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Abstract: Einstein’s equations of general relativity (GR) can describe the connection between events
within a given hypervolume of size L larger than the Planck length LP in terms of wormhole
connections where metric fluctuations give rise to an indetermination relationship that involves
the Riemann curvature tensor. At low energies (when L � LP), these connections behave like an
exchange of a virtual graviton with wavelength λG = L as if gravitation were an emergent physical
property. Down to Planck scales, wormholes avoid the gravitational collapse and any superposition
of events or space–times become indistinguishable. These properties of Einstein’s equations can find
connections with the novel picture of quantum gravity (QG) known as the “Einstein–Rosen (ER) =
Einstein–Podolski–Rosen (EPR)” (ER = EPR) conjecture proposed by Susskind and Maldacena in
Anti-de-Sitter (AdS) space–times in their equivalence with conformal field theories (CFTs). In this
scenario, non-traversable wormhole connections of two or more distant events in space–time through
Einstein–Rosen (ER) wormholes that are solutions of the equations of GR, are supposed to be
equivalent to events connected with non-local Einstein–Podolski–Rosen (EPR) entangled states that
instead belong to the language of quantum mechanics. Our findings suggest that if the ER = EPR
conjecture is valid, it can be extended to other different types of space–times and that gravity and
space–time could be emergent physical quantities if the exchange of a virtual graviton between events
can be considered connected by ER wormholes equivalent to entanglement connections.
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1. Introduction

The formulation of an effective theory of quantum gravity can be considered the holy grail of
modern physics. Gravitation was the first force to be mathematically described by Newton and it is
the last force of nature that has yet to be quantized. As pointed out by DeWitt in his early pioneering
works [1–5], since the introduction of quantum field theory around 1930 by Heisenberg, Dirac, Pauli,
Fock, Jordan and others, many attempts were made to find a robust and logically closed method of
quantizing the gravitational field, without success, even if Einstein’s equations are known to remain
valid down to the Planck scales. Rosenfeld [6,7] realized the difficulty of finding general methods to
quantize gravity and that the quanta of the field, if they do exist, cannot give observational effects until
reaching a very high energy Ep =

√
h̄c5/G ' 1.22× 1019 GeV that corresponds to the so-called Planck
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length, Lp =
√

h̄G/c2. Thus, Planck scales were somehow “artificially” introduced in the framework
of general relativity (GR), a classical theory, in the attempt of building a quantum theory of gravitation
based on the finite quantum of action h linked with the gravitational constant G and the speed of
light c.

In principle, following the works by Pauli, De Witt and other pioneers in this field, the fundamental
building block for a quantum theory of gravity is the graviton, a spin-2 massless particle with the
well-known limitations in the building of a QG theory due to the coupling constant of the gravitational
field that depends on the inverse square of the mass. This coupling constant makes the Einstein–Hilbert
Lagrangian of quantum gravity divergent at the loop level. It is a non-renormalizable theory, unless
introducing additional concepts such as supersymmetry like in string theory and supergravity. Up to
now no supersymmetric partners of the known quanta have been found from the Large Hadron
Collider and other experiments presented by the Particle Data Group [8]. At the present moment one
can consider different approaches, including string theory scenarios that do not require supersymmetric
partners at the explored energies, or to consider a model of the Universe without strings, or adopt the
approach of loop quantum gravity [9], where gravitons do not represent the building blocks of the
theory. The interactions between events that can be ascribed to graviton exchanges can be recovered in
a weak field limit approximation. The exchange of a virtual graviton between two particles does not
have the support of an actual theory of quantum gravity. As an example, in string theory and in most
quantum field theory (QFT) scenarios, in the building of the theory, one must introduce the quanta
of the associated field. The quanta are introduced in terms of quantized excitations on a classically
fixed background. The main conceptual problem for the formulation of a consistent theory of QG
is that this theory must unify and contain as special cases both GR and quantum mechanics (QM).
Unfortunately, GR has concepts and mathematical structures that are incompatible with those of QM
and vice versa, with the result that the two theories do not communicate between each other. GR is a
local deterministic theory based on point-to-point connections of events and observers that define a
four-dimensional manifold. Einstein in 1947, his latest memoirs, stated that space–time is made with
connections between events and, more precisely, with coincidences of events. On the other hand, QM
presents non-locality and the well-known probabilistic behavior from the deterministic equations that
rule the quanta.

