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Abstract: Bello’s stochastic linear time-varying system theory has been widely used in the wireless
communications literature to characterize multipath fading channel statistics. In the context of radar
backscatter, this formulation allows for statistical characterization of distributed radar targets in
range and Doppler using wide-sense stationary uncorrelated scattering (WSSUS) models. WSSUS
models separate the channel from the effect of the waveform and receive filter, making it an ideal
formulation for waveform design problems. Of particular interest in the radar waveform design
community is the ability to suppress unwanted backscatter from the earth’s surface, known as clutter.
Various methods for estimating WSSUS system functions have been studied in the literature, but to
date no analytic expressions for radar surface clutter range-Doppler scattering functions exist. In this
work we derive a frequency-selective generalization of the Jakes Doppler spectrum model, which is
widely used in the wireless communications literature, adapt it for use in radar problems, and show
how the maximum entropy method can be used to extend this model to account for internal clutter
motion. Validation of the spectral and stationarity properties of the proposed model against a subset
of the Australian Ingara sea clutter database is performed, and good agreement is shown.

Keywords: airborne radar; radar clutter; radar signal processing; stochastic systems; time-varying
systems; maximum entropy

1. Introduction

Random linear time-varying (LTV) system theory was first comprehensively described by Bello [2]
and has widely been used in the wireless communications field ever since, particularly to model the
multipath fading of mobile radio channels [3,4]. In particular, wide-sense stationary uncorrelated
scattering (WSSUS) models, which are a subset of the category of random LTV systems, are the
most common in the literature. As well, more recent work in this field has focused on nonstationary
LTV communications channels [5–7], of which vehicle-to-vehicle (V2V) communication is a prime
example [8]. A separate set of models that are distinct, but can be related to Bello’s LTV theory are
the Clarke/Jakes Doppler spectrum class of models [9,10], originally only applicable for flat fading
(i.e., where the symbol time is much larger than the multipath delay spread). This model is also
ubiquitous in the wireless communications literature, and many extensions have been proposed, such
as for varying geometries [11] and more accurate fading statistics [12]. It is also commonly coupled
with Bello’s LTV theory (which is general enough to model frequency-selective fading where the
multipath delay spread is much larger than the symbol duration) to model the Doppler component of
multipath scattering [13]. Empirical [14] and analytic [15] expressions characterizing range-Doppler
spreading of communication channels using LTV theory are commonplace.

Outside of communications applications, random LTV system models have been primarily used
for sonar target detection and waveform design problems [16–18], although a few recent papers have
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applied this method to radar target detection problems as well [19,20]. Much of the literature on the
subject treats the problem agnostically, treating radar and sonar as the same problem [21–26]. In both
radar and sonar, the goal is to detect (usually) man-made targets of interest while suppressing thermal
noise, which is internal to the receiver, and clutter, which are unwanted signal-dependent returns from
the natural environment. Waveform design problems expressed in this form require characterization
of the delay-Doppler “scattering functions” of the target and clutter, and the result is an optimized
transmit waveform/receive filter pair.

In addition to waveform design problems, clutter Doppler spectrum characterization is useful for
optimized moving target indication (MTI) and space-time adaptive processing (STAP) filtering, which
optimize the receiver only. Specifically, the range-Doppler scattering function can be used to predict
pulse-to-pulse correlations in the clutter return to suppress it using eigenfilter techniques [27,28].
An up-to-date summary of recent work on Doppler spectrum modeling can be found in [29]. Most
papers on Doppler spectrum modeling do not use Bello’s LTV formulation; the effect of the transmit
waveform, measurement system, and clutter are usually combined. This is appropriate if the goal is
to generate realistic clutter samples for simulation purposes or if the goal is to design an MTI/STAP
filter because the processing is done on receive. However, waveform design requires the clutter to be
partitioned separately from the transmit signal, which creates a motivation to “translate” these Doppler
spectrum results to the “language” of random LTV system theory so that these Doppler spectrum
models can be utilized in other problem domains.

Because scattering function estimation is a fundamental component of waveform design problems,
it is a topic that has been studied for decades [30–41]. However, analytic expressions for scattering
functions of sea clutter for airborne radars have not been reported in the literature except for some
initial work by the author [1,42,43]. In this work we derive such analytic expressions for the case
when localized internal clutter motion (ICM) is small relative to radar platform motion using a
frequency-selective version of the Jakes model. Extensions to this model are then proposed to connect
previous work on Doppler spectrum modeling to random LTV theory. As well, we demonstrate how
an estimation of spatially-local ICM spectra can be cast as a probability density estimation problem,
for which solutions can be found using the Jaynes maximum entropy (MaxEnt) method [44] and
directional statistics [45]. The spectrum prediction method is then validated against a subset of the
Australian Ingara medium grazing angle clutter dataset [46], and good agreement is shown.

