
.

Supplementary Materials for
A Multi-Scale Approach to Modeling

E. coli Chemotaxis

Eran Agmon1 & Ryan K. Spangler1

1 Department of Bioengineering, Stanford University, Stanford, CA 94305, USA

Correspondence: eagmon@stanford.edu

September 28, 2020

Contents

1 Introduction 2

2 Processes 2
2.1 Multi-Body Physics . 2
2.2 Diffusion . 3
2.3 Metabolism . 3
2.4 Convenience Kinetics . 4

2.4.1 Configuration Data: Glucose–Lactose Transport 4
2.5 ODE Expression . 5

2.5.1 Configuration Data: LacY Expression 6
2.6 Template-Based Stochastic Gene Expression 6

2.6.1 Configuration Data: Flagella Chromosome 7
2.7 Flagella Motor . 8
2.8 Membrane Potential . 9
2.9 Chemoreceptor Cluster . 10

3 Composites 11

4 Experiments 13

References 13

1

1 Introduction

This supplement provides additional details about all of the process, composites, and experi-
ments used in this paper. To support multi-scale development with many processes developed
and combined by large communities of scientists, Vivarium applies principles of modular-
ity to its software design by breaking up functionality into a collection of Python libraries.
The library vivarium-core is the simulation engine, which provides the interface, com-
bines processes into composites, and executes them in experiments. The core engine can be
found at the following url: https://github.com/vivarium-collective/vivarium-core.
Instructions on installation and setup can be found at the online documentation: https:

//vivarium-core.readthedocs.io/en/latest/.
Process libraries are used to develop specific Vivarium projects with processes and com-

posites that share the Vivarium interface. When released as a Python package, these libraries
can be imported into other projects, re-configured, combined with other processes, and sim-
ulated in large experiments.

Two process libraries were used to develop the models described in this paper:

• vivarium-chemotaxis includes chemotaxis-specific processes built for this paper and
all of the paper’s experiments:
https://github.com/vivarium-collective/vivarium-chemotaxis.

• vivarium-cell provides several configurable process, which can be passed parameters
and combined with other processes: https://github.com/vivarium-collective/

vivarium-cell.

2 Processes

This section provides an overview of each process used in the paper in the order they were
introduced. This includes their mathematical representation, the Vivarium library they were
developed in, their module path within the library, and configuration data (such as parame-
ters) used in this paper. Config functions are special functions used to retrieve configuration
data; they are typically placed within the directory of their associated process/composite.
If config functions are listed as ‘default’, that means there is no separate function available
at present and either the default parameters are used or parameters are passed in directly.

There are several additional ‘helper’ processes not listed here, including derive globals,
derive concentrations, derive counts, tree mass, meta division, divide volume,
timeline, and nonspatial environment. For the curious readers, these are all available in
the Vivarium repositories.

2.1 Multi-Body Physics

Multibody uses a wrapper around an open-source physics engine called pymunk [1]. This
simulates agents as rigid bodies with a shape, location, orientation, length, width, mass,
and motile forces that can be updated from within the agents; an example of these forces is

2

https://github.com/vivarium-collective/vivarium-core
https://vivarium-core.readthedocs.io/en/latest/
https://vivarium-core.readthedocs.io/en/latest/
https://github.com/vivarium-collective/vivarium-chemotaxis
https://github.com/vivarium-collective/vivarium-cell
https://github.com/vivarium-collective/vivarium-cell

described under Flagella Motor. The multi-body process handles their collisions and applies
their motile forces, external viscous forces, and thermal jitter.

Multi-Body Physics
name Multibody

module path cell.processes.multibody_physics

repository vivarium-cell

config function default

2.2 Diffusion

DiffusionField operates on 2D numpy arrays that represent molecular concentration fields.
A diffusion operator spreads these concentrations towards a homogeneous state based on
provided diffusion coefficients. Agents have a location, which can be updated by Multibody,
associated with locations on the fields based on their center points. Agents update the fields
with their own updaters, applying uptake and secretion directly to the concentrations fields
at their given locations; this drives the fields away from homogeneity. DiffusionField

updates the agents’ received local environmental state within its update function.