This contrast between GR and QG can find a fusion in the simple heuristic approach formulated
by Susskind and Maldacena who, starting from the quantum mechanical language, set an hypothetical
equivalence between non-traversable wormhole connections of two (or more) particles or events in
space–time through Einstein–Rosen (ER) bridges and entangled states (the idea that wormholes and
flux tubes can play a role in quantum mechanics and quantum field theory is not new, in particular for
systems with electric and/or magnetic charges and their renormalization has earlier work in [10,11]),
and the quantum properties of the “spooky action at distance” of Einstein–Podolski–Rosen (EPR)
states [12–15]. The ER=EPR equivalence was first defined in Anti-de-Sitter (AdS) space–times in their
equivalence with CFTs [16–19]. In other words, EPR entangled particles are supposed to be equivalent
to connections obtained through ER wormholes involving the concept of entanglement entropy to
describe these many-body quantum state/wormhole connections, even if the ER = EPR equivalence is
more evident with monogamous entangled pairs [20]. Spacetime is supposed to emerge from quantum
entanglement, as discussed in [21] where, from some examples where gauge theory/gravity duality is
valid, one finds that the emergence of space–time is related to the quantum entanglement of the degrees
of freedom present in these quantum systems. Superpositions of quantum states corresponding to
disconnected space–times can give rise to states that are interpreted in terms of classically connected
space–times. In this vision, gravity can be also interpreted as an entropic force, a thermodynamic
property of physical systems defined in an holographic scenario: gravity and space–time connections
are emergent phenomena from the degrees of freedom of a physical system encoded in an holographic
boundary or to emerge from a background-free approach by using quantum entanglement [22,23].
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At all effects, one can conclude that space–time is built with the quantum information shared between
EPR states that are equivalently connected with an ER wormhole.

While ER wormholes are classical solutions of GR, a local deterministic theory, quantum
entanglement, is instead one of the most intriguing quantum physical aspects of nature characterized
by non-locality and the stochastic properties of quantum mechanics. Entanglement occurs when a
pair of particles (or a group of quanta) is generated in a way that the quantum state of each particle
of the pair cannot be described independently of the state of the others even if they are separated by
large distances. For a deeper insight see [24–29]. In ER = EPR, causality is not violated. ER bridges
do not violate causality because of the topological censorship, which forbids ordinary traversable
wormholes; EPR states, instead, prevent causality violations because of the properties of entangled
states described by Bell’s inequalities—no information is transferred between the two entangled states
during the wavefunction collapse of the entangled pair as each quantum state in an EPR pair cannot
be described independently of the other states [24,26]. The ER = EPR equivalence is valid if there
are no traversable wormhole solutions that do not require the violation of the strong and/or weak
energy conditions [30–33], they may instead behave as quantum communication channels between the
quantum fields there defined [34].

The ER = EPR conjecture was initially formulated in the gravity/gauge theory equivalence
between Anti-de Sitter (AdS) space–times and conformal field theories (CFTs) by Maldacena
(gauge/gravity duality) within a relationship between the entanglement entropy of a set of black
holes and the cross-section area of ER bridges connecting them. AdS space–times represent an
elegant solution of Einstein’s equations with negative curvature where the outer boundary is a surface
and, in the CFT, correspondence quanta can interact and generate the holographic universe there
contained. The AdS/CFT correspondence provides a complete non-perturbative definition of gravity
with quantum field theory, extending this correspondence also to space–time scenarios of quantum
gravity where the asymptotic behavior of the space–time is that of AdS space–time. The AdS/CFT
correspondence plays a key role in the calculations of strong coupled quantum field theories. When the
boundary theory is strongly coupled, the bulk theory is weakly coupled, and vice versa. A strongly
coupled field theory can have an AdS dual gravity description weakly coupled and therefore calculable
and vice versa. As an example, if the curvature of the AdS space increases, the gravitational coupling
becomes stronger and the boundary coupling is weaker.

To extend ER = EPR conjecture to space–times different from the Anti-de Sitter solution, one
has to investigate how much ER = EPR depends strictly on AdS/CFT correspondence and from
the properties of wormholes also in de Sitter (dS) space–times. First of all we must consider that
AdS/CFT is a structural correspondence between bulk and screen, but does not contain in itself any
specific indication of the possible dynamics of wormhole formation. Wormholes require a cosmological
scenario. For example, it is plausible that the wormholes were formed in the initial chaotic phases of
the universe with a rate similar to that of the formation of mini black holes (BHs), with very specific
traces as regards the event horizon, as discussed in [35–37]. This aspect is decisive because all the
problems related to the quantum aspect of the wormholes imply a cosmological background capable
of providing a plausible scenario for their existence described by the Ryu–Takanayagi’s entropy that
relates the entanglement entropy in CFT and the geometry of AdS space–times. The Ryu–Takanayagi
formula is a generalization of the BH entropy formula by Bekenstein–Hawking [38,39] to a whole
class of holographic theories [40,41] where gravitational models with dimension D are dual to a gauge
theory in dimension D− 1.