2. Results

2.1. Mathematical Background

For a monostatic radar of arbitrary polarization, the baseband backscattered signal y(t) will be
modeled as the response of an LTV system h(τ, t) to a transmitted signal x(t):

y(t) =
∫

h(τ, t)x(t− τ)dτ + w(t), (1)

where τ represents downrange delay (i.e., “fast time”), t is absolute time (“slow time”), and w(t) is
thermal noise. In the literature, h(τ, t) is commonly referred to as the time-varying impulse response.
In this work, h will include the transceiver, antenna, atmospheric propagation, and backscattering
environment, so x(t) is essentially the output of the transmit D/A, and y(t) is the input to the receive
A/D, prior to matched filtering. Polarization considerations are contained in the antenna pattern
and surface scattering radar cross-section (RCS). Variations in h(τ, t) with respect to t represent
channel-induced Doppler shifts. In the case where the entire scenario is static, h(τ, t) = h(τ) (i.e., h is
LTI), and the integral in Equation (1) reduces to a convolution. In applying the LTV model to a radar
system, we use the following assumptions:

• The LTV impulse response h(τ, t) is only valid over a single coherent processing interval (CPI) of
N transmitted pulses
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• Over a single CPI, the range to target(s) is roughly constant
• Relative motion produces a Doppler shift on the carrier only and does not introduce time dilation

of the pulse. The conditions for this assumption to be valid are that BT < 0.1c/ṙ, where BT is the
time-bandwidth product of the waveform and ṙ is the maximum range rate [47] (p. 382).

We will model h(τ, t) as a wide-sense stationary uncorrelated scattering (WSSUS) process
characterized by a set of related correlation functions and show how these are a function of sensor
geometry, system parameters, and environmental conditions. WSSUS processes, which are a subset of
all random LTV systems, are the most widely used model in channel characterization problems [3,13].
In the following sections, we will illustrate the properties of WSSUS processes and validate the core
assumptions for the radar sea clutter problem.

2.2. WSSUS Processes

To apply the WSSUS assumption to a radar scattering environment, we will express the impulse
response in the following form:

h(τ, t) = F−1
ρ [η(τ, ρ)] =

∫ ∞

−∞
η(τ, ρ)ej2πρtdρ (2)

where F−1 is the inverse Fourier operator, ρ is Doppler shift, and η(τ, ρ) is known as the
“delay-Doppler spread function” [13,31]. This function is a stochastic description of the range-Doppler
map of the targets. Substituting Equation (2) into Equation (1) yields:

y(t) =
∫ ∞

−∞

∫ ∞

−∞
η(τ, ρ)x(t− τ)ej2πρtdρdτ + w(t). (3)

In Equation (3) it is clear to see that y(t) can be expressed as the superposition of delayed (by τ),
frequency-shifted (by ρ), and scaled (by the complex gain η(τ, ρ)dτdρ) copies of x(t). It should be
noted that this definition is general enough to include all scatterers in the radar’s field of view—clutter
as well as useful targets. In this case the overall delay-Doppler spreading function is:

ηtotal = ηtargets + ηclutter, (4)

due to the linearity of the system.
To characterize the behavior of h as a stochastic process, we will assume it is zero mean and

compute its second-order statistics:

Rh(τ, τ′, t, t + ∆t) = E
[
h∗(τ, t)h(τ′, t + ∆t)

]
. (5)

Here will we apply the two fundamental assumptions of a WSSUS system: (1) The system is
wide-sense stationary (WSS), implying that the autocorrelation depends only on ∆t along the t axis,
and (2) the scattering at different lags τ are uncorrelated (US):

E
[
h∗(τ, t)h(τ′, t + ∆t)

]
= Rh(τ, τ′, ∆t)

= Ah(τ, ∆t)δ(τ − τ′).
(6)

The function Ah(τ, ∆t) is known as the system correlation function [3,48]. By taking the Fourier
transform of Ah(τ, ∆t) with respect to ∆t, we can view the Doppler spectrum of the return as a function
of delay, referred to in the literature as the “scattering function” Sh(τ, ρ):

Sh(τ, ρ) = F∆t [Ah(τ, ∆t)] . (7)
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The scattering function can be thought of as the true range-Doppler map of the scattering
environment independent of the waveform used to probe it. It can also be shown that the
autocorrelation function of the delay-Doppler spread function η for a WSSUS system is:

E
[
η∗(τ, ρ)η(τ′, ρ′)

]
= Sh(τ, ρ)δ(τ − τ′)δ(ρ− ρ′). (8)

It is sometimes easier to work with this form when deriving new expressions. This result shows
that under a WSSUS model, the scattering not only at different ranges, but also different Doppler shifts
are uncorrelated.

The full set of WSSUS system functions are shown in Figure 1, all of which are related by Fourier
transforms of the different temporal variables. Knowledge of any one of these functions is a sufficient
description of the second-order statistics of the system. These functions are standard tools in wireless
communication channel modeling, and the diagram shown in Figure 1 can be found in virtually any
textbook on the subject [3].