Diffusion
name DiffusionField

module path cell.processes.diffusion_field

repository vivarium-cell

config function default

2.3 Metabolism

Metabolism uses a wrapper around COBRA [2]—an established library for flux balance
analysis (FBA). It can load large genome-scale models from the BiGG model database [6],
which includes over 100 metabolic models of different species.

FBA uses linear optimization to determine fluxes in the absence of kinetic parameters. It
accomplishes this by using steady-state assumptions to declare Sv = 0 with a distribution of
fluxes v across a stoichiometric network depicted by matrix S. Constraints are imposed on
v, setting their upper and lower bounds. Then, an objective function is optimized—a typical
objective function is the maximization of biomass based on known relative composition of
required metabolites.

Metabolism augments the COBRA solver to make a type of dynamic FBA (dFBA) [12],
which iterates on the solver in a piece-wise manner with updated constraints. Constraints
come from external nutrient availability, regulation, and flux constraints coming through
the process’s flux bounds port. This flux bounds port can be used by other processes (in
this paper, ConvenienceKinetics) to set constraints on metabolism. Additionally, rather
than the standard use of the biomass objective to increase a single variable called biomass,
Metabolism takes the constituent metabolites that make up the biomass objective and ap-
plies them to internal pools of metabolites (see Figure 5a). This allows other processes to
utilize those metabolites.

3

The paper configures Metabolism with iAF1260b—a BiGG model of E. coli strain K-12,
substrain MG1655. iAF1260b includes 2382 reactions, 1261 genes, and 166 metabolites.

Metabolism
name Metabolism

module path cell.processes.metabolism

repository vivarium-cell

config function get_iAF1260b_config

2.4 Convenience Kinetics

The minimal form of Michaelis–Menten kinetics defines flux rates, v, as a function of sub-
strate concentrations, [S], and enzyme concentrations, [E], with parameters for the catalytic
rate of a single enzyme, kcat, and substrates’ affinities, Km:

v =
kcat[E][S]

Km + [S]

Convenience kinetics [8] is a generalized form of the Michaelis–Menten kinetic rate laws,
which supports all possible kinetic relations in a single equation:

v =
[E](kcat,f ∗

∏
i a

αi
i − kcat,r ∗

∏
j b

βj
j)∏

i(
∑αi

m=0 a
m
i) +

∏
j(
∑βj

m=0 b
m
j)− 1 +

∏
k(
∑γk

m=0 c
m
k)

with αi as the stoichiometric coefficient of substrate i, βj as the coefficient of product j,

ai = [i]
Km,i

as the normalized concentration of i, bj = [j]
Km,j

as the normalized concentration

of j, and ck = [k]
Km,k

as the normalized concentration of competitor k. The advantage this

provides for computational models lies in the products,
∏

, which can be evaluated in loops
based on the number of cofactors and competitors in the reaction network.

2.4.1 Configuration Data: Glucose–Lactose Transport

ConvenienceKinetics accepts configuration data for reactions, which is the stoichiometry
of the reactions, and kinetic parameters, which are the kcat and KM for those reactions.
The config function get glucose lactose transport config returns the following data for
the glucose exchange reaction, EX glc D e, and the lactose exchange reaction, EX lcts e.
Individual states are annotated parentheses with (port id, variable name)—this is how the
ConvenienceKinetics process sees states in its update function. Kinetic parameters that
have a state correspond to the KM for that state.

reactions:

• EX glc D e:

stoichiometry:

4

(internal, g6p c): 1.0

(external, glc D e): -1.0

(internal, pep c): -1.0

(internal, pyr c): 1.0

catalyzed by:

(internal, EIIglc)

• EX lcts e:

stoichiometry:

(external, lcts e): -1.0

(internal, lcts p): 1.0

catalyzed by:

((internal, LacY)

kinetic parameters:

• EX glc D e:

(internal, EIIglc):

(external, glc D e): 1× 10−1 mM

(internal, pep c): None

kcat f: 1× 102/s

• EX lcts e:

(internal, LacY):

(external, lcts e): 1× 10−1mM

kcat f: 1× 102/s

2.5 ODE Expression

OdeExpression has equations for mRNA and protein production:

dM/dt = kM − dM ∗M + ξ

dP/dt = kP ∗M − dP ∗ P

M is the concentration of mRNA, kM is the transcription rate, and dM is the transcript
degradation rate. P is the concentration of the protein translated from M , kP is the trans-
lation rate, dP is the protein degradation rate, and ξ is a transcriptional leak that generates
small, spontaneous bursts of mRNA expression.