In these recent years, the interest in the maximum symmetry properties of de Sitter’s space gave
this structure a new centrality with respect to AdS. One of the most relevant problems was to project
a hologram of a quantum particle that lives in the infinite future of AdS, which makes it difficult to
describe real-time space in holographic terms. In particular, the main classes of essential results must be
mentioned here: the CPT Universe [42] and the numerous results on the non-locality in dS space–times
[43–47]. Of relevant importance is the so-called “uplifting” technique by Dong et al. [48] where two
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Anti-de Sitter space–times are transformed into a de Sitter space–time. The uplifting changes the
curvature of two “saddle-shaped” AdS space–times that, once warped, are glued together along their
rims and turned into a “bowl-shaped” dS space–time via entanglement or more general two-throated
Randall–Sundrum systems [49,50] and the CFTs relative to both hemispheres become coupled with
each other. In this way one forms a single quantum system that is holographically dual to the entire
spherical de Sitter space, defined on its boundary located at a finite distance away. The technique of
uplifting two AdS into a dS permits us to modify the curvature in a more general way than that offered
by the set of local transformations obtained through Wick rotations that can only act locally—the
curvature changes everywhere by introducing extra fields whose energy density acts as an extra source
of curvature to landscape the AdS space–time into a dS one. The cosmological constant in the bulk
space is then transformed from negative to positive and the holographic projection of the space–time
into its boundaries is changed. Some examples are reported by Silverstein and Polchinski [51] or in
Vasiliev’s higher-spin gravity—in AdS, the boundary theory is an O(N)-vector field theory, while in dS
space it becomes an Sp(N) scalar field theory, where N is the number of the vector (scalar) fields of the
boundary theories [52,53].

In this work, we analyze Einstein’s equations in a finite volume of space–time down to the
Planck scale, finding wormhole connections that avoid the singularity problem and an indetermination
relationship that involves the Riemann curvature. This finds application to the ER = EPR conjecture—in
this framework, geometry behaves as a geodesic tensor network that defines the quantum state
properties of a fundamental quantum state of a given metric [54] and a virtual graviton exchange
becomes equivalent to entanglement to which one can apply the concept of Penrose’s decoherence of a
quantum state [55]. In this crossing between locality of GR and the emergence of non-locality of QM as
in [56,57], where de Sitter space–time is taken as the geometric structure of vacuum, the analysis of
Einstein’s equations can provide an additional support to the ER = EPR conjecture extended from AdS
to dS [58] and to locally Euclidean space–times. This can be interpreted as the route to ER = EPR from
general relativity.

2. Wormhole Connections down to Planck Scales from Einstein’s Equations

In the ER = EPR scenario, wormhole connections are fundamental in the building of space–time.
Consider an entangled quantum system. The emergence of space–time in terms of ER connections,
in the gravity picture, is intimately related to the quantum entanglement of degrees of freedom in the
corresponding conventional quantum system, building up space–time with quantum entanglement.
The ER = EPR equivalence suggests that space–time and gravity may emerge from the degrees
of freedom of the field theory. On the other hand, space–time becomes the optimal way to build
entanglement starting from wormhole connections. At Planck scales, the Planck area is defined as the
area by which the surface of a Schwarzschild black hole increases when in the black hole is injected
one bit of information. In a Riemannian manifold (M, g) the scalar curvature in an (n− 1) hyperplane
relates GR with the entanglement of quantum states in an arbitrary Hilbert space without reference to
AdS = CFT or any other holographic boundary construction.

2.1. Einstein’s Equations in the Neighborhood of an Event

Einstein’s equations are the core of GR—they describe gravity in terms of the curvature of
space–time. Spacetime geometry and the metric tensor gik are determined from Einstein’s equations,
given the distribution of energy, mass and momentum in space–time encoded in the stress–energy
tensor Tik.

In our approach, by assuming that Einstein’s equations remain valid down to the Planck scale,
we find that the connection between events are achieved through wormhole connections, avoiding
the gravitational collapse and the presence of singularities at Planck scales. To this aim, we adopt the
approach by Schwinger in the analysis of classical fields [59]—to determine the properties of a field,
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one cannot measure the field in a point, otherwise, because of the equivalence principle, one finds only
a local Minkowskian space–time tangent to the manifold (M, g) in the given point event.

