp. minimum); here and hereafter, all extrema are meant to be local unless
stated otherwise. Thus, if f has positive shape, then f is strictly increasing in the intervals with odd
subindex (Iodd) and strictly decreasing in the intervals with even subindices (Ieven).

For n ≥ 0, f n denotes the nth iterate of f , where f 0 is the identity map. Since f is continuous and
piecewise strictly monotone, so is f n for all n ≥ 1. The proof of the following Proposition is direct
(see [8], Lemma 2.2).

Proposition 1. Let f ∈ Ml(I) with positive shape and n ≥ 1. We have:

f n+1(x) is a maximum if


(i) f n(x) = codd,
(ii) f n(x) ∈ Ieven and f n(x) is a minimum, or
(iii) f n(x) ∈ Iodd and f n(x) is a maximum,

(1)

and

f n+1(x) is a minimum if


(i) f n(x) = ceven,
(ii) f n(x) ∈ Iodd and f n(x) is a minimum, or
(iii) f n(x) ∈ Ieven and f n(x) is a maximum.

(2)

If f has negative shape, then replace “ f n+1(x) is a maximum if” by “ f n+1(x) is a minimum if”
in (1), and the other way around in (2).

Apply Proposition 1 to f n, f n−1, ..., f to conclude that f n+1 has local extrema at all x ∈ I such
that f k(x) = ci for k = 0, 1, .., n and some i. This proves:

Proposition 2. Let f ∈ Ml(I) and n ≥ 1. Then f n has local extrema at the critical points and their preimages
up to order n− 1.

For n ≥ 1, let

sn,i = #{x ∈ (a, b) : f n(x) = ci, f k(x) 6= cj for 0 ≤ k ≤ n− 1, 1 ≤ j ≤ l}, (3)

i.e., the number of interior simple zeros of the function f n(x)− ci, and set

sn =
l

∑
i=1

sn,i (4)

for the total number of such zeros. For the convenience of notation, definition (3) can be extended to
n = 0: s0,i = #{x ∈ (a, b) : x = ci} = 1, so that s0 = l.

In the case of differentiable maps (to be considered in Sections 3–5), sn,i amounts geometrically
to the number of transverse intersections of y = f n(x) with the ith critical line y = ci. Indeed, by the
chain rule of derivation,

d f n

dx
(x) =

n−1

∏
k=0

d f
dx

( f k(x)). (5)

Therefore, if f k(x) 6= cj for all 0 ≤ k ≤ n − 1 and 1 ≤ j ≤ l, then d f n(ci)/dx 6= 0. A solution x∗

of f n(x) − ci = 0 such that d f n(x∗)/dx = 0 corresponds to a tangential intersection of the curve
y = f n(x) with the critical line y = ci. Abusing the language, we will speak of transverse and
non-transverse intersections in the general case too. Incidentally, Equation (5) proves Proposition 2 for
differentiable maps.
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Next, let en be the number of local extrema of f n.

Proposition 3. Let f ∈ Ml(I) and n ≥ 0. Then,

en+1 = en + sn. (6)

Proof. If n = 0, then e0 = 0 and s0 = l, so that e0 + s0 gives the right answer e1 = l.
Suppose now that n ≥ 1 and f n+1 has a local extremum at x0 ∈ I, so that en+1 is the number of

such x0’s. According to Proposition 1, there are two exclusive possibilities:
(a) f n(x0) = ci for some 1 ≤ i ≤ l (Proposition 1(i)); or
(b) f n(x0) 6= ci for all 1 ≤ i ≤ l and f n has a local extremum at x0 (Proposition 1(ii) and (iii)).
In turn, (a) subdivides according to whether x0 is a transverse or a tangential intersection of

y = f n(x) with the critical line y = ci:
(a1) f n(x0) = ci and f k(x0) 6= cj, for all 0 ≤ k ≤ n− 1, 1 ≤ j ≤ l.
(a2) f n(x0) = ci and f k(x0) = cj for some k and j, 0 ≤ k ≤ n− 1, 1 ≤ j ≤ l.
Therefore, each x0 ∈ I that contributes to en+1 contributes to sn (if case (a1) holds) or, otherwise,

to en (if case (a2) or (b) holds). The bottom line is Equation (6).

Figure 1 illustrates Equation (6) for the bimodal map

f (x) = 9.375x3 − 15.4688x2 + 6.75x + 0.1, (7)

I = [0, 1], whose critical points are c1 = 0.3 ( f (c1) = 0.985938) and c2 = 0.8 ( f (c2) = 0.4).
In the next two sections we discuss how the transverse and tangential intersections of f n with the

critical lines are related to two salient aspects of the dynamics generated by f : topological entropy and
superstable periodic orbits.

Figure 1. Graphs of f , f 2, f 3, and f 4 for the bimodal map (7). Reproduced from [7].

2.2. Topological Entropy

The connection of the recursive Formula (6) with the topological entropy of f ∈ Ml(I), h( f ),
is readily established through the lap number `n of f n, which is defined as the number of maximal
monotonicity intervals of f n. First, replace `n = en + 1 in (6) to obtain

`n+1 = `n + sn. (8)

The initial values `0 = 1 and s0 = l yield `1 = l + 1, as it should.
Second, use the relation [18]

h( f ) = lim
n→∞

1
n

log `n. (9)

Since `n ≤ (l + 1)n (see e.g., [9]),
h( f ) ≤ log(l + 1). (10)
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Finally, Equations (8) and (9) lead then to the expression

h( f ) = lim
n→∞

1
n

log

(
1 +

n−1

∑
k=0

sk

)
, (11)

which was first derived in [8]. For the general concept of entropy, see [19–21].
As a technical remark, the topological entropy of a continuous map (in particular, a multimodal

map f : I → I) only depends on its non-wandering set [22]. A point x ∈ I is said to be non-wandering
for f if for any neighborhood U of x, there is an integer n ≥ 1 such that f n(U) ∩U 6= ∅; otherwise,
x is said to be a wandering point for f . The non-wandering set for f consists of all the points that are
non-wandering for f .

Equations (9) and (11) add to other similar expressions of h( f ) in terms of en = `n − 1, the number
of n-periodic points, the variation of f n ([14], Theorem 1.1), etc. In this regard, the quantities sk in
Equation (11) can be viewed in the following three different ways:

(1) Algebraically, sk is by definition (3)–(4) the number of interior simple zeros of the equations
f k(x)− ci = 0, i = 1, 2, ..., l.

(2) Geometrically, sk is the total number of transverse intersections of the iterated map f k with the
critical lines.

(3) Dynamically, sk is the total number of preimages of the critical points of minimal order k.
Whatever the interpretation, we are going to show that sk is a useful tool to study

multimodal maps.
Several numerical algorithms for the topological entropy of multimodal maps based on

Equation (11) can be found in [7–9], the algorithm in [9] being a variant of the algorithm in [8]
and this, in turn, a simplification of the algorithm in [7]. The performance of the algorithm [8] has
recently been benchmarked in [23] with favorable results. The computation of sn from the values of
s0, ..., sn−1 is possible via the so-called min-max sequences [4], which are closely related to the kneading
sequences [3,17]. As compared to the kneading symbols, the min-max symbols contain additional
information on the minimum/maximum character of the critical values f n(ci), 1 ≤ i ≤ l, with virtually
no extra computational penalty [7,8]. The geometrical properties of the min-max symbols were studied
in [24] and [7] for twice-differentiable uni- and multimodal maps, respectively, and in [8,9] for just
continuous multimodal maps. A brief overview is given in the Introduction of [9].