5

2.5.1 Configuration Data: LacY Expression

LacY expression was configured with the following parameters:

transcription rates:

lacy RNA: 5× 10−6 mM/s

translation rates:

LacY: 2× 10−4 mM/s

degradation rates:

lacy RNA: 3× 10−3 mM/s

LacY: 3× 10−5 mM/s

regulation:

lacy RNA:

‘if [(external, glc D e) > 0.05mM or (internal, lcts p) < 0.05mM]’

ODE Expression
name ODE_expression

module path cell.processes.ode_expression

repository vivarium-cell

config function get_lacY_expression_config

2.6 Template-Based Stochastic Gene Expression

Stochastic gene expression processes include Transcription, Translation, and
Complexation. These load in several forms of configuration data, including gene sequences,
protein sequences, transcription unit structure, binding affinities, and complexation stoi-
chiometry. The processes simulate expression from DNA to protein complexes with stochas-
tic simulations provided by an open-source Gillespie algorithm solver called arrow (https:
//github.com/CovertLab/arrow), which was independently developed by R.K.S. The pro-
cesses use arrows to simulate the binding and unbinding of ribosomes onto genes and RNAP
onto RNA templates, as well as the complexation of the resulting proteins.

The Gillespie algorithm is a stochastic approach to numerically solve discrete chemical
systems with known reaction rates. At each iteration, the algorithm calculates the propensi-
ties for each reaction given a rate and the counts of the reactants, then selects one reaction
to occur and determines the interval of time for the current reaction.

The propensity atotal of any reaction to occur is defined as the following, with M total
reactions and a as the reaction activity:

atotal =
M∑
j=1

aj

6

https://github.com/CovertLab/arrow
https://github.com/CovertLab/arrow

To find τ , the time to the next reaction, rand1 is generated from a uniform distribution
between 0 and 1, and the following equation is applied:

τ =
1

atotal
ln

(
1

rand1

)
The reaction that occurs at time τ is found by generating another random number be-

tween 0 and 1, rand2, and identifying the smallest q such that:

q∑
j=1

aj > atotal · rand2

Once bound onto a template, a polymerase goes over provided curated sequences with a
specialized polymerize function that reads the sequence at a provided elongation rate and
pulls the required based pairs out of the available internal pools—if a base pair is absent,
this stalls expression. Energy requirements for expression are based on ATP hydrolysis for
each synthesized or degraded base pair [11], which is tracked and updated. The parameter
polymerase occlusion (set in the paper to 50 base pairs for ribosomes and RNAP) determines
how far down the template a polymerase must have moved before another one can bind to
the promoter.

2.6.1 Configuration Data: Flagella Chromosome

FlagellaChromosome is a knowledge base that holds many different types of data about the
flagellar genes: genome sequence, transcription unit structure, affinities, protein sequence,
complexation, and reactions. Once instantiated as object flagella chromosome, these con-
figuration data can be accessed and passed into the expression processes.

flagella chromosome.sequence contains the entirety of the E. coli genome’s nucleotide
sequence, loaded from the FASTA file: Escherichia coli str. K-12 substr. MG1655 genome
assembly ASM584v2.

flagella chromosome.genes contains the transcription unit structure of all flagellar
genes, which were curated from EcoCyc. [5]. The following list shows all included operons
followed by a list of their cluster of genes.

• flhDC: [flhD, flhC]

• fliL: [fliL, fliM, fliN, fliO, fliP, fliQ, fliR]

• fliE: [fliE]

• fliF: [fliF, fliG, fliH, fliI, fliJ, fliK]

• flgA: [flgA, flgM, flgN]

• flgB: [flgB, flgC, flgD, flgE, flgF, flgG, flgH, flgI, flgJ]

• flhB: [flhB, flhA, flhE]

• fliA: [fliA, fliZ]

• flgE: [flgE]

7

• fliD: [fliD, fliS, fliT]

• flgK: [flgK, flgL]

• fliC: [fliC]

• tar: [tar, tap, cheR, cheB, cheY, cheZ]

• motA: [motA, motB, cheA, cheW]

• flgM: [flgM, flgN]

Each operon is regulated by a promoter, which has several relevant values included in
flagella chromosome.promoters, which were primarily taken from EcoCyc [5]. This pro-
moter field includes promoter position on the E. coli genome, terminator positions, direction
of transcription, and terminator affinities.

flagella chromosome.protein sequences includes all protein sequences for the flagel-
lar genes.

flagella chromosome.promoter affinities maps from the promoter’s binding state
to the binding affinity of RNA polymerase. The binding affinities for flagellar transcription
are based on a binary SUM gate and activation coefficients of transcription factors FlhDC
and FliA [4].