Following Schwinger, from his studies on electromagnetic theory [59,60], the analysis of a classical
field must be made in a neighborhood of the event. This approach is clearly valid in electromagnetism
and antenna theory: when sensing the electromagnetic field with an antenna, one cannot measure in a
point the fluctuations of the electric field. The antenna must have a finite length in space and the field
must be measured in a finite time interval to be revealed. As happens for any antenna, as well as for
the gravitational field, one has to consider a finite length or a finite hypervolume in which to determine
the properties of the field. For the same reasons, one cannot deduce the properties of the gravitational
field in a single point and at a given time because of the equivalence principle, as discussed in the
free-falling particle paradox [61].

Let us find the main properties of the gravitational field when a finite length L of measure is fixed
down to the Planck scale. Given a Riemannian manifold (M, g), where M is the manifold and g the
metric tensor, g ∈ ⊗2Ṫ of tensorial order 2, (written as g(2)), Einstein’s equations are

Rik −
1
2

Rgik + Λgik = 8πTik (1)

where Λ is the cosmological constant and Rik = glmRlmik and R = gikglmRlmik represent the tensorial
and scalar space–time curvature terms obtained from the Riemann tensor Riklm that, in the tensorial
index notation, takes the usual well-known form [62]

Riklm =
1
2

(
∂2glm

∂xk∂xl +
∂2gkl

∂xi∂xm −
∂2gil

∂xk∂xm −
∂2gkm

∂xi∂xl

)
+ gnp

(
Γn

klΓ
p
im − Γn

kmΓp
il

)
(2)

the tensor is an element of the rank-four tensors Riklm ∈ ⊗4Ṫ in the cotangent bundle Ṫ of the manifold
(M, g) that we will indicate with the symbol R(4), where 4 is the tensorial index.

The gravitational field has the fundamental property that, any body, independently from their
mass, moves in the same way. This is described by the strong equivalence principle, which suggests that
gravity is a geometrical quantity and one cannot measure the gravitational field in an event, as the field
becomes locally Galilean and diagonalizable, and the energy of the field cannot be uniquely defined.

In a neighborhood of a given event, space–time is built by chains of events and observers.
The building of space–time is obtained by causally transferring information encoded locally in one
event of the field to form events and coincidences of events described by punctual (point-to-point)
correlations in a four-dimensional manifold (M, g).

Because of the equivalence principle, these observables must be generated within a volume of
finite spatial extent from a given spatial length L and propagated—through a chain of events—in the
form of four-volumetric densities (or in geometrical sub-varieties) in the four-dimensional manifold
(M, g) to a remotely located finite region of space–time of likewise finite spatial/temporal extent—the
observation (hyper-)volume V ⊆ M over which they are volume integrated into observables, allowing
the information carried by them to be extracted and decoded. More specifically, we will use the local
split of 3 + 1 in space and time where we will consider the integration of the field properties over a
three-dimensional volume V = L3. The volumetric density of every gravitational observable carried
by the gravitational field is a linear combination of quantities that are second order (quadratic/bilinear)
in the metric of the field, and/or of the derivatives of the field. To obtain these quantities one must
integrate the density of a conserved quantity e.g., over a given 3D space-like hypersurface σ or over
a four-dimensional interval, characterized by a given finite length L; there, the field equations are
integrated and averaged to obtain the field observables we need to analyze the properties of space–time
down to the Planck scales.

Let us consider a Lorentzian manifold as example, with cosmological constant Λ and then introduce
a characteristic length L. This quantity is the proper length associated to the generic coordinate variation
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∆x written in terms of the metric tensor g, viz., L ∼ g1/2∆x. The Riemann tensor is then written in
terms of the metric variations ∆g, the covariant metric tensor g and the contrarvariant one, g−1

R(4)(g, L) ∼ g2

L2

(
∆
(

∆g(g)−1
)
+
(

∆g(g)−1
)2
)

(3)

where the term
(
∆g (g)−1)2

{kl,im−km,il} = Γn
klΓ

p
im − Γn

kmΓp
il represents the affine connection and

∆
(

g−1∆g
)

is the second derivatives of the metric tensor with respect to the coordinates, being

∂2
kl g = g

L2 ∆k∆l g = g2

L2 ∆k
(
∆l g(g)−1). The Ricci tensor and scalar are R(2) ∼ g−1R(4) and R ∼ g−2R(4),

the Einstein tensor is G = R(4)(g)−1 and Einstein’s equations are G + gΛ = T, where T is the
energy–momentum tensor.