Ah(τ,∆t)

AH(∆f,∆t) Sh(τ, ρ)

SH(∆f, ρ)

F∆t

Fτ

F−1
∆f

F∆t

F−1
ρ

FτF−1
ρ

F−1
∆f

Figure 1. Wide-sense stationary uncorrelated scattering (WSSUS) system function relationships.
Knowledge of any one of these functions grants complete knowledge of the second-order statistics of
the system.

Note that nowhere in this discussion have we specified a distribution for the samples of h(τ, t).
If we assume that h is a circularly-symmetric complex Gaussian random process, then its distribution
is completely specified by the WSSUS system functions described previously, and the magnitude
envelope |y| of the return will be Rayleigh distributed [3]. However, in many cases a distribution
with heavier tails, such as the Weibull or K distribution, is more appropriate, particularly for low
grazing angles or when the radar can resolve individual sea spikes [49]. The results derived in the
remainder of this paper, however, are valid regardless of the distribution of h. Note, however, that if h
is non-Gaussian, higher-order statistics (third-order and above) are required to uniquely specify all of
its properties.

2.3. Simulation Geometry

The simulation geometry is shown in Figure 2, where the airborne radar is at an altitude H above
the surface traveling with velocity v = [vX , vY, vZ]

T . We will assume a coordinate system fixed to the
phase center of the radar antenna, such that the antenna is at the origin, the X-axis is pointed parallel
to the surface and in the plane of symmetry of the aircraft, the Y-axis is pointed out the right side of
the aircraft and parallel to the surface, and the Z-axis is pointing down. In this work, we will assume
that v always lies in the X-Z plane (i.e., no crabbing). Because we are seeking to model the scattering
characteristics as a function of t and τ, we will need to express all spatial quantities in terms of these
temporal variables.
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g =

√(
1
2cτ
)2 −H2

α

θ

r = 1
2cτ

surface

airborne radar at origin

X

Z

Y

H

Figure 2. Flat earth geometry in the X-Z plane. Because the goal is to ultimately produce a range-Doppler
map, we need to express all quantities in terms of downrange delay τ and absolute time t.

We will model the radar signal using an approach similar to Barrick [50,51], i.e., as a spherical
wave emanating from the source located at the origin as is shown in Figure 3. Each small segment of
the wave reflects off of successive isorange rings on the sea surface; the total return is therefore the
superposition of the returns from each isorange ring. The incremental power gain as a function of
delay can be obtained using the radar range equation:

dPR
PT

=
G2(φ(τ, ρ), θ(τ))λ2σ0(α(τ))dA(τ)

(4π)3
(

1
2 cτ
)4 (9)

where:

• PT = transmit power
• dPR = incremental received power from isorange ring at delay τ
• φ, θ = azimuth and depression angles relative to platform
• α = grazing angle, which equals θ in a flat earth model

=⇒ α = θ = sin−1(H/( 1
2 cτ))

• G(φ, θ) = one-way antenna power gain
• λ = carrier wavelength
• σ0 = σ0(α, λ, sea state, . . .) = surface normalized radar cross section (NRCS)
• dA = π

2 c2τdτ = incremental area of isorange ring at delay τ.

X
Y

Z

dA

Figure 3. Return from a single infinitesimal isorange ring on the sea surface. The autocorrelation
function of the impulse response of this ring is computed at delay τ̃, then the result is integrated over
all τ̃ to get the total autocorrelation as a function of delay τ and time offset ∆t.

2.4. WSSUS System Function Derivations

To create a model for the scattering function Sh(τ, ρ), we need to characterize the signal return as
a function of delay and Doppler. To do so, we will consider the Doppler spectrum generated from
the backscatter from a single isorange ring and then apply the principle of superposition to obtain the
total response from all ranges. The approach taken in this section can be considered a generalization of
the Clarke model for flat fading [9,12], applied to modeling radar surface clutter.

We will assume that the impulse response from this ring is the superposition of returns from N
equiangular patches in azimuth with random amplitudes and phases. We will also assume that the
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scatterers on this ring are located at delay τ̃ and write the incremental impulse response of this thin
ring as follows:

dh(τ, t; τ̃) = δ(τ − τ̃)
N−1

∑
n=0

da(φn)ej(2πρ(φn)t+γn) (10)

where φn = 2πn/N is the azimuth angle to patch n, da(φn) is the infinitesimal amplitude gain at
angle φn, ρ(φn) is the Doppler shift at angle φn, and γn is a random phase shift. The incremental
autocorrelation function of the impulse response at τ̃ is then given by:

dRh(τ, τ′, t, t + ∆t; τ̃) = E
[
dh∗(τ, t; τ̃)dh(τ′, t + ∆t; τ̃)

]

= δ(τ − τ̃)δ(τ′ − τ̃) ∑
m,n

E
[
da(φm)da(φn)ej[2π(ρ(φn)(t+∆t)−ρ(φm)t)+γn−γm ]

]
. (11)

We will also assume that the scatterer amplitudes da(φn) are mutually independent, and we will
assume that the amplitude da(φn) is independent of the Doppler shift ρ(φn), therefore:

dRh(τ, τ′, t, t + ∆t; τ̃) = δ(τ − τ̃)δ(τ′ − τ̃)
N−1

∑
n=0

E
[
|da(φn)|2

]
E
[
ej2πρ(φn)∆t

]