Let ft ∈ Ml(It) be a one-parametric family of l-modal maps whose parameter t ranges in an
interval J ⊂ R. Denote by sn(t) the total number of transverse intersections of y = f n

t (t) with the
critical lines. From (11) and the monotonicity of the logarithmic function it follows:

Proposition 4. Let ft ∈ Ml(It), and t1, t2 ∈ J with t1 < t2. Suppose sn(t1) ≤ sn(t2) for all n ≥ n0.
Then h( ft1) ≤ h( ft2).

As we will see in Section 4, Proposition 4 provides a handle to prove the monotonicity of the
topological entropy for the family of quadratic maps. We mentioned already in the introduction
that, according to [14,15], the existing monotonicity proofs [3,11–13] rely in one way or another on
complex analysis. Unlike them, our approach uses real analysis. Let us remind at this point that the
topological entropy of a family of unimodal maps labeled by some natural parameter (such as its
critical value) is not usually monotone, even under very favorable assumptions [25]. More generally,
let fv be a polynomial map parametrized by its critical values v = (v1, ..., vl). Then, according
to ([14], Theorem 1.1), for l ≥ 2 there exist fixed values of v2, ..., vl such that the map v1 7→ h( fv) is
not monotone. For multimodal maps, monotonicity of the map is replaced by the connectivity of the
isentropes ([15], Theorem 1.2). See also [15] for related results and open conjectures.
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2.3. Superstable Periodic Orbits

Let x0 ∈ I and set xk = f k(x0) = f (xk−1) for k ≥ 1. Suppose for the time being that f is
differentiable and a critical point ci is periodic with prime period p. Then, each point of the orbit
O(ci) = {ci ≡ x0, x1, ..., xp−1} is a fixed point of f p: f p(xj) = xj+p = xj for 0 ≤ j ≤ p− 1. O(ci) is
said to be superstable because (see Equation (5))

d f p

dx
(xj) =

d f
dx

(x0)
d f
dx

(x1)...
d f
dx

(xp−1) = 0 for j = 0, 1, ..., p− 1, (12)

since d f (x0)/dx ≡ d f (ci)/dx = 0. In other words, d f p(xj)/dx (whose absolute value quantifies the
stability of the fixed points ci, x1,..., xp−1 of f p ) vanishes at each point of the periodic orbit.

On the other hand, f n has local extrema at all critical points for n ≥ 1, so that the periodicity
condition f p(ci) = ci amounts to a tangential intersection of the curve y = f p(x) and the critical line
y = ci at x = ci. Therefore, while the transverse intersections of f n with the critical lines are the only
input needed to calculate the topological entropy of multimodal maps, the tangential intersections,
if any, are the main ingredient of the periodic orbits (cycles) of a critical point. All in all, the intersections
of f n with the critical lines, whether transverse or tangential, give information about the dynamical
complexity and superstability of the orbits.

3. Application Case: Quadratic Maps

Quadratic maps have been the workhorse of chaotic dynamics for two good reasons: their dynamic
exhibits a mind-boggling complexity despite being algebraically so simple and, precisely because of
this simplicity, many of their dynamical properties are amenable to analytical scrutiny. We consider
henceforth the family of the real quadratic maps

qt(x) = t− x2, (13)

where x ∈ R and 0 ≤ t ≤ 2. The critical point and the critical value of qt are c = 0 and qt(0) = t,
respectively, so the critical line y = 0 is the x-axis in the Cartesian plane {(x, y) ∈ R2}. The quadratic
family has two fixed points,

x f ix,1(t) = −
1
2

(
1 +
√

1 + 4t
)
≤ −1, x f ix,2(t) =

1
2

(
−1 +

√
1 + 4t

)
≥ 0. (14)

Therefore, an invariant finite interval It, i.e., qt(It) ⊂ It, where defining a dynamic generated by qt, is

It = [x f ix,1(t),−x f ix,1(t)] =
[
− 1

2 (1 +
√

1 + 4t), 1
2 (1 +

√
1 + 4t)

]
. (15)

It holds I0 = [−1, 1] ⊂ It ⊂ [−2, 2] = I2. Moreover,

qt(−x f ix,1(t)) = qt(x f ix,1(t)) = x f ix,1(t), (16)

so that the boundary of It, ∂It = {x f ix,1(t),−x f ix,1(t)}, is also invariant: qt(∂It) = {x f ix,1(t)} ⊂ ∂It.
Since all x /∈ It escape to −∞ under iterations of qt, the set It contains the non-wandering set of qt.

See Figure 2 for some instances of the quadratic family. The bifurcation diagram of qt(x) in
Figure 3 shows that the asymptotic dynamics of the quadratic family (chaotic attractors, along with
stable fixed points and periodic orbits) lives in the interval −2 ≤ x ≤ 2. After the period-doubling
cascade, chaos onset occurs at the Feigenbaum point tF = 1.401155..., i.e., the topological entropy of qt

is positive for t > tF.



Entropy 2020, 22, 1136 7 of 23

Figure 2. (a) Bottom to top: q0(x), q1(x), q2(x). (b) Graph of q2
1(x). (c) Graph of q3

1(x). (d) Graph
of q4

2(x).

Figure 3. Bifurcation diagram of qt(x), 0 ≤ t ≤ 2.

The dynamical systems generated by qt(x), where x ∈ It and 0 ≤ t ≤ 2, and the more popular
logistic maps fµ(z) = 4µz(1− z), where 0 ≤ z ≤ 1 and 1

2 ≤ µ ≤ 1, are conjugate to each other via the
affine transformation ϕ : [0, 1]→ [−2µ, 2µ] defined as

x = ϕ(z) = 4µz− 2µ and t = 2µ(2µ− 1) (17)

or
z = ϕ−1(x) =

x
4µ

+
1
2

with µ =
1
4
(1 +

√
1 + 4t). (18)

Thus, q0|[−1,1] is conjugate to f0.5|[0,1], and q2|[−2,2] to f1|[0,1]. Note that−2µ = x f ix,1, so It = [−2µ, 2µ].
An advantage of the quadratic map (13) is that the transverse (resp. tangential) intersections of

y = qn
t (x) with the critical line correspond to the simple (resp. multiple) roots of qn

t (x), a polynomial
of degree 2n. Since qt(x) is unimodal (l = 1), Equation (4) simplifies to

sn(t) = #{x ∈ I̊t : qn
t (x) = 0, qk

t (x) 6= 0 for 0 ≤ k ≤ n− 1}, (19)

where I̊t = It\∂It is the interior of It. Therefore, sn(t) stands for the number of simple zeros of qn
t (x) in

I̊t or, equivalently, for the number of transverse intersections of the curve y = qn
t (x) with the critical

line y = 0. We show in Remark 1 below that I̊t contains all zeros of qn
t (x), therefore I̊t can be safely

replaced by I̊2 = (−2, 2) (or R, for that matter) in Equation (19).

3.1. Root Branches

We set out to study the real solutions of the equation qn
t (x) ≡ t− (qn−1

t (x))2 = 0, n ≥ 1, which is a
polynomial equation of degree 2n in x. If x̄ is a solution, then−x̄ is also a solution since qn

t (−x) = qn
t (x).