By introducing a characteristic length L, if Einstein’s equations hold down to the Planck scales,
from the basic formulation of the Riemann tensor and Einstein equations we find that the field
equations, integrated and averaged over a 3D space-like hypersurface σ with unit normal vector
n ∼ g−1/2, obey an indetermination relationship that recalls Heisenberg’s. Instead of focusing on the
more general energy–tensor quantity (or the momentum vector), we consider for the sake of simplicity
the scalar proper energy E, averaged over a proper volume L3, which is given by the integral of
the energy momentum tensor over a given proper volume element of a space-like 3D–hypersurface.
This leads to the following formulation of the proper energy averaged over the given proper volume

〈E− gΛ〉 = Ē ∼ g2

L
R(4) = L

(
∆
(

∆g(g)−1
)
+
(

∆g(g)−1
)2
)

(4)

If we rescale this relationship down to the Planck scale Lp, by defining the light crossing time as
τ = L and the Planck Time τp, the Einstein equations retain their validity down to the Planck scale,
even if metric fluctuations over a scale larger than Lp can occur. We find that these fluctuations can
give rise to a relationship

(τp

τ

)2 ( Ē× τ

h̄

)
=

(
Lp

L

)2 ( Ē× τ

h̄

)
=

L2

g2 R(4)(g, L) (5)

that holds down to the Planck scales. Fixing a characteristic spatial scale (or time), the relationship
in Equation (5) corresponds to the introduction of fluctuations of the averaged quantity over L3 of
the proper energy Ē. If we set Ē = ∆E∗ and τ = ∆t, we can write Equation (5) in a more familiar
Heisenberg relationship that involves the Riemann tensor and the contribution from the dark energy

∆E∗ × ∆t = h̄
(

τ

τp

)2 L2

g2 R(4)(g, L) =
h̄
g2

(
L2

Lp

)2

R(4)(g, L) (6)

that at Planck scales becomes

∆E∗ × ∆t = h̄
L2

p

g2 R(4)(g, L) = h̄
(

∆
(

∆g(g)−1
)
+
(

∆g(g)−1
)2
)

(7)

where ∆E∗ = ∆E + ∆g Λ + g∆Λ averaged on the volume L3 of the 3D space-like hypersurface σ.

2.2. The Energy of the Gravitational Field

Dark energy and other different vacua are parameterized by the cosmological constant Λ.
When Λ > 1, the equations describe an AdS space–time. The gravitational fluctuations are mainly
expressed by the affine connection term

(
∆g(g)−1)2 for any space–time. To describe the energy of

the gravitational field, which is not defined as a global and conserved quantity, one has to introduce
pseudotensorial quantities describing the energy trapped non-locally in the geometry. One example is
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the non-symmetric Einstein pseudotensor, which is constructed exclusively from the metric tensor and
its first derivatives but is not suitable for our purposes. Instead, the Landau–Lifshitz pseudotensor
tik [62] permits us to write for the integrated non-local gravitational energy Eg that includes the
contribution of the cosmological constant in terms of the curvature tensor. This quantity is quadratic in
the connection and, for a general covariant component of the pseudotensor, averaged on the volume
V = L3 one obtains 〈

g−1 (t + Λg)
〉

V=L3
∼

Eg + EΛ

L3 (8)

where EΛ = g−1ΛgL3 is the energy associated to the value of the cosmological constant and to dark
energy. Considering that

|g| g−2 (t + Λg) ∼
(

∆g
∆x

)2
, (9)

this relationship leads to a background curvature with fluctuations having wavelength λ = L that can
be interpreted as connections between events due to an exchange of virtual gravitons with wavelength
λ and energy h̄/λ or, in the ER = EPR scenario, to the connection through an ER wormhole,〈(

∆g(g)−1
)2
〉

V=L3
∼

Eg + EΛ

L
=
(τp

τ

) Eg + EΛ

Ep
(10)

where Ep is Planck’s energy. In the ER = EPR hypothesis, these energy fluctuations would be considered
as equivalent to the connection between two entangled events separated by the distance L, giving
a paradoxical meaning to the exchange of a virtual graviton in terms of entanglement connections
between events like in an emergent gravity scenario.

Following the already cited works by De Witt and the classical QG interpretation found in the
literature [1–5], this term would describe a virtual graviton exchange between two events within
a space–time connection. On the other hand, this term—that can be also interpreted in terms of a
wormhole connection between the two events—with the exchange of at least 1 qbit of information
(in the ER = EPR conjecture) would correspond to the entanglement of two particles. If ER wormholes
are equivalent to a monogamous connection between the two events [20], as realized through a virtual
graviton exchange, one could state that entanglement of EPR states can derive from the exchanges of
virtual gravitons between two events. From another perspective, entangled states should be provided
by a mixed state between the two entangled pairs with that of the virtual graviton. The question is
what is the correct perspective?