= dRh(τ, τ′, ∆t; τ̃)

(12)

Note that E
[
|da(φn)|2

]
is simply the backscattered power gain from scatterer n, therefore by

using Equation (9) and scaling it to account for the fact that the surface area of each patch is smaller by
a factor of 1/N, we obtain:

E
[
|da(φn)|2

]
=

1
N

dPR
PT

=
λ2σ0dτ̃

8π2c2τ̃3
1
N

G2(n∆φ, θ).
(13)

Note that N = 2π/∆φ, where ∆φ is the angular spacing between patches, which upon substituting
in Equation (13) yields:

E
[
|da(φn)|2

]
=

λ2σ0dτ̃

16π3c2τ̃3 G2(n∆φ, θ)∆φ. (14)

Combining this with Equation (12) and taking the limit as N → ∞ yields

dRh(τ, τ′, ∆t; τ̃) = δ(τ − τ̃)δ(τ′ − τ̃)
λ2σ0dτ̃

16π3c2τ̃3 · lim
N→∞

N−1

∑
n=0

G2(n∆φ, θ)E
[
ej2πρ(φn)∆t

]
∆φ

= δ(τ − τ̃)δ(τ′ − τ̃)
λ2σ0dτ̃

16π3c2τ̃3

∫

〈2π〉
G2(φ, θ)E

[
ej2πρφ,θ ∆t

]
dφ.

(15)

Note that the expression E
[
ej2πρφ,θ ∆t

]
is the characteristic function of the random angular

frequency 2πρφ,θ [52]. In this work, we will define the characteristic function k(∆t|φ, θ) as:

k(∆t|φ, θ) =
∫

p(ρ|φ, θ)ej2πρ∆tdρ

= F−1
ρ [p(ρ|φ, θ)] ,

(16)
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where p(ρ|φ, θ) is the probability density function (pdf) of the random frequency ρφ,θ . Substituting
this expression in Equation (15) yields:

dRh(τ, τ′, ∆t; τ̃) = δ(τ − τ̃)δ(τ′ − τ̃)
λ2σ0dτ̃

16π3c2τ̃3 · lim
N→∞

N−1

∑
n=0

G2(n∆φ, θ)E
[
ej2πρn∆t

]
∆φ

= δ(τ − τ̃)δ(τ′ − τ̃)
λ2σ0dτ̃

16π3c2τ̃3 ·
∫

〈2π〉
G2(φ, θ)k(∆t|φ, θ)dφ

(17)

One interpretation of the function p(ρ|φ, θ) that is used in the wireless communications literature
is that the pdf of the random Doppler shift can be thought of as a normalized power spectral density
(PSD) [3,8]. Thus if one has some model of the local Doppler spectrum, this information is accounted
for in Equation (16).

To obtain the autocorrelation function for all delays τ we will use the US property that the return
from each isorange ring τ̃ is uncorrelated and thus we can integrate over τ̃ to obtain the total response:

Rh(τ, τ′, ∆t) =
∫

dRh(τ, τ′, ∆t; τ̃)

= δ(τ − τ′)
λ2σ0

16π3c2τ3

∫

〈2π〉
G2(φ, θ)k(∆t|φ, θ)dφ.

(18)

It is clear from Equation (18) that Ah(τ, ∆t) is therefore:

Ah(τ, ∆t) =
λ2σ0

16π3c2τ3

∫

〈2π〉
G2(φ, θ)k(∆t|φ, θ)dφ. (19)

To find the clutter scattering function Sh(τ, ρ), we take the Fourier transform of Ah(τ, ∆t) with
respect to ∆t:

Sh(τ, ρ) = F∆t [Ah(τ, ∆t)]

=
λ2σ0

16π3c2τ3

∫

〈2π〉
G2(φ, θ)

(
F∆tF−1

ρ p(ρ|φ, θ)
)

dφ

=
λ2σ0

16π3c2τ3

∫

〈2π〉
G2(φ, θ)p(ρ|φ, θ)dφ

(20)

The expression in Equation (20) is significant because it gives an analytical expression for the full
clutter spectrum, not just the mainlobe clutter, for any antenna pattern and provides a mechanism
for supplying a priori information about the local Doppler spectra as a function of look angle. In this
integral it can be seen that the antenna pattern has the effect of performing a weighted average of the
local Doppler spectra over azimuth.

2.5. Important Special Cases

In this section, we will use Equation (20) to derive analytic expressions for the scattering function
for several useful cases.