Template-Based Stochastic Gene Expression

names
Transcription

Translation

Complexation

module path
cell.processes.transcription

cell.processes.translation

cell.processes.complexation

repository vivarium-cell

config function FlagellaChromosome

2.7 Flagella Motor

The flagella motor process is a combination of several published models. It models individ-
ual flagella as sub-compartments with rotational states and controls the number of flagellar
sub-compartments based on the counts of flagellar complexes, which can be controlled by
other processes, such as Translation. The total motile activity—a “run” or “tumble”—is a
function of the total flagellar activity.

The concentration of phosphorylated CheY, [CheYP], is found with a steady-state solu-
tion of a differential equation from [7; 13]. The equation includes the activity of the chemore-
ceptor cluster Pon from ReceptorCluster, the rates of phosphate transfer from CheAP to
CheY kY = 100µM−1s−1, CheZ’s dephosphorylation rate of CheYP kZ = 30.0/[CheZ]s−1,
and rate constant γ = 0.1:

[CheYP] =

(
kY [CheAP][CheYtotal]

kY [CheAP] + kZ [CheZ] + γ

)
8

The rotational states of each flagellum are modeled as a stochastic bistable system [10].
The transition rates between CCW and CW are functions of [CheYP], and arise from thermal
fluctuations that push the flagella over free energy barriers between their conformational
states. The following equation finds the free energy barrier, ∆G, with parameters for the
free energy barrier from CCW→CW g0 = 40kBT and the free energy barrier for CW→CCW
g1 = 40kBT ; KD = 3.06µM is the binding constant of CheYP to FliM at the base of the
flagellar motor:

∆G =
g0

4
− g1

2

(
CheYP

CheYP +KD

)
The switching rates of individual flagella, kCW→CCW and kCCW→CW , are given by the

following, with ω as the characteristic motor switch time:

kCW→CCW = ω ∗ e∆G

kCCW→CW = ω ∗ e−∆G

With all of the individual flagella in a given rotational state, the veto model of motor
activity determines the overall motile state of the cell [9]. Any flagella rotating CW are
enough for a “tumble” state; if all are CCW, then the cell is in a “run”. The generated thrust
is a logarithmic function of the number of flagella and PMF. A run generates this thrust at
an angle of 0; a tumble generates it at a random angle. In this paper, the environmental
Multibody process reads these thrusts and angles and applies them at the back end of each
corresponding agent’s body.

Flagella Motor
name FlagellaMotor

module path chemotaxis.processes.flagella_motor

repository vivarium-chemotaxis

config function default

2.8 Membrane Potential

This process is used to calculate the proton-motive force from internal and external concen-
trations of ions. The proton-motive force, ∆p, is comprised of two terms, ∆Ψ and ∆pH:

∆p = ∆Ψ + ∆pH

The Goldman equation gives membrane potential, ∆Ψ:

∆Ψ =
RT

F
ln

(∑n
i PCi

[Ci]out +
∑m

j PAj
[Ai]in∑n

i PCi
[Ci]in +

∑m
j PAj

[Ai]out

)
with positively charged cations C, negatively charged anions A, and these ions’ permeabilities
P . Constant R is the ideal gas constant, T is temperature in Kelvin, and F is Faraday’s
constant.

9

The transmembrane pH difference, ∆pH, is given by−2.3 kT/e, with Boltzmann constant
k, temperature T , and proton charge e. This paper assumed a constant ∆pH = −50 based
on measurements for cells grown at a pH of 7.