The following two cases are trivial: (i) for t = 0, qn
0 (x) ≡ −x2n

= 0 has the 2n-fold solution x = 0;
(ii) for t = 2, qn

2 (x) = 0 has 2n simple solutions in (−2, 2), namely,

x̄σ1,...,σn = σ1

√
2 + σ2

√
2 + ... + σn

√
2, (20)
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where σ1, ..., σn ∈ {+,−}. Alternatively, the roots x̄σ1,...,σn have the following trigonometric closed-form
([26], Problem 183):

x̄σ1,...,σn = 2 sin

(
π

4

n

∑
k=1

σ1σ2 · · · σk

2k−1

)
. (21)

In the general case, consider the map Fn : R× [0, 2]→ R defined as Fn(x, t) = qn
t (x) and the point

(x̄, t̄) = (x̄σ1,...,σn , 2), so that Fn(x̄, t̄) = qn
2 (x̄σ1,...,σn) = 0 and

∂Fn

∂x
(x̄, t̄) =

dqn
t̄

dx
(x̄) =

n−1

∏
k=0

dq2

dx
(qk

2(x̄σ1,...,σn)) 6= 0 (22)

since q0
2(x̄σ1,...,σn) = x̄σ1,...,σn 6= 0 and qk

2(x̄σ1,...,σn) = −x̄σk+1,...,σn 6= 0 for k = 1, ..., n− 1. By the Implicit
Function Theorem, there exists a neighborhood U ⊂ [0, 2] of t̄ = 2 and a unique smooth function
φσ1,...,σn : U → R such that φσ1,...,σn(2) = x̄σ1,...,σn and qn

t (φσ1,...,σn(t)) ≡ t− qn−1
t (φσ2,...,σn(t))

2 = 0, i.e.,

φσ1,...,σn(t) = σ1

√
t + φσ2,...,σn(t) = ... = σ1

√
t + σ2

√
t + ... + σn

√
t, (23)

for all t ∈ U. Therefore, in this case the “implicit” functions φσ1,...,σn(t) are explicitly known, and

− 2 < φσ1,...,σn(t) < 2 (24)

for all n ≥ 1, σ1, ..., σn ∈ {+,−}, and 0 ≤ t ≤ 2.
The functions φσ1,...,σn(t) will be generically called root branches of qn

t (x); notice that the sign
of φσ1,...,σn(t) depends on σ1, hence φ−σ1,σ2,...,σn(t) = −φσ1,σ2,...,σn(t). When the components are not
important, we shorten the notation and write (σ1, ..., σn) = σ. We call n, the number of components of σ,
the rank of the signature σ and denote it by |σ|. Likewise, we call |σ| the rank of φσ(t), so q|σ|t (φσ(t)) = 0.
Sometimes we write ± in a component of a signature to refer to both branches. If σ is a final segment
of the signature ρ, we say that φρ(t) is a successor of φσ(t); likewise if σ is an initial segment of the
signature ρ, we say the φρ(t) is a predecessor of φσ(t).

Let us pause at this point to address a few basic properties of the root branches. We denote by
dom φσ the definition domain of φσ(t), that is, the points in the parametric interval [0, 2] where the
right hand side of Equation (23) exists. In view of (23), the definition domains of φ±,σ(t), the two
immediate successors of φσ(t), are given by

dom φ+,σ = dom φ−,σ = {0 ≤ t ≤ 2 : t + φσ(t) ≥ 0}. (25)

Since φσ(0) = 0 for all signatures σ and φσ(2) = x̄σ1,...,σn ∈ (−2, 2), it holds {0, 2} ⊂ dom φ±,σ for all
root branches. It is also obvious that

dom φ+,σ = dom φ−,σ ⊂ dom φσ, (26)

so that the consecutive successors of φσ(t) have, in general, ever smaller definition domains. The only
exceptions are

dom φ+,+,...,+ = dom φ−,+,...,+ = [0, 2]. (27)

Examples of definition domains are the following:

dom φ+,− = {0} ∪ [1, 2], (28)

dom φ+,−,+ = {0} ∪ [1.7549..., 2],

dom φ+,−,+,− = {0} ∪ {1} ∪ [1.3107..., 2].
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Figure 4 shows the graphs of the root branches of ranks 1 to 5. In panel (a), the 2-fold zero
φ±(0) = 0 correspond to the tangential intersection of q0(x) with the x-axis in Figure 2a, while the
2-fold zero φ±−(1) = 0 and the two simple zeros φ++(1) =

√
2 and φ−+(1) = −

√
2 correspond

to the tangential intersection and the two transverse intersections, respectively, of q2
1(x) with the

x-axis in Figure 2b. In panel (b), the two simple roots φ+++(1) = 1.5538 and φ−++(1) = −1.5538
correspond to the transverse intersections of q3

1(x) with the x-axis in Figure 2c, while the two 2-fold
roots φ+±−(1) = 1 and φ−±−(1) = −1 correspond to the two tangential intersections of q3

1(x). The 16
roots φσ1,σ2,σ3,σ4(2) in panel (c) correspond to the 16 transverse intersections of q4

2(x) with the x-axis in
Figure 2d. Finally, panel (d) shows together the 62 root branches of ranks 1 to 5.

Figure 4. Root branches of ranks 1 to 5; since φ−,σ(t) = −φ+,σ(t), only positive branches (upper
half-plane) are specified next (top to bottom). (a) Ranks 1 and 2: φ++, φ+, and φ+−. (b) Rank 3: φ+++,
φ+±−, and φ+−+. (c) Rank 4: φ++++, φ++±−, φ+±−+, φ+−−−, φ+−+−, and φ+−++. (d) Joint plot of
the root branches of ranks 1 to 5; positive branches of rank 5: φ+++++, φ+++±−, φ++±−+, φ++−−−,
φ++−+−, φ++−++, φ+−−++, φ+−−+−, φ+−−−−, φ+−∓−+, φ+−+−−, φ+−++−, and φ+−+++.

In the panels of Figure 4 we see that the 2|σ| root branches φσ(t), 1 ≤ |σ| ≤ 5, build 2|σ|−1

parabola-like curves, which we denote φσ1,...,σi−1,±,σi+1,...,σn(t) (1 ≤ i ≤ n), this notation meaning
that the curves φσ1,...,σi=+,...,σn(t) and φσ1,...,σi=−,...,σn(t) (the branches of the parabola) emerge from a
common vertex (tb, φσ1,...,σi=+,...,σn(tb)) = (tb, φσ1,...,σi=−,...,σn(tb)) with a vertical tangent. The vertex
and the abscissa tb will be called indistinctly branching point (geometrical terminology) or bifurcation
point (dynamical terminology) of the parabola or any of its branches. Root parabolas with the
vertex on the t-axis, φ±,σ2,...,σn(t), are sometimes called on-line parabolas, otherwise off-axis parabolas.

The branching point tb has also a direct geometrical interpretation in state space: the curve q|σ|tb
(x)

intersects tangentially the x-axis (the critical line) at the point x = φσ1,...,σi−1,±,σi+1,...,σn(tb). The opening
of the branches to the right means that, if the contact occurs from the upper half-plane as t increases,
the corresponding local extremum is a minimum, whereas if the contact occurs from the lower
half-plane, it is a maximum. In panel (d) of Figure 4 we see that different branches do not cross but
touch at the bifurcation points (“T-crossings”). We will show below that all these properties hold
in general.
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3.2. Smoothness Domains of the Root Branches

A crucial issue for our purposes is the distinction between dom φσ and sdom φσ, the subset of
dom φσ where φσ(t) is smooth. As it will turn out in Section 4, sdom φσ comprises the parametric
values t for which the root φσ(t) is simple—precisely the t’s that count for s|σ|(t), Equation (19).
Therefore sdom φσ can be read not only as “smoothness domain” but also as “simplicity domain”.

To learn about sdom φσ, we go back to the neighborhood U ⊂ [0, 2] of t = 2 where the 2n distinct
root branches φσ1,...,σn(t) are locally defined and continuously differentiable. This neighborhood can
be extended to include lower and lower t values as long as ∂qn

t (φσ1,...,σn(t))/∂x 6= 0, i.e., as long as
φσ1,...,σn(t) has not a vertical tangent. Since

∂qn
t

∂x
(x) =

n−1

∏
k=0

dqt

dx
(qk

t (x)) = (−2)nxqt(x) · · · qn−1
t (x), (29)

the obstruction ∂qn
t (φσ1,...,σn(t))/∂x = 0 occurs whichever condition

(C) qk
t (φσ1,...,σn(t)) = 0 (0 ≤ k ≤ n− 1)

is fulfilled first. Conditions (C) comprise those parametric values t for which φσ1,...,σn(t) is the critical
point (k = 0) and, for n ≥ 2, any of its, at most 2n − 2, preimages up to order n− 1.