2.5.1. No ICM

In the degenerate case where there is no ICM, i.e., the surface motion is small relative to the
platform motion, then the localized Doppler shifts ρφ,θ are deterministic and only depend on the look
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angle relative to platform motion. This means that the local Doppler spectra are each just an impulse,
and the scattering function Equation (20) reduces to [42]:

S(no ICM)
h (τ, ρ) =

λ2σ0

16π3c2τ3

∫

〈2π〉
G2(φ, θ)δ(ρ− β(φ, θ))dφ

=





λ2σ0(α(τ))
16π3c2τ3

G2(φ′ ,θ)+G2(−φ′ ,θ)√
(ρ′X(τ))

2−(ρ−ρ′Z(τ))
2 , |ρ− ρ′Z(τ)| < ρ′X(τ)

0, else,

(21)

where the nominal Doppler shift β(φ, θ) due to platform motion is given as:

β(φ, θ) = ρX cos θ cos φ + ρZ sin θ, (22)

where ρX = 2vX/λ and ρZ = 2vZ/λ are the Doppler contributions due to motion in the X − Z
plane, ρ′X(τ) = ρX cos(θ(τ)) and ρ′Z(τ) = ρZ sin(θ(τ)) are the effective Doppler contributions in
the observation direction, and φ′(τ, ρ) = arccos((ρ− ρ′Z(τ))/ρ′X(τ)) is the nominal azimuth angle.
The result in Equation (21) is a frequency-selective generalization of the Clarke/Jakes spectrum for
airborne radar geometries [9,10].

A constant-τ cut of Equation (21) without the antenna pattern is plotted in Figure 4, with G = 1
and ρ′Z = 0. The singularity of the scattering function at ρ − ρ′Z(τ) ≈ ρ′X(τ) is extremely critical
for modeling nose-aspect clutter, as it serves to narrow the Doppler spread of the antenna pattern.
For side-looking antennas, however, the singularities are irrelevant as the Jakes spectrum is flat near
|ρ− ρ′Z(τ)| ≈ 0.

1.0 0.5 0.0 0.5 1.0
ρ/ρ ′X

0

1

2

3

4

5

6

ρ
′ X
/√ ρ

′ X
2
−
ρ

2

Figure 4. Constant-τ cut of the no-internal clutter motion (ICM) scattering function Equation (21) with
the antenna pattern removed (i.e., G = 1) and no vertical motion (ρ′Z = 0). The true scattering function
will be windowed by the antenna pattern to focus on a specific region of ρ—a side-looking antenna
will be focused near ρ = 0, whereas a nose-aspect antenna will be focused near ρ = ρ′X .

2.5.2. Side-Looking Antenna, Level Flight Path

In many airborne radars, the antenna broadside is pointed at φ = −π/2. In this case, we will
create a new angular variable ψ = φ + π/2 to represent angular deviation from broadside. The
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antenna pattern and local Doppler spectrum with respect to this coordinate will be denoted G̃ and p̃,
respectively. If we assume a level flight path (i.e., ρZ = 0), then:

β(φ, θ) = ρX cos θ cos φ

= ρX cos θ sin ψ

≈(ρX cos θ)ψ = ρ′Xψ,

(23)

which, for an antenna with beamwidth of less than 20◦, is a very good approximation. Substituting
into Equation (20) to compute the scattering function yields:

S(side)
h (τ, ρ) =

λ2σ0

16π3c2τ3

∫ π

−π
G̃2(ψ, θ) p̃(ρ|ψ, θ)dψ

≈ λ2σ0

16π3c2τ3

∫ ∞

−∞
G̃2(ψ, θ) p̃(ρ|ψ, θ)dψ

=
λ2σ0

16π3c2τ3
1

ρ′X

∫ ∞

−∞
G̃2(β/ρ′X , θ) p̃(ρ|β/ρ′X , θ)dβ,

(24)

where the second equality is due to the fact that the antenna gain is nearly zero near the edges of the
angular limit, so extending the limits of the integral to infinity does not change the result, and the
third equality converts the integral from the angular domain to the Doppler domain. If we simplify
the integrals by defining G(β|τ) = G̃(β/ρ′X(τ), θ(τ)) and p(ρ|β, τ) = p̃(ρ|β/ρ′X(τ), θ(τ)), which are
just the antenna pattern and local Doppler spectrum projected into delay-Doppler space, we can see
that the scattering function is just a linear transformation of the antenna pattern with the local Doppler
spectrum acting as the kernel function:

S(side)
h (τ, ρ) =

λ2σ0

16π3c2τ3
1

ρ′X

∫ ∞

−∞
G2(β|τ)p(ρ|β, τ)dβ. (25)

Note that p(ρ|β, τ) is the Doppler spectra observed by a moving platform, meaning that its center
frequency is being modulated by the platform Doppler shift β(φ, θ). If we assume that p does not
change much relative to β, which is a reasonable assumption due to the fact that radar antennas
usually have a very small azimuthal beamwidth, we can express p in terms of a “baseband” Doppler
spectrum, i.e., the Doppler spectrum caused only by ICM that would be seen by a stationary radar
with an infinitesimal beamwidth. The ICM spectrum is usually what is discussed in papers on Doppler
spectrum modeling (e.g., [28,29,53]). We will denote this quantity as b(ρ|τ) and note that under the
narrow beamwidth assumption, p(ρ|β, τ) ≈ b(ρ− β|τ), therefore:

S(side)
h (τ, ρ) =

λ2σ0

16π3c2τ3
1

ρ′X

∫ ∞

−∞
G2(β|τ)b(ρ− β|τ)dβ

=
λ2σ0(τ)

16π3c2τ3
1

ρ′X(τ)

[
G2(ρ|τ) ∗

ρ
b(ρ|τ)

]
.