Membrane Potential
name MembranePotential

module path chemotaxis.processes.membrane_potential

repository vivarium-chemotaxis

config function default

2.9 Chemoreceptor Cluster

The model of chemoreceptor clusters comes from [3]. This Monod–Wyman–Changeux model
includes receptor homodimers, r, with parameters for Tar (r = Tar) and Tsr (r = Tsr).
Each homodimer can be in either an on or off state, and can be either bound or not bound
to ligand L; therefore, each has four possible free-energy values.

A piece-wise linear model calculates free energy offsets εr(m) from the receptors’ average
number of methyl groups m = 0, ..., 8. Given the offsets, the following equation determines
the free energy fr(m) of each receptor r with dissociation rates of the ligand from receptor

in on/off states, K
on/off
r :

fr = εr(m) + log

(
1 + [L]/Koff

r

1 + [L]/Kon
r

)
The total free energy is the sum of the individual free-energy difference by their relative

counts: F = nTarfTar + nTsrfTsr. This determines the rate of receptor activation, Pon:

Pon =
1

1 + eF

Receptor adaption comes from the changing methylation levels m based on the concen-
tration of methylating enzyme CheR and demethylating enzyme CheB, cluster activity Pon,
methylation and demethylation rates kmeth and kdemeth, and adaptation rate kadapt:

dm

dt
= kadapt(kmeth(1− Pon)[CheR]− kdemethPon[CheB])

Parameters from [3] were used: nTar = 6, nTsr = 12, Koff
Tar = 0.02, Kon

Tar = 0.5, Koff
Tsr =

100.0, Kon
Tsr = 10e6, kmeth = 0.0625, kdemeth = 0.0714.

Chemoreceptor Cluster
name ReceptorCluster

module path chemotaxis.processes.chemoreceptor_cluster

repository vivarium-chemotaxis

config function default

10

3 Composites

The primary focus of the main text was the composition of the prior listed processes into
compartments. Since much emphasis has been placed on that methodology, this supplemen-
tary section on composites is primarily to provide information on where to find the composite
objects in order to simulate them.

The topologies of each composite are accessible online at the provided module path. The
following example of a topology for Lattice demonstrates the general form—an embedded
python dictionary with keys at the top level for each process name, with subdictionaries that
connect their ports to declared stores. Each process—in this case, multi-body and diffusion—
maps its ports to a store using a path relative to the compartment with a python tuple. If
the store is at the same compartment level as the process, the path is just (‘store name’,);
to go up one level, a boundary store can use (‘..’, ‘store name’,), or to go down one
level, (‘path to’, ‘store name’).

lattice topology = {

‘multibody’: {

‘agents’: (‘agents’,)},

‘diffusion’: {

‘agents’: (‘agents’,),

‘fields’: (‘fields’,)}}

Lattice Environment
name Lattice

module path cell.composites.lattice

processes
Multibody

DiffusionField

repository vivarium-cell

config function make_lattice_config

Static Lattice
name StaticLattice

module path cell.composites.static_lattice

processes
Multibody

StaticField

repository vivarium-cell

config function default

11

Growth Division
name GrowthDivision

module path cell/composites/growth_division.py

processes
GrowthProtein

ConvenienceKinetics

MinimalExpression

repository vivarium-cell

config function default

Transport Metabolism Expression
name TransportMetabolismExpression

module path chemotaxis/composites/transport_metabolism.py

processes
Metabolism

ConvenienceKinetics

ODE_expression

repository vivarium-chemotaxis

config function default

Flagella Expression Metabolism
name FlagellaExpressionMetabolism

module path chemotaxis/composites/flagella_expression.py

processes

Metabolism

ConvenienceKinetics

Transcription

Translation

Complexation

Degradation

repository vivarium-chemotaxis

config function default

12

Chemotaxis Master
name ChemotaxisMaster

module path chemotaxis/composites/chemotaxis_master.py

processes

Metabolism

ConvenienceKinetics

Transcription

Translation

Complexation

Degradation

FlagellaMotor

MembranePotential

ReceptorCluster

repository vivarium-chemotaxis

config function default

4 Experiments

All experiments described and plotted in this paper are available in the vivarium-chemotaxis
github repository, in the file: chemotaxis/experiments/paper_experiments.py. There is
a well-commented function for every figure shown in the paper, with in-line comments that
outline how the processes, composites, and experiments are configured.