If k = 0, then q0
t (φσ1,...,σn(t)) ≡ φσ1,...,σn(t) = 0. If 1 ≤ k ≤ n− 1 (n ≥ 2), then use Equation (23) to

derive
qt(φσ1,...,σn(t)) = t− φσ1,...,σn(t)

2 = −φσ2,...,σn(t) (30)

and, in general,
qk

t (φσ1,...,σn(t)) = qt(−φσk ,...,σn(t)) = −φσk+1,...,σn(t), (31)

so the conditions (C) amount to:

(C’) φσk+1,...,σn(t) = 0 (0 ≤ k ≤ n− 1).

Note that

φσk+1,...,σn(tb) = 0 ⇒ φ−σk+1,σk+2...,σn(tb) = −φσk+1,σk+2...,σn(tb) = 0, (32)

therefore,

φσk+1,...,σn(tb) = 0 ⇒
{

φ±σ1,...,σn(tb) = 0 if k = 0,
φσ1,...,±σk+1,...,σn(tb) = φσ1,...,σk (tb) if 1 ≤ k ≤ n− 1,

(33)

which means that 0 (k = 0) or φσ1,...,σk (tb) (1 ≤ k ≤ n− 1) is a multiple zero of qn
tb
(x). Such a point tb is

a branching (or bifurcation) point of φσ1,...,±σk+1,...,σn(t) if both branches are defined in a neighborhood
of tb; otherwise, tb is an isolated point of dom φσ1,...,±σk+1,...,σn (actually, one can check that the isolated
points of φσ(t), if any, correspond to branching points of some predecessor). Branching points and
isolated points are called singular points; the complement are the regular points of the corresponding
root parabola or branches. This proves the following result:

Proposition 5. The singular points tb of dom φσ correspond to multiple zeros of qn
tb
(x). In either case,

φσk+1,...,σn(tb) = 0 for some k = 0, 1, ..., n− 1.

Furthermore, if |σ| = s ≥ r = |ρ| and φσ(t0) = φρ(t0), i.e.,

σ1

√
t0 + φσ2,...,σs(t0) = ρ1

√
t0 + φρ2,...,ρr (t0), (34)



Entropy 2020, 22, 1136 11 of 23

then
φσ(t0) = φρ(t0) = 0 if σ1 6= ρ1; (35)

otherwise, keep squaring the Equation (34) and recursively applying Equation (35) to the resulting
equalities to derive:

σi 6= ρi for some 1 ≤ i ≤ r ⇒ φσi ,...,σs(t0) = φρi ,...,ρr (t0) = 0, (36)

or else
σi = ρi for 1 ≤ i ≤ r and s > r ⇒ φσr+1,...,σs(t0) = 0. (37)

By Proposition 5, t0 is a singular point of φσ(t). We conclude:

Proposition 6. A root branch φσ(t) can be smoothly extended from the boundary t = 2 to a maximal interval
sdom φσ := (tσ, 2], where tσ = max{t ∈ [0, 2) : φσk+1,...,σn(t) = 0 for some 0 ≤ k ≤ n− 1} is a branching
point of φσ(t). Moreover, φσ(t) 6= φρ(t) for σ 6= ρ and t ∈ sdom φσ ∩ sdom φρ.

In other words, root branches do not cross or touch in their smoothness domains. Table 1, obtained
from Figure 4, lists the smoothness domains (tσ, 2] of the 15 root parabolas up to rank 4.

Table 1. Root parabolas of ranks 1 to 4.

Root Parabolas Sdom φσ

φ±, φ±+, φ±++, φ±+++ (0, 2]
φ±−, φ+±−, φ−±−, φ++±−, φ−+±−, φ±−−− (1, 2]

φ±−+− (1.3107..., 2]
φ±−+, φ+±−+, φ−±−+ (1.7549..., 2]

φ±−++ (1.9408..., 2]

The ordering of the branching points tσ is related to the ordering of the root branches. Due to
the strictly increasing/decreasing monotonicity of the positive/negative square root function,
φσ(t) < φρ(t) implies

φ−,ρ(t) < φ−,σ(t) < φ+,σ(t) < φ+,ρ(t). (38)

Thus, attaching a sign “+” (resp. “−”) in front the signature preserves (resp. reverses) the ordering.
This generalizes to the following signed lexicographical order for root branches.

Proposition 7. Given σ 6= ρ with |σ| ≥ |ρ| and t ∈ sdom φσ ∩ sdom φρ, the following holds.
(a) If σ1 6= ρ1 then

φσ(t)

{
> φρ(t) if σ1 = +1,
< φρ(t) if σ1 = −1.

(39)

(b) If σi = ρi for i = 1, ..., k, and k = |ρ| or σk+1 6= ρk+1, then

φσ(t)

{
> φρ(t) if σ1 × ...× σk+1 = +1,
< φρ(t) if σ1 × ...× σk+1 = −1.

(40)

Since root branches do not cross or touch in their smoothness domains, they can be ordered
alternatively by φσ(2). According to Equation (33), the inequalities (39) and (40) can turn equalities at
a common singular point of dom φσ ∩ dom φρ.

As an example,

φ−,{+}n−1(t) < φ−,σ(t) < φ−,−,{+}n−2(t) < φ+,−,{+}n−2(t) < φ+,σ(t) < φ{+}n(t), (41)
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for all t ∈ sdom φ±,σ, where |σ| = n− 1. Equation (41) shows the upper and lower bounds of the
positive and negative root branches.

Remark 1. According to Equation (41),

lim
n→∞

φ{+}n(t) =
1
2
(1 +

√
1 + 4t) =: φ{+}∞(t) (42)

and
lim

n→∞
φ−,{+}n−1(t) = − lim

n→∞
φ{+}n−1(t) = −

1
2
(1 +

√
1 + 4t) =: φ−,{+}∞(t) (43)

are the optimal upper and lower bounds, respectively, of all root branches for t > 0. From Equations (15) and (18)
we see that

[φ−,{+}∞(t), φ{+}∞(t)] = It = [−2µ, 2µ], (44)

where µ = 1
4 (1 +

√
1 + 4t) is the parameter value of the logistic map fµ

∣∣
[0,1] conjugate to qt|It

. Therefore,

all zeros of qn
t (x) are in the open interval I̊t = (−2µ, 2µ) = (− 1

2 (1 +
√

1 + 4t), 1
2 (1 +

√
1 + 4t)) for n ≥ 1.

4. Application I: Monotonicity of the Topological Entropy

In Section 3, the smooth root branch φσ(t) was extended from a neighborhood of the boundary
t = 2 to a maximal interval sdom φσ = (tσ, 2], called the smoothness domain of φσ. The next
Proposition excludes the possibility that φσ(t) is also defined in an interval (t1, t2) with 0 ≤ t1 < t2 ≤ tσ.
By the same arguments used with sdom φσ, the endpoints t1 and t2 would be then branching points
of φσ(t).

Proposition 8. For all |σ| ≥ 1, dom φσ does not include intervals other than [tσ, 2].