From Einstein’s equations, the observable averaged total energy of a metric fluctuation over the
volume V on a scale L, becomes

E ∼
(

τ

τp

)〈
∆
(

∆g(g)−1
)〉

V
Ep + Eg + EΛ (11)

and is made with the energy of geometry and vacuum and energy of interaction expressed in terms of
gradients of the geometry fluctuations, second order derivatives of the metric tensor, as in the Riemann
tensor that make the connection between observers.

2.3. Planck-Scale Wormhole Connections

In a local neighborhood of a given event {xi}0, one performs a discrete infinite denumerable 3 + 1
local slicing of the space–time with time steps a Planck time unit. To the initial event {xi}0 corresponds
the slice N = 0. The N-th slice corresponds to the time τN = (N + 1)τp, building up a symbolic
dynamics of space–time events. The energy of the gravitational perturbation in the N-th slice is

(
Eg + EΛ

)
N ∼

Ep

N + 1
(12)
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the total energy is instead

EN ∼ (N + 1)
〈

∆
(

∆g(g)−1
)〉

V,N
Ep +

Ep

N + 1
(13)

for N → 0 the energy fluctuation becomes EN → Ep for which, by definition, ENτN ∼ h̄ and the metric
tidal fluctuations tend to zero—space–time at Planck lengths is homogeneous and isotropic and the
local geometry depends only on the energy of fluctuations in space–time and from the energy of the
cosmological constant. This because ∆g/g→ 1 are both on the order of the Planck scale. This is the
reason why the field does not diverge and no singularities are present.

For N → ∞ the dominant energy is that of tidal fluctuations at scales larger than Lp accompanied
with that of the cosmological constant when integrated over the metric and remains as a constant
function over the volume of integration; Eg becomes instead negligible. This means that for a process
connecting two events lasting a time τ, the amount of energy does not entirely contribute to the vacuum
energy but it is partially spent in geometry in this process, involving the dark energy contribution
expressed by the cosmological constant Λ. Recalling Heisenberg principle from Equation (5), the larger
is the energy fluctuation, the smaller results the space/time interval fluctuation.

In the neighborhood of Planck scales, when N > 0, the curvature of space–time remains finite
and the Riemann tensor can be written as

R(4)(g, L) ∼
Ep

h̄

(τp

τ

)2 g2

L2 (14)

and the Ricci scalar is

R(g, L) ∼ 1
L2

Ep

h̄

(τp

τ

)2
(15)

that for L→ Lp we have R(g, L)→ 1/L2
p with the result that at Planck scales there is no singularity in

the curvature and the gravitational radius becomes

Rg = 2
E τ L2

p

h̄ L
(16)

that is written as Rg = 2Lp, which corresponds to elementary wormhole connections at the Planck
scale and finding a trivial equivalence with the corresponding Penrose diagrams. Directly from
Einstein’s equations we find that, at Planck scales, the singularities expected from quantum gravity
can be interpreted in terms of wormhole connections between the events, as required in the ER
= EPR conjecture and obtain an indetermination relationship shown in Equation (6) involving the
Riemann tensor and geometry fluctuations. In this view, wormhole and equivalent EPR connections
can also be formally equivalent to an exchange of a virtual graviton at scales larger than Planck scale,
whilst any group of superimposed states below Planck scales, instead, will be indistinguishable and
therefore entangled.

2.4. Tests for the ER = EPR Conjecture

If we suppose the validity of the ER = EPR conjecture, the geometry fluctuations present at Planck
scales may be revealed with quantum entanglement. By applying the indetermination relationship
that involves the Riemann tensor expressed in Equations (6) and (7), we argue that one can obtain
information about the fluctuations of space–time and determine whether a characteristic scale like the
Planck’s one is present, as expected in QG.

If space–time is discrete, its discreteness is expected to be characterized by a typical scale of space
and/or time: There exist a minimum time interval tp and a minimum length Lp where wormholes
connections—equivalent to entangled states between two or more regions of space–time—connect
different events or space–times. If events/space–times are connected with intervals smaller than Lp and
tp, they would be entangled and actually be the same event or the same space–time. Their quantum
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superposition can exist and collapse after a finite time interval and the properties of wormhole
connections are reflected in the properties of the corresponding EPR states also when they connect
events at scales larger than the Planck scale. This scenario is different from Penrose’s assumptions [55],
where space–time is thought to be continuous and the quantum superposition of space–times result
unfeasible leading to the gravitational collapse.