To run these from the command line within the repository:

$ python chemotaxis/experiments/paper_experiments.py [exp_id]

exp_id corresponds to a figure number from the paper. These figure numbers are listed here,
along with the processes/composites they use:

• 3b – GrowthDivision and Lattice

• 5a – Metabolism

• 5b – TransportMetabolismExpression

• 5c – TransportMetabolismExpression and Lattice

• 6a – FlagellaExpressionMetabolism

• 6b – FlagellaExpressionMetabolism

• 6c – FlagellaExpressionMetabolism and Lattice

• 7a – FlagellaMotor

• 7b – ReceptorCluster

• 7c – ChemotaxisMaster

• 7d – ChemotaxisMaster and StaticLattice

13

References

[1] Blomqvist, V. (2007–2019). Pymunk. http://www.pymunk.org/.

[2] Ebrahim, A., Lerman, J. A., Palsson, B. O., and Hyduke, D. R. (2013). Cobrapy:
constraints-based reconstruction and analysis for python. BMC systems biology, 7(1):74.

[3] Endres, R. G. and Wingreen, N. S. (2006). Precise adaptation in bacterial chemo-
taxis through assistance neighborhoods. Proceedings of the National Academy of Sciences,
103(35):13040–13044.

[4] Kalir, S. and Alon, U. (2004). Using a quantitative blueprint to reprogram the dynamics
of the flagella gene network. Cell, 117(6):713–720.

[5] Keseler, I. M., Mackie, A., Santos-Zavaleta, A., Billington, R., Bonavides-Mart́ınez, C.,
Caspi, R., Fulcher, C., Gama-Castro, S., Kothari, A., Krummenacker, M., et al. (2017).
The ecocyc database: reflecting new knowledge about escherichia coli k-12. Nucleic acids
research, 45(D1):D543–D550.

[6] King, Z. A., Lu, J., Dräger, A., Miller, P., Federowicz, S., Lerman, J. A., Ebrahim,
A., Palsson, B. O., and Lewis, N. E. (2016). Bigg models: A platform for integrating,
standardizing and sharing genome-scale models. Nucleic acids research, 44(D1):D515–
D522.

[7] Kollmann, M., Løvdok, L., Bartholomé, K., Timmer, J., and Sourjik, V. (2005). Design
principles of a bacterial signalling network. Nature, 438(7067):504–507.

[8] Liebermeister, W. and Klipp, E. (2006). Bringing metabolic networks to life: integration
of kinetic, metabolic, and proteomic data. Theoretical Biology and Medical Modelling,
3(1):42.

[9] Mears, P. J., Koirala, S., Rao, C. V., Golding, I., and Chemla, Y. R. (2014). Escherichia
coli swimming is robust against variations in flagellar number. Elife, 3:e01916.

[10] Sneddon, M. W., Pontius, W., and Emonet, T. (2012). Stochastic coordination of multi-
ple actuators reduces latency and improves chemotactic response in bacteria. Proceedings
of the National Academy of Sciences, 109(3):805–810.

[11] Thornburg, Z. R., Melo, M. C., Bianchi, D., Brier, T. A., Crotty, C., Breuer, M., Smith,
H. O., Hutchison III, C. A., Glass, J. I., and Luthey-Schulten, Z. (2019). Kinetic modeling
of the genetic information processes in a minimal cell. Frontiers in Molecular Biosciences,
6.

[12] Varma, A. and Palsson, B. O. (1994). Stoichiometric flux balance models quantitatively
predict growth and metabolic by-product secretion in wild-type escherichia coli w3110.
Applied and environmental microbiology, 60(10):3724–3731.

[13] Vladimirov, N., Løvdok, L., Lebiedz, D., and Sourjik, V. (2008). Dependence of bacterial
chemotaxis on gradient shape and adaptation rate. PLoS Comput Biol, 4(12):e1000242.

14

	Introduction
	Processes
	Multi-Body Physics
	Diffusion
	Metabolism
	Convenience Kinetics
	Configuration Data: Glucose–Lactose Transport

	ODE Expression
	Configuration Data: LacY Expression

	Template-Based Stochastic Gene Expression
	Configuration Data: Flagella Chromosome

	Flagella Motor
	Membrane Potential
	Chemoreceptor Cluster

	Composites
	Experiments
	References