Proof. Suppose that the, say positive, root branch φσ1,...,σn(t) is also defined in an interval (t1, t2) ⊂
[0, 2], where 0 ≤ t1, t2 ≤ tσ are two branching points, hence, φσk1+1,...,σn(t1) = φσk2+1,...,σn(t2) = 0 for
some 0 ≤ k1, k2 ≤ n− 1 (Proposition 6). In this case, the positive root branches φσ1,...,±σk1+1,...,σn(t) and
φσ1,...,±σk2+1,...,σn(t) would compose the two parabolas depicted in Figure 5a in a neighborhood of t1

and t2, respectively.
The “⊂” bifurcation at “time” t1 corresponds to a local minimum (resp. local maximum) of

qn
t (x) crossing the x-axis from above (resp. below) at the point x1 = φσ1,...,σn(t1) = 0 if k1 = 0 or

x1 = φσ1,...,σk1
(t1) > 0 if k1 ≥ 1 (see Figure 5b,c and Equation (33)). Bifurcation points with branches

opening to the right occur at the left endpoint of the smoothness domains, in particular at t = 0, so they
are certainly allowed.

The “⊃” bifurcation at “time” t2 corresponds to local a minimum (resp. maximum) of qn
t (x)

crossing the x-axis from below (resp. above) at the point x2 = φσ1,...,σn(t2) = 0 if k2 = 0 or x2 =

φσ1,...,σk2
(t2) > 0 (see Figure 5b,c and Equation (33)). To show that bifurcation points with branches

opening to the left, however, are not allowed, we are going to exploit the following Fact derived from
the hypothetical existence of ⊃ bifurcations.

Fact: In both cases illustrated in Figure 5b (where qn
t2
(x2) is a local minimum and

∂qn
t (x2)/∂t|t=t2

≥ 0) and Figure 5c (where qn
t2
(x2) is a local maximum ∂qn

t (x2)/∂t|t=t2
≤ 0), given any

neighborhood of x2, (x2 − ε, x2 + ε) with ε > 0, there exists τ > 0 such that qn
t2−4t(x) changes sign in

(x2 − ε, x2 + ε) for all 0 < 4t ≤ τ because, by assumption, qn
t (x) intersects transversally the x-axis

just before t = t2.
It is even more true: said change of sign occurs both in (x2 − ε, x2) due to the left branch, and in

(x2, x2 + ε) due to the right branch. Note that the above Fact does not hold for ⊂ bifurcations.
Therefore, we will consider only the first case (Figure 5b with x = x2 and t = t2). There are

several subcases.
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(a) If ∂qn
t (x2)/∂t|t=t2

> 0, then

qn
t2−4t(x2 ±4x) = −∂tqn

t2
(x2) · 4t + O(2), (45)

where 0 < 4x ≤ ε, 0 < 4t ≤ τ, and we wrote ∂tqn
t2
(x2)≡ ∂tqn

t (x2)|t=t2
for brevity. From Equation (45)

it follows qn
ti−4t(x) < 0 in (x2 − ε, x2 + ε) for all4t, which contradicts the above Fact. This excludes

the possibility of having a ⊃ bifurcation at t2 if the “velocity” of qn
t (x2) at t = t2 is positive.

(b) Suppose now ∂qn
t2
(x2)/∂t = 0, so

qn
t2−∆t(x2 ±4x) =

1
2

∂xxqn
t2
(x2)(4x)2 ∓ ∂2

xtq
n
t2
(x2)4 x4 t +

1
2

∂ttqn
t2
(x2)(4t)2 + O(3), (46)

where ∂xxqn
t2
(x2) ≡ ∂xxqn

t2
(x)
∣∣∣
x=x2

≥ 0 (because qn
t2
(x2) is a minimum in the case we are considering),

∂ttqn
t2
(x2) ≡ ∂ttqn

t (x2)|t=t2
and similarly for the mixed term.

(b1) If ∂xxqn
t2
(x2) > 0 and some of the other O(2) terms is not zero, let4t→ 0 while4x is fixed

to conclude from Equation (46) that qn
t2−∆t(x2 ±4x) does not change sign for sufficiently small4t,

0 < 4t� 4x, in contradiction to the above Fact. The same contraction follows, of course, if all O(2)
terms in Equation (46) except ∂xxqn

t2
(x2) vanish.

(b2) If all terms O(2) vanish at x = x2 and t = t2, repeat the same argument with the terms O(3).
Since qn

t2
(x2) is a minimum and qn

t (x) is a polynomial of degree 2n, it holds ∂m
xm qn

t2
(x2) > 0 for some

2 ≤ m ≤ 2n.

Figure 5. (a) Root branches not connected to the boundary t = 2. As a new feature, the bifurcation
at t2 opens to the left. (b) A first possibility in state space for local extrema of qn

t (x) to produce the
bifurcations in panel (a). (c) A second possibility in state space for local extrema of qn

t (x) to produce
the bifurcations in panel (a).

A conclusion of the proof of Proposition 8 is that the root branches do not have bifurcations
with branches that open to the left or bifurcations that open to the right except for the one at the left
endpoint of the smoothness domain. As a result:

Proposition 9. For all |σ| ≥ 1, sdom φσ = (tσ, 2], where 0 ≤ tσ < 2 is the unique branching point of φσ.

Remark 2. The images of the critical point build a sequence of polynomials Pn(t) := qn
t (0), that is, Pn(t) is the

nth image of 0 under qt. Alternatively, one can define polynomial maps Pn : [0, 2]→ [−2, 2] by the recursion

P0(t) = 0, Pn(t) = t− Pn−1(t)2 for n ≥ 1. (47)

Therefore, Pn(t) is a polynomial of degree 2n−1 for n ≥ 1, and

Pn+k(t) = qn+k
t (0) = qn

t (q
k
t (0)) = qn

t (Pk(t)). (48)
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The first polynomials are:

P1(t) = t
P2(t) = t− t2

P3(t) = t− t2 + 2t3 − t4

P4(t) = t− t2 + 2t3 − 5t4 + 6t5 − 6t6 + 4t7 − t8

(49)

If, as in the proof of Proposition 8, we interpret the parameter t as time, then the time of passage of qn
t (0) through

the x-axis is given by the zeros of Pn(t) = 0. Note that

Pn(0) = 0 for n ≥ 1, (50)

while
P1(2) = 2, Pn(2) = −2 for n ≥ 2 (51)

(see Figure 2d for n = 4). In physical terms, qt(0) moves upwards from x = 0 (t = 0) to x = 2 (t = 2) at
constant speed Ṗ1(t) = 1 (the dot denotes time derivative), while, for n ≥ 2, qn

t (0) moves from x = 0 (t = 0) to
x = −2 (t = 2), reversing the speed when Ṗn(t) = 0 and crossing the x-axis when Pn(t) = 0. In Section 5 we
will come back to these polynomials from a different perspective.

At this point we have already cleared our way to the monotonicity of the topological entropy for
the quadratic family,

h(qt) = lim
n→∞

1
n

log

(
1 +

n−1

∑
k=0

sk(t)

)
, (52)

where sk(t) is the number of simple zeros of qk
t (x) or, equivalently, the number of transverse

intersections of the curve y = qk
t (x) with the critical line y = 0 (the x-axis); see Equation (19).

According to Equation (41) and Remark 1, all zeros of qk
t (x) are in the interval [φ−,{+}k−1(t), φ{+}k (t)]

⊂ (φ−,{+}∞(t), φ{+}∞(t)) = I̊t.
It follows from Propositions 5 and 9, that, for each signature σ with |σ| = n, dom φσ\sdom φσ

comprises multiple roots of qn
t (t) (isolated points and the branching point tσ), while the roots φσ(t) are

simple for tσ < t ≤ 2 by Proposition 6. The bottom line is:

Proposition 10. The smoothness domain sdom φσ comprises the values of t for which the root φσ(t) of q|σ|t (x)
is simple.