(26)

If we note that the coefficients outside the brackets only depend on τ, we can simplify Equation (27):

S(side)
h (τ, ρ) = f (τ)

[
G2(ρ|τ) ∗

ρ
b(ρ|τ)

]
. (27)

The relationship in Equation (27) is a common model of the relationship between ICM spectrum,
antenna pattern, and observed Doppler spectrum used in side-looking airborne radars (e.g., [54]);
this derivation explicitly shows the conditions that are required for this model to be accurate.
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We can also define a baseband analogue to the characteristic function of Equation (16) as:

k(∆t|τ) = F−1
ρ [b(ρ|τ)] , (28)

and note that for a side-looking radar:

A(side)
h (τ, ∆t) = F−1

ρ

[
S(side)

h

]

= f (τ)F−1
ρ

[
G2(ρ|τ) ∗

ρ
b(ρ|τ)

]

= f (τ)F−1
ρ

[
G2(ρ|τ)

]
F−1

ρ [b(ρ|τ)]

= A(platform)
h (τ, ∆t) · k(∆t|τ),

(29)

where A(platform)
h is the autocorrelation due to platform motion only. Because k serves the function of

windowing the correlation function (which in this case is also a covariance because the random process
is zero mean) in ∆t, it is referred to in the STAP literature as a covariance matrix taper (CMT) [27,28].

2.5.3. Arbitrary Orientation

In general, for a narrow-azimuthal beamwidth antenna, the scattering function will be:

Sh(τ, ρ) ≈ S(no ICM)
h (τ, ρ) ∗

ρ
b(ρ|τ), (30)

where S(no ICM)
h is the scattering function defined in Equation (21), which includes the Jakes spectrum

peaks, and b is the ICM spectrum.

2.6. Output Time-Frequency Power Distribution

We will assume the matched-filter output is the correlation of N pulses against an infinite pulse
train input, represented by the periodic ambiguity function (PAF) |χNT |, given by [55]:

|χNT(τ, ρ)| =
∣∣∣∣

1
NTr

∫ NTr

0
x(t)x∗(t + τ)ej2πρtdt

∣∣∣∣ , (31)

where x(t) is the normalized unit-energy input pulse train and Tr is the pulse repetition interval (PRI).
The pulse repetition frequency (PRF) Fr = 1/Tr. The PAF has the following properties that are relevant
to our application:

|χNT(τ, ρ)| = |χNT(τ + Tr, ρ)|, (32)

and:

|χNT(τ, ρ)| = |χ1T(τ, ρ)|
∣∣∣∣

sin NπρTr

N sin πρTr

∣∣∣∣ . (33)

One important result from Green’s work [56] was that the time-frequency power distribution is
proportional to the convolution of the ambiguity function with the WSSUS system scattering function:

P(τ, ρ) = ExSh(τ, ρ) ∗ ∗|χNT(τ, ρ)|2

= Ex

∫ ∫
Sh(τ

′, ρ′)|χNT(τ − τ′, ρ− ρ′)|2dτ′dρ′,
(34)

where Ex is the energy of the pulse train. Note that since |χNT |2 is periodic along the τ axis, the
result of the convolution integral of Equation (34) is periodic along this axis as well. If we assume the
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support of Sh is limited to [0, QTr] for some positive integer Q along the τ axis, then the output power
distribution can be written as a circular convolution:

P(τ, ρ) = Ex

∫ QTr

0

∫ ∞

−∞
Sh(τ

′, ρ′)|χNT(τ − τ′, ρ− ρ′)|2dρ′dτ′

= ExSh(τ, ρ)~
τ
∗
ρ
|χNT(τ, ρ)|2,

(35)

where ~ represents circular convolution and ∗ represents ordinary convolution. The problem was cast
into this form so that discrete implementations can use the Fast Fourier Transform (FFT) to efficiently
compute the periodic output power distribution along the τ axis without zero padding.

2.7. ICM Spectrum Characterization

2.7.1. Maximum Entropy Prior

As it has been noted in Section 2.4, b(ρ|τ) can be interpreted simultaneously as either (a) a PSD
corresponding to a small patch of sea surface, or (b) a pdf of a random Doppler shift introduced
by surface motion. Thus the spectrum characterization problem is reduced to a problem in prior
probability density estimation.

Choosing a prior distribution is an important component of Bayesian estimation, and thus,
there is a wide selection of literature available on the subject. If one has prior knowledge of the
Doppler distribution from measurements or physical calculations, they can immediately compute the
appropriate clutter taper using Equation (16). However, this is not usually the case, as the Doppler
spectra for any given operating wavelength λ may depend on a multitude of factors, such as sea state,
wind speed, temperature, salinity, etc.