Noe we propose to test the ER = EPR scenario by using the Heisenberg uncertainty principle
applied to pairs (or groups) of entangled particles and including the additional indetermination
introduced by quantum gravity effects. The generalized Heisenberg’s uncertainty principle for the
momentum p and the position x that includes the existence of a characteristic length Lp such as the
Planck scale, or any other scale typical that can be found in certain quantum gravity models, is given
by [63,64]

∆x = ∆xQM + ∆xGR ≥
h̄

2∆p
+ k ∆p (17)

the existence of a minimum interval in space–time is revealed by a deviation from the classical term
due to quantum mechanics only, ∆xQM. The quantum gravity term, ∆GR, due to the existence of a
characteristic length Lp and to the properties of the gravitational field, can be characterized instead by a
parameter k, a constant characteristic of the quantum theory of gravitation here considered. To give an
example, in a string theory scenario, k = αY, where α is the string tension and Y a constant that depends
on the theory. In our case, following [65–67], one can find that k = 2L2

p/h̄. From our calculations that
involve the Riemann tensor, we find that ∆xQG = 2Ep/∆E∗ and thus ∆p = h̄Ep/∆E∗L2

p, a term that
includes the effects of dark energy in the term ∆E∗ too.

We write now the Heisenberg relationship for sets of N−particle entangled states.
Following [68–72], consider first a couple of entangled particles with positions x1 and x2 and momenta
p1 and p2, respectively. For N = 2, the classical indetermination principle is

∆(x1, x2)
2
QM =

[
∆(x1)

2 + ∆(x2)
2
]
×
[
∆(p1)

2 + ∆(p2)
2
]
≥ h̄2

4
. (18)

In the simplest case, where ∆(x1) = ∆(x2) = ∆xe and ∆(p1) = ∆(p2) = ∆pe, the uncertainty
relationship becomes (∆xe)2(∆pe)2 ≥ h̄2. For N identical entangled states, the extended
indetermination principle becomes

(∆xe)
2(∆pe)

2 ≥ N2h̄2

4
(19)

and when we include the effects of the gravitational field one obtains

∆x = ∆(x1, x2)QM + ∆(x1, x2)GR ≥
Nh̄
2∆p

+
2NL2

p∆p
h̄

. (20)

By assuming that Einstein’s equations retain their validity down to the Planck scales and that
wormhole connections represent the building blocks of the physics of the gravitational field at and
below Planck scales (tp and Lp), ER = EPR links connecting any space–time (or event) with a difference
smaller than tp and Lp mean that different space–times and events are physically identical, and then in
principle undetectable and entangled. Instead, in a region with radius R, the spatial difference of two
space–times/events is ∆L = 2L2

p∆E∗/h̄c, and the difference of their corresponding space–times is the
difference of the proper spatial sizes of the regions occupied by them and the time of the wavefunction
collapse is on the order of τc ∼ 2h̄Ep/(∆E∗)2.

If the properties of ER = EPR links remain valid from the Planck up to the macroscopic scales,
where entanglement can be observed in the lab, the term ∆xQG in the Heisenberg relationship expressed
in Equation (20) is expected to reveal the properties of the wormhole structure of space–time from a
deep analysis of the wavefunction collapse of an entangled pair. In other words, the deviation from the
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quantity ∆xQM of the classical Heisenberg principle would reveal the fuzziness space–time or, better,
of the point-by-point identification of the spatial section of the two events/space–times, better evident
with a set of a large number of N entangled quanta like a Schrödinger cat.

From the point of view of relativistic quantum information discipline, entanglement and
wormholes are expected to create space–time and entanglement events (and space–times) through
quantum information—information that emerges from the connection of quantum bits. In fact, from a
quantum-computational interpretation of space–time entanglement, in a foliation of space–time,
the quantum fluctuations of the metric present on the slice n can be interpreted as wormhole
connections between one Planckian pixel in the slice n with that one present in the n − 1 slice.
Following [73], the holographic principle suggests that such a geometrical connection is space–time
entanglement. If not entangled, following Penrose’s argumentation only the quantum superposition of
two space–times with a difference larger than the minimum sizes can not exist, and should collapse
instantaneously. If they are connected by an ER wormhole they should obey the indetermination
relationship expressed in Equation (20).