For this reason we anticipated at the beginning of Section 3.2 that sdom φσ may be called the
simplicity domain of φσ as well. This being the case, each root φσ(t) contributes 0 or 1 to sn(t),
the number of simple zeros of qn

t (x), depending on whether 0 < t ≤ tσ or tσ < t ≤ 2, respectively.
We conclude that

sn(t) = ∑
σ∈{+,−}n

χ(tσ ,2](t) = 2 ∑
ρ∈{+,−}n−1

χ(t+,ρ ,2](t) (53)

for n ≥ 1, where we used t−σ1,σ2,...,σn = tσ1,σ2,...,σn , and χ(tσ ,2](t) is the characteristic or indicator function
of the interval (tσ, 2] (1 if t ∈ (tσ, 2], 0 otherwise). Equation (53) proves:

Theorem 1. The function sn : [0, 2]→ {0, 2, 4, ..., 2n}, defined in Equation (19), is piecewise constant and
monotonically increasing for every n ≥ 1. Its discontinuities occur at the branching points tσ of the root
branches φσ(t) with |σ| = n, where sn(t) is lower semicontinuous.

Figure 6 shows the function s4(t) based on Figure 4c. Apply now Proposition 4 to prove Milnor’s
Monotonicity Conjecture for the quadratic family:
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Theorem 2. The topological entropy of qt is a monotonically increasing function of t.

Figure 7 shows the topological entropy of qt superimposed on the bifurcation diagram
(Figure 3); in particular, h(qt) > 0 (i.e., qt is chaotic) for t > tF = 1.4011551... (Feigenbaum
point) and h(q2) = log 2, the highest value that the topological entropy of a unimodal map can take,
see Equation (10). It can be proved that the function t 7→ h(qt) is a Devil’s staircase, meaning that it
is continuous, monotonically increasing (Theorem 2), but there is no interval of parameters where it
is strictly increasing [27,28]. The plateaus where h(qt) is constant correspond to intervals containing
a periodic attractor and the subsequent period doubling cascade (e.g., the period-3 window, clearly
visible in Figure 7). This shows that periodic orbits do not disappear as t increases, however, the new
periodic orbits that are created do not necessarily increase h(qt). The topological entropy in Figure 7
was computed using the general algorithm presented in [9], but see [24] for a simpler and quicker
algorithm adapted to unimodal maps. The small but positive values of h(qt) to the left of tF are due to
the slow convergence of the algorithm.

Figure 6. The function s4(t) for the quadratic family. Jumps occur at the branching points t++++ = 0,
t+−−− = t++−− = t+++− = 1, t+−+− ' 1.3107, t+−−+ = t++−+ ' 1.7549, and t+−++ ' 1.9408.

Figure 7. Topological entropy of qt using the Formula (52) with the logarithm to the base e.
The topological entropy was plotted on the bifurcation diagram for a better understanding of
its characteristics.

5. Application II: Superstable Period Orbits

In Section 4 we studied the solutions of the equation qn
t (x) = 0, where the parameter t was

thought to be fixed. In other words, we were interested in the zeros of a polynomial function of the
variable x and, more particularly, in the values of t for which those zeros were simple. If we fix x
instead, then the solutions of qn

t (x) = 0 are the parametric values t such that x is an n-order preimage
of 0, which is the critical point of qt. If, moreover, x = 0, then the solutions are the parametric values
t for which the critical value is periodic with period n. As explained at the beginning of Section 2.3,
these orbits are called superstable because then the derivative of qn

t at each point of the periodic orbit
is 0 (see Equation (12)). For the quadratic maps, qt(0) = t, so 0 is not a fixed point for t > 0.

Remark 3. If in Section 4 our main concern were the transverse intersections of qn
t (x) with the x-axis,

in this section it will be the transverse intersection of the bisector with the positive root branches (if any).
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In this regard, note that the bisector can intersect a positive root branch φ+,σ(t) at a regular point t0

(i.e., t0 ∈ (t+,σ, 2] = sdom φ+,σ) only once and transversally, from above to below. Otherwise, the root parabola
φ±,−,σ(t) = ±

√
t− φ+,σ(t) would have multiple branching points, contradicting Proposition 9. Singular

points are isolated or at the boundary of smoothness domains (branching points), so the concept of transversal
intersection do not apply to them.

5.1. Symbolic Sequences

To study the superstable periodic orbits of qt, it suffices to consider symbolic orbits. As an
advantage, the results hold also under order-preserving conjugacies, as happens with qt|[−2µ,2µ] and
fµ

∣∣
[0,1] under the affine transformation (18). We come back to this point below.

Given a general orbit (qk
t (x0))

∞
k=0 = (x0, x1, ..., xk, ...), the corresponding symbolic sequence

Σ = (Σ0, Σ1, ..., Σk, ...) is defined as follows:

Σk =


− if xk < 0
C if xk = 0
+ if xk > 0

for k ≥ 0. A symbolic sequence that corresponds to an actual orbit of qt for t = t0 is called admissible
(for t = t0) and have to fulfill certain conditions [29].

Consider a superstable periodic orbit (0, x1, x2, ..., xp−1)
∞ of prime period p ≥ 2, so that xk 6= 0

for k = 1, ..., p − 1. For the time being, we drop the exponent “∞” and rearrange the cycle as
(x1, x2, ..., xp−1, 0) so that the first point is the critical value (also the greatest value) qt(0) = t > 0.
In this case, Σk ∈ {+,−} for 1 ≤ k ≤ p− 1, so that we will fittingly use σ’s instead of Σ’s and write
the pertaining symbolic sequence as (+, σ2, ..., σp−1, C). Therefore, by writing Σ = (+, σ2, ..., σp−1, C)
we do not need to specify that Σ is a superstable cycle of prime period p. The parameter values for
which qt has superstable cycles are discrete because qn

t (0) = 0 is a polynomial equation in t for each n
(see Remark 2); we will see below that there are infinitely many such values and that they accumulate
at the right endpoint of the parametric interval, tmax = 2.

Proposition 11. Let Σ = (+, σ2, ..., σp−1, C) be an admissible cycle for t = t0. Then t0 satisfies the equation

t0 = φ+,−σ2,...,−σp−1(t0). (54)

Equivalently,
φ±,−,−σ2,...,−σp−1(t0) = 0. (55)

Moreover, t0 is a regular point of φ+,−σ2,...,−σp−1(t0), therefore t0 is the branching point of the on-axis root
parabola φ±,−,−σ2,...,−σp−1(t).

Proof. From (i) x1 = qt0(0) = t0, (ii) xk+1 = qt0(xk) = t0 − x2
k , i.e.,

xk = σk
√

t0 − xk+1 for k = 1, 2, ..., p− 1,

and (iii) xp = 0, we obtain

t0 =
√

t0 − x2 =
√

t0 − σ2
√

t0 − x3 = ... =

√
t0 − σ2

√
t0 − ...− σp−1

√
t0 = φ+,−σ2,...,−σp−1(t0).

Alternatively,

t0 = φ+,−σ2,...,−σp−1(t0) ⇔ ±
√

t0 − φ+,−σ2,...,−σp−1(t0) ≡ φ±,−,−σ2,...,−σp−1(t0) = 0.
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Moreover, if t0 is a singular point of φ+,−σ2,...,−σp−1(t0), then by Equation (33) and t0 > 0, it holds
φ−σk+1,...,−σp−1(t0) = 0 for some 1 ≤ k ≤ p− 2, so that

t0 = φ+,−σ2,...,−σp−1(t0) = φ+,−σ2,...,−σk (t0).

It follows,
xk+1 = qk+1

t0
(0) = qk

t0
(t0) = qk

t0
(φ+,−σ2,...,−σk (t0)) = 0

by definition of root branches of rank k, which contradicts that Σk+1 6= C (k + 1 ≤ p− 1).
As explained in Remark 3, root branches have at regular points transversal intersections (if any)

with the bisector. This implies that the branches of the root parabola φ±,−,−σ2,...,−σp−1(t) are defined in
a neighborhood of t0, therefore t0 is a branching point of φ±,−,−σ2,...,−σp−1(t).