In the absence of such detailed information, one tool for selecting an appropriate prior is the
principle of maximum entropy (MaxEnt) [44]. It is based on the objectivist Bayesian philosophy that
probabilities represent a state of knowledge rather than a degree of belief, and thus the selection of a
prior distribution should be based on objective criteria, such as known expectations or known support
of the random variable, in such a way that the amount of “assumed” information is minimized.

Formally, this is expressed as choosing some distribution function b(x) with support (a, b) of the
random variable X that maximizes the differential entropy H:

H(X) = −
∫ b

a
b(x) log b(x)dx, (36)

subject to the constraints imposed by the known “testable information” Fi:

E [ fi(X)] =
∫ b

a
b(x) fi(x)dx = Fi, i = 1, . . . , n. (37)

The solution to this optimization problem is found using the calculus of variations:

b(x) = c0m(x) exp

(
∑

i
λi fi(x)

)
, (38)

where c0 is a normalization constant, m(x) is a partition function that is constant in the support
region x ∈ (a, b) and zero elsewhere, and λi are the Lagrange multipliers. The shape of the resulting
distribution depends on the amount of known “testable information”.

2.7.2. Known Mean, Unknown Variance

We often know the wind speed vw and direction φw but no other information about the shape of
the Doppler prior. If we start with the following assumptions:
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• The mean wave speed (and hence mean Doppler shift) is proportional to the wind speed.
For example, it is commonly assumed that the wave speed is 1/8th the wind speed [57], and

• The wind velocity vector has no Z component, and
• The waves move in the same direction as the wind,

then the following mathematical statements can then be constructed to express this testable information:

• µρ ∝ vw cos θ cos(φ− φw),
• ρ sgn(µρ) ∈ [0, ∞).

There are cases when these statements are not true, such as when there is a sudden change of wind
direction, but for a fully developed wind-wave these are not particularly controversial statements [49].
The MaxEnt prior that satisfies these criteria can be shown to be:

b(ρ|τ) = 1
|µρ(τ)|

exp
(
− ρ

µρ(τ)

)
u
(
ρ sgn

(
µρ(τ)

))
, (39)

where u(·) is the Heaviside step function. This is an exponential distribution with respect to the wind
direction. The intuition behind this is that, while the mean Doppler shift will be proportional to the
wind speed, there will be some wave components that move much faster, but none that move in the
opposite direction of the wind.

2.7.3. Known Mean and Variance

If the mean E [ρ] = µρ and variance E
[
(ρ−E [ρ])2] = σ2

ρ of the Doppler frequency are known,
then the MaxEnt prior is a truncated Gaussian:

b(ρ|τ) = c0m(ρ) exp

(
−
(ρ− µ′ρ(τ))2

2σ′2ρ (τ)

)
. (40)

In general µρ 6= µ′ρ and σ2
ρ 6= σ′2ρ due to the truncation of the tails of the distribution by m(ρ).

The Doppler spectra model given in §3.8.2 of [49] can be considered a version of this with a → −∞
and b→ ∞, in which case µρ = µ′ρ and σρ = σ′ρ.

2.7.4. Distribution Comparison

The claimed exponential shape of the MaxEnt Doppler spectrum may seem puzzling to
experienced readers who have experience with Doppler spectra being commonly modeled as having
a Gaussian shape. The reader is reminded that Equation (39) is not the spectrum the radar “sees”;
the shape of the spectrum a (side-looking) radar will see is determined by the convolution (along ρ)
of the Doppler spectra b(ρ|τ) with the antenna pattern G2(ρ|τ), which is then convolved (along τ

and ρ) with the waveform ambiguity squared |χNT(τ, ρ)|2. Each of these processing steps alters the
resolution of the radar.

As an illustrative example, we will consider the Doppler spectra modeled in §3.8.2 of [49].
Since the radar is stationary, G2(ρ|τ) ∝ δ(ρ). The predicted spectrum in this scenario is described
using the following parameters:

• Fr = 2 kHz
• N = 32 pulses
• Dolph-Chebyshev window with −55 dB sidelobes
• µρ = 62.5 Hz
• σ2

ρ = 20 Hz2

• Overall clutter to noise ratio (CNR) = 20 dB

The computed MaxEnt spectra for both the unknown and known variance cases are shown in
Figure 5. The predicted power distribution P(ρ) = |χNT(0, ρ)|2 ∗ b(ρ) is shown in Figure 6. It can be
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seen in Figure 5 that the specification of the variance narrows the Doppler pdf b(ρ) significantly, but if
too short of a CPI is used, as is the case in Figure 6, the observed spectrum after matched filtering will
not change significantly.
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Figure 5. Maximum entropy (MaxEnt) Doppler priors for unknown variance (u.v.) and known variance
(k.v.) cases. For the u.v. case, the MaxEnt prior is an exponential distribution, whereas for the k.v. case,
the MaxEnt prior is a Gaussian. Note that additional knowledge of the variance significantly reduces
the predicted spectrum width.
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Figure 6. Output power distributions for unknown variance (u.v.) and known variance (k.v.) cases.
Note that in this case the predicted spectrum when the variance is known becomes waveform-limited
because σρ � Fr/N.