To verify possible additional anomalies in the indetermination principle introduced by the
ER = EPR conjecture one may instead want to consider to measure the time/energy entangled
states and study the time of collapse as a function of their energy differences. This may explain
why the wavefunction collapse of an EPR pair is not always instantaneous, as it may depend on the
geometry fluctuations. Moreover, one has to also consider the effects introduced by the presence of the
cosmological constant, of the information encoded and shared between the entangled quantum states
and their relationship with the gravitational information entropy that go beyond the purpose of the
present work.

Of course an experimenter has to consider that EPR states depend on the choice of reference
frames and that Bell’s inequalities are preserved in certain reference frames only, and should also
consider the effects of simultaneity and include in the experiment the additional macroscopic effects
induced by the gravitational field at large scales in the presence of massive bodies. As an example,
simultaneity is responsible for the uncertainty of the ordering of non-local wavefunction collapse
when the relativistic effects cannot be neglected. In any case, if a time measurement performed with
an entangled pair of photons is seen as simultaneous in one shared reference frame, then the result of
this measure can be considered simultaneous to all measuring observers who do not share a reference
frame. The inversion of the temporal order due to simultaneity is impossible to determine, the attempt
to measure this effect will unavoidably introduce an uncertainty in the result. There is no need to have
any preferred reference frame for the wavefunction collapse of entangled states. If an experimenter
tries to determine the exact reference frame where the wavefunction collapsed, the measurement
process will unavoidably introduce an uncertainty that would make impossible the identification of
the “exact” reference frame. Obviously, if one can determine the order of the measurement in a shared
reference frame it can result like that in certain reference frames and, instead, indeterminate in the
other reference frames [74,75].

3. Discussion and Conclusions

It is one of the great merits of Albert Einstein to have investigated the possibility of a
multiple-connected space–time and in theoretical physics there is a long tradition of studying quantum
behavior in spaces of this type [76]. These lines of research have progressively merged into the quantum
study of wormholes, assuming a decisive relevance not only for the study of the structure of the GR
and its cosmological implications, but has given the question a decisive configuration as regards the
relations of “coexistence” peaceful between QM and GR. In this work we proposed a formal technique
for the study of the quantum effects of a wormhole within the conjecture ER = EPR. We then considered
different scenarios from the original Susskind and Maldacena one, in particular those related to the dS
space, which seems to be a much more promising ground for the study of the emergence of classical
information starting from a quantum background where time is not defined [56,77–79].
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These reflections suggest that an effective generalization of the physical meaning of ER = EPR
requires a different and more complex philosophy on the emergence of physical space–time as a
holographic “settlement” of temperature/energy scales, and the use of well-known techniques in
QFT [80,81].

In other words, these scenarios suggest that the idea of transition of the metric suggested
by Sacharov may be the most “natural” way to characterize non-locality in a metric formalism.
The assumption of ER = EPR would be only one of the aspects of a more general phenomenon of
Raum–Zeit–Materie production starting from a non-local Euclidean background through quantum
computation procedures. The observable part of space time would therefore, in a rather literal sense,
result in a thin layer of ice emerging from an ocean of non-locality and the extension of ER = EPR
conjecture to Euclidean non-locality may extend its domain from the original AdS/CFT scenario.

Finally, we suggest readers consider the conjecture ER = EPR within the scenario of de Sitter’s
projective cosmology, described by Hartle-Hawking boundary conditions as Nucleation by Sitter
Vacuum [57]. In this cosmological approach one can define the localization conditions in time of the
particles starting from an Euclidean pre-space that models a non-local phase. Using the Bekenstein
relation, it is possible to identify the area of the micro-horizon A = (cθ0)

2 ' 10−26 cm2, where theta is
the chronon, chosen as time scale of the baryonic location. In this case the construction of wormholes
applies to a scale much larger than the Planck length. In this case the wormholes are defined by a
transition of the metric similar to that hypothesized in the classical work by Sacharov in 1984 [82].

Anyway, the wormhole structure of space–time could in principle be characterized by the extended
Heisenberg principle through a deep study of the wavefunction collapse of entangled particles and
reveal possible scenarios of QG and cosmology or emergent gravity theories where the exchange of
a virtual graviton could also be interpreted in terms of entanglement. At Planck scales wormhole
connections would avoid the gravitational collapse and singularities. Moreover, the exchange of a
virtual graviton would become equivalent to a wormhole connection and/or entanglement between
two or more events. From this we can argue that the ER = EPR conjecture alone, as it is, cannot fully
explain without experimental results whether Planck-scale phenomenology can be revealed through
entanglement or that gravity and space–time are emergent physical quantities.
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