By the same token, if there exists no solution of the equation t = φ+,−σ2,...,−σp−1(t),
then the cycle (+, σ2, ..., σp−1, C) is not admissible. So, root branches and their bifurcation points,
Equations (54) and (55), pop up as soon as one learns about superstable cycles. Next we prove the
reverse implication of Proposition 11.

Proposition 12. If the bisector intersects transversally the root branch φ+,σ2,...,σp−1(t) at t0,
then (+,−σ2, ...,−σp−1, C) is an admissible cycle for t = t0.

Proof. Suppose qt0(0) = t0 = φ+,σ2,...,σp−1(t0). Then, similarly to Equations (30) and (31),

q2
t0
(0) = qt0(φ+,σ2,...,σp−1(t0)) = −φσ2,...,σp−1(t0) = φ−σ2,σ3,...,σp−1(t0), ...

qk
t0
(0) = qt0(φ−σk−1,σk ,...,σp−1(t0)) = −φσk ,...,σp−1(t0) = φ−σk ,σk+1,...,σp−1(t0)

for k = 3, ..., p− 1, and

qp
t0
(0) = qt0(φ−σp−1(t0)) = t0 − φ−σp−1(t0)

2 = t0 − (−σp−1
√

t0)
2 = 0.

It follows that the points

(φ+,σ2,...,σp−1(t0), φ−σ2,σ3,...,σp−1(t0), φ−σ3,σ4,...,σp−1(t0), ..., φ−σp−1(t0), 0)

build a periodic orbit. Its symbolic sequence Σ = (+, Σ2, ..., Σp−1, C) is determined by the signs of
φ−σk ,σk+1,...,σp−1(t0) for 2 ≤ k ≤ p− 1. Since t0 is necessarily a regular point of φ+,σ2,...,σp−1(t) (Remark 3),
it holds φ−σk ,σk+1,...,σp−1(t0) 6= 0 for 2 ≤ k ≤ p− 1, and hence Σk = −σk ∈ {+,−}.

Table 2 lists the superstable cycles of qt of prime periods p = 1, 2, ...6 (cycles written in abridged
notation). The cycles of periods 2 and 3 are due to the transverse intersections of the bisector with
φ+(t) =

√
t at t = 1 and with φ++(t) =

√
t +
√

t at t ' 1.7549. Figure 8 illustrates where the
superstable cycles of prime periods 4 and 5 come from.

Table 2. Superstable cycles of periods 1 to 6.

Period Superstable Cycles

1 C
2 +C
3 +− C
4 +−+C, +{−}2C
5 +− {+}2C, +{−}2 + C, +{−}3C
6 +− {+}3C, +{−}2 +−C, +{−}2{+}2C, +{−}3 + C, +{−}4C
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Figure 8. (a) Non-transverse intersections (“T-crossings”) of the bisector with φ++−(t) and φ+−−(t)
at t = 1, and transverse intersections of the bisector with (bottom to top) φ++−(t) at t ' 1.3107
and φ+++(t) at t ' 1.9408. Proposition 12 entails that q1.3107... has the cycle (+,−,+, C) and q1.9408...

the cycle (+,−,−, C), whereas q1 has the cycle (+, C). (b) Regular intersections of the bisector with
(bottom to top) φ++−−(t) at t ' 1.6254, φ+++−(t) at t ' 1.8607, and φ++++(t) at t ' 1.9854.
Proposition 12 entails that q1.6254..., q1.8607... and q1.9854... have the cycles (+,−,+,+, C), (+,−,−,+, C),
and (+,−,−,−, C), respectively.

Proposition 13. The quadratic family has superstable cycles of arbitrary length.

Proof. First, sdom φ{+}n = (0, 2] for all n ≥ 1, so all t > 0 are regular points of φ{+}n(t). Second,
the bisector and φ{+}n(t) always intersect transversally at a single point t∗n ∈ [1, 2) because (i)
φ{+}n(t) > t for 0 < t < 1, (ii) φ{+}n(2) < φ{+}∞(2) = 2 (see Equation (42)) and (iii) φ{+}n(t) is
∩-convex. Moreover, t∗n → 2 strictly monotonically as n → ∞ because φ{+}n(t) < φ{+}n+1(t) for all
n ≥ 1. The point t∗n is the branching point of the root parabola φ±,−,{+}n−1(t), i.e., t∗n = t±,−,{+}n−1 in
the notation of Sections 3 and 4.

According to Proposition 11, Equation (55), the parametric values of the superstable cycles of
prime period p ≥ 2 are the branching points of certain on-axis parabolas of the form φ±,−,α(t) with
|α| = p − 2. These parabolas originate precisely from the transversal intersections of the bisector
with the root branches φ+,α(t) (if any). As in Sections 3 and 4, those branching points are denoted by
t±,−,α (= t+,−,α = t−,−,α). Therefore, the parameters of the superstable cycles can be ordered using
the general ordering of the root branches, Proposition 7; alternatively, t±,−,α < t±,−,β if and only if
φ+,−,α(2) > φ+,−,β(2). See Figure 9 for the on-axis parabolas of ranks 2–5; in case of equal branching
points (e.g., φ±−(t) and φ±−−−(t)), only the lowest rank is shown because it corresponds to the prime
period. The branching points are ordered as follows:

t±− < t±−+− < t±−+−− < t±−+ < t±−++− < t±−++ < t±−+++ (56)

corresponding, respectively, to the superstable cycles

+C, +−+C, +− {+}2C, +− C, +{−}2 + C, +{−}2C, +{−}3C

listed in Table 2 for prime periods 2–5. As shown in the proof of Proposition 13, the points t±,α (ordered
as in Proposition 7) converge to 2 as |α| → ∞.
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Figure 9. On-axis root parabolas of ranks 2–5. In case of parabolas with coinciding branching points,
only the parabola with the lowest rank (corresponding to the prime period of the superstable cycle)
is shown. The branching points (see Equation (56)) are: t±− = 1, t±−+− ' 1.3107, t±−+−− ' 1.6254,
t±−+ ' 1.7549, t±−++− ' 1.8607, t±−++ ' 1.9408, and t±−+++ ' 1.9854. The first four parameter
values (periods 2, 4, 5 and 3) are clearly visible in the bifurcation diagram, Figure 3, at the intersection
of periodic attractors with the axis x = 0.

The superstable cycles of the quadratic family (and other three parametric families of
transformations of the interval) were numerically studied in [30]. According to this paper, the number
of superstable cycles of the quadratic family is as indicated in the following Table 3.

Table 3. Number of superstable cycles of the quadratic family.

Period 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# sup. cycles 1 1 2 3 5 9 16 28 51 93 170 315 585 1091

The parameter t of a superstable cycle (+, σ2, ..., σn, C) can be numerically computed by means of
the computational loop

tν+1 = φ+,−σ2,...,−σn(tν),

ν = 0, 1, ... until (i) |tν+1 − φ+,−σ2,...,−σn(tν)| < ε, where ε > 0 is the desired precision, or (ii) a prefixed
maximum number of loops νmax is reached, flagging that the convergence tν → t+,−σ2,...,−σn is too slow.

Theorem 3. (a) A symbolic cycle Σ = (+, σ2, ..., σs−1, C) can be admissible only for one value of t. (b) If Σ is
admissible for t = t1 and Σ′ = (+, ρ2, ..., ρr−1, C) 6= Σ is admissible for t = t2, then t1 6= t2.

Proof. (a) Suppose (+, σ2, ..., σs−1, C) is admissible for two different parametric values t1 and t2.
By Proposition 11, t1 and t2 are then two branching points of φ+,−,−σ2,...,−σs−1(t), which contradicts
Proposition 9.

(b) Suppose by contradiction that t1 = t2 = t0. By Proposition 11,

t0 = φ+,−σ2,...,−σs−1(t0) = φ+,−ρ2,...,−ρr−1(t0),

where t0 is a regular point. On the other hand, according to Proposition 7, root functions can coincide
only at singular points.

Remark 4. The main ingredient in the proof of Theorem 3 is the fact that sdom φσ is a half-interval (tσ, 2]
(Proposition 9), from which Milnor’s Monotonicity Conjecture (Theorem 2) was derived. Reciprocally,
from Theorem 3 it follows that the bisector can transversally intersect a positive root branch φ+,σ(t) only
once. In turn, it recursively follows from this that the simplicity domains of the root branches are half-intervals
and, hence, Milnor’s Monotonicity Conjecture.

Two maps of the interval f (x) and g(y) are called combinatorially equivalent if they are
conjugate via an order-preserving transformation ϕ(x). For instance, qt(x) and cq1/c(y) = 1− cy2
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are combinatorially equivalent via ϕ(x) = 1
t x and c = t, whereas qt(x) and −q−c(y) = c + y2 are

conjugate via ϕ(x) = −x and c = −t, but they are not combinatorially equivalent because ϕ(x)
reverses the order in this case. It is plain that combinatorially equivalent maps have the same symbolic
sequences for corresponding initial conditions x0 and ϕ(x0).

Theorem 4 (Thurston’s Rigidity [15]). Consider qt1 and qt2 for which their critical points c = 0 have finite
orbits O and O′. If qt1 and qt2 are combinatorially equivalent, then t1 = t2.

Proof. Suppose that qt1 and qt2 are combinatorially equivalent via an order-preserving conjugacy ϕ.
Then, the symbolic sequence Σ ofO and the symbolic sequence Σ′ of ϕ(O) = O′ are equal. Apply now
Theorem 3(a) to conclude t1 = t2.

As mentioned in the Introduction, Thurston’s Rigidity implies Milnor’s Monotonicity Conjecture
for the quadratic maps [15]. In Remark 4 we sketched how this derivation could be done using
Theorem 3, which is a sort of symbolic version of Thurston’s Rigidity.

5.2. Dark Lines and the Misiurewicz Points

To wrap up our excursion into the superstable cycles of the quadratic family, let us remind that
the “dark lines” in the bifurcation diagram (Figure 3) that go through the chaotic regions or build
their boundaries are determined by the superstable periodic orbits. To briefly study those dark lines,
we resort again to the polynomials Pn(t) ≡ qn

t (0) introduced in Equations (47) and (49).
We have already discussed in Section 5.1 how to pinpoint superstable cycles (0, P1(t), ..., Pp−1(t))∞

in the parametric interval using symbolic sequences and root branches. More generally, consider orbits
of 0 that are eventually periodic, that is:

(Pn(t))∞
n=0 = (0, t, P2(t), ..., Ph−1(t), (Ph(t), Ph+1(t), ..., Ph+T−1(t))∞). (57)

Such parametric values are called Misiurewicz points [31] and denoted as Mh,T , where we assume that
h ≥ 1 is the minimal length of the preperiodic ”tail” (the preperiod) and T ≥ 1 is the prime period of
the periodic cycle. Therefore, if Mh,T is a Misiurewicz point, then

Ph(Mh,T) = Ph+T(Mh,T) = Ph+2T(Mh,T) = ..., (58)

so that the curves Ph+kT(t), k ≥ 0, meet at t = Mh,T in the (t, x)-plane.
For example,

(Pn(2))∞
n=0 = (0, 2, (−2)∞), (59)

i.e., the orbit of 0 hits a (repelling) fixed point after only two iterations. Comparison of Equations (59)
and (57) shows that 2 = M2,1, therefore, all curves Pn(t) with n ≥ 2 meet at t = 2 (see Equation (51)).

The graphs of P0(t), ..., P7(t) are shown in Figure 10. As a first observation, one can recognize the
main features of the chaotic bands in the bifurcation diagram of the quadratic family, in particular
band merging. We also see that the curves x = Pn(t) intersect transversally or tangentially; all these
intersections are related to important aspects of the dynamic. Chaos bands merge where those curves
intersect transversally, while periodic windows open where they intersect tangentially the upper and
lower edges. Moreover, the functions Pn(t) intersect the t-axis precisely at the parameter values for
which 0 is periodic:

Pn(t0) ≡ qn
t0
(0) = 0 ⇔ φσ1,...,σn(t0) = 0.

Besides Pn(0) = 0 for all n ≥ 0 (Equation (50)) and Pn(1) = 0 for all n ≥ 1 (Equation (47)), the following
zeros of Pn(t) can be read in Figure 9: P3(t) = 0 at t ' 1.7549; P4(t) = 0 at t = 1.3107 and 1.9408;
and P5(t) = 0 at t = 1.6254, 1.8607 and 1.9854.
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Figure 10. The polynomials Pn(t) := qn
t (0) for 0 ≤ n ≤ 7.

As way of illustration, we will calculate M3,1, the perhaps most prominent Misiurewicz point
in Figure 10, which corresponds to the merging of the two chaotic bands into a single band.
By Equation (58) with h = 3 and T = 1,

P3(M3,1) = P4(M3,1) = P5(M3,1) = ...

From P3(M3,1) = P4(M3,1) and Equation (49) if follows that M3,1 is the unique real solution in (0, 2) of
the equation

4− 6t + 6t2 − 4t3 + t4 = 0,

namely, M3,1 = 1.5436890... For more in-depth information, the interested reader is referred to [32,33].
Among the many remarkable properties of the Misiurewicz points, we highlight only the following

two: (i) the periodic cycle (Ph(Mh,T), Ph+1(Mh,T), ..., Ph+T−1(Mh,T))
∞ in Equation (57) is repelling [11],

and (ii) qt(x) has an absolutely continuous invariant measure for each t = Mh,T [34,35].

6. Conclusions

In the previous sections we have revisited two classical topics of the continuous dynamics of
interval maps: entropy monotonicity (Section 4) and superstable cycles (Section 5) for the quadratic
family qt(x) (Section 3). The novelty consists in the starting point: we use Equation (52) for h(qt),
the topological entropy of qt, where sn(t) is the number of transversal intersections of the polynomial
curves qn

t (x) with the x-axis. Equation (52) and several numerical schemes for its computation were
derived in [7–9]. This approach leads directly to the root functions (φσ(t)), bifurcation points (tσ) and
smoothness domains (sdom φσ) studied in Sections 3.1 and 3.2. It is precisely the structure of the
smoothness domains, sdom φσ = (tσ, 2] (Proposition 9), which implies that sn(t) is a nondecreasing
staircase function for each n ≥ 1 (Theorem 1) and, in turn, that the function t 7→ h(qt) is monotone
(Theorem 2). Unlike existing proofs [3,11–13], Theorem 2 proves Milnor’s Monotonicity Conjecture via
real analysis. This also shows that the transversal intersections of a multimodal map and its iterates
with the critical lines is a useful tool in one-dimensional dynamics. Sections 2.2 and 4 contains further
details on Milnor’s Monotonicity Conjecture and its generalization to multimodal maps.

In Section 5.1 we derived some basic results on the superstable cycles of the quadratic family,
in particular Theorem 3, which is a sort of symbolic version of Thurston Rigidity (Theorem 4).
The commonalities between entropy monotonicity and the superstable cycles of the quadratic maps go
beyond the techniques used, namely, root branches, bifurcation points, transversality, and a geometrical
language. There is also a flow of ideas in both directions. We started with the topological entropy
and worked our way towards the superstable cycles, but the other direction works too, although we
only indicated this possibility in Remark 4. We also made a brief excursion into the preperiodic orbits
of the critical point in Section 5.2 (Misiurewicz points). In conclusion, both topics complement and
intertwine in remarkable ways, as well as being interesting on their own.
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