2.8. Experimental Validation

2.8.1. Doppler Spectrum Modeling

To validate our framework, we will compare the modeled clutter spectra to empirically measured
spectra. For our comparison, we will use the Ingara dataset, which is a medium grazing angle
dataset containing measured returns from an airborne radar flying in a circular path at a speed of
approximately 200 knots, operating in spotlight mode (i.e., illuminating the patch of sea at the center
of the circle.) Data were collected at grazing angles from 15 to 45 degrees. The radar operates at a
center frequency of 10.1 GHz using a linear frequency modulated (LFM) waveform with a pulse width
of 20 µs and a bandwidth 200 MHz, leading to a range resolution of about 0.75 m.

The data in the flight that we will use for comparison was collected from an altitude of 0.5 nmi
with the plane flying in a circular path of radius 1.9 nmi, leading to a grazing angle of approximately
15 degrees. This run contains the measured radar IQ returns over a 305 second interval, or about
1.4 revolutions around the circular path. A plot of the downrange video at each slow time is shown
in Figure 7. Close inspection of this picture shows that the individual wave crests and troughs are
clearly visible.

To test the ability of the WSSUS framework to predict Doppler spectra, we will compare the
predicted spectra to the Doppler spectra observed while the radar is looking downwind. The observed
range-Doppler map seen when the radar is looking downwind is shown in Figure 8. It can be seen
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that the spectrum is biased in the negative Doppler direction, as expected. Significant variation in the
mean Doppler frequency in each range bin can be seen; this is likely due to the high range resolution
of the radar. Because these minute fluctuations are essentially random and difficult to predict, we will
take the ensemble average of the normalized spectra over τ. In this dataset, the elevation beampattern
was removed as a preprocessing step, so it is expected that the Doppler spectra in each range bin will
have similar statistics with the exception of path loss-induced amplitude decay. The ensemble average
spectrum is shown in Figure 9, where it is labeled “empirical”.

Because the Ingara radar is side-looking and is flying at a constant altitude, we will use the
simplifications of the WSSUS model in Section 2.5.2 to compute the scattering function Sh, which we
will convolve with the ambiguity to obtain the delay-Doppler map P(τ, ρ). The azimuth antenna
pattern and waveform parameterization were supplied with the dataset, so the only unknown in our
prediction efforts is the ICM Doppler prior b(ρ|τ).

0 500 1000
Range bin

0

50

100

150

200

250

300

Sl
ow

 ti
m

e 
(s

)

30

24

18

12

6

0

Po
w

er
 (d

B
)

Figure 7. Ingara data from trial SCT04, flight F42, run 34,877. The Ingara radar contains 1024 range
gates covering a range span of approximately 767 m, captured from an airborne radar operating in
spotlight mode flying in a circular path at an altitude of 0.5 nmi and observing the ocean at a grazing
angle of 15◦. In this run, the plane completes approximately 1.4 revolutions of its circular flight path.
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Figure 8. Range-Doppler map when the radar is looking in the downwind direction, obtained over a
coherent processing interval (CPI) of 128 pulses (0.52 s). The wind speed was 8.5 m/s. Note that the
Doppler shifts are biased towards negative frequencies. This bias could be due to wave motion away
from the radar as well as antenna pointing errors.
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Figure 9. Empirical ensemble average spectrum plotted versus WSSUS predicted spectra for the
unknown variance (u.v.) and known variance (k.v.) cases. As well, the “standard” Gaussian clutter
spectrum when the variance is known is plotted for reference. It can be seen that the Gaussian spectrum
model vastly underestimates the clutter floor caused by antenna and waveform sidelobes.

We will use the MaxEnt procedure of Section 2.7.1 to estimate the ICM prior. For these models, it
is necessary to predict mean and variance. Because the spectrum is periodic, we estimated the mean
µρ Doppler shift using the circular mean [45]:

µρ ≈
Fr

2π
arg

(
EP

[
ej2πρ/Fr

])
, (41)

where EP denotes expectation is taken with respect to the empirically observed spectrum P(ρ),
normalized to unit area. From the data in Figure 9, µρ = −47.9 Hz, which corresponds to a radial wave
speed of −0.71 m/s. We will assume that µρ accounts for both the mean ICM Doppler shift as well as
antenna pointing errors.

For estimating the variance σ2
ρ of the prior, we need to account for the fact that, according to

Equations (27) and (35), the spectral width is due to the convolution of the prior with the antenna with
the waveform ambiguity, therefore each step “broadens” the spectrum. In the elementary case when all
three functions are Gaussian, the observed spectral variance σ2

obs is the sum of the component variances:

σ2
obs = σ2

ρ + σ2
a + σ2

w, (42)

where σa and σw are the RMS Doppler widths of the antenna pattern and waveform, respectively.
This can be used to estimate the variance of the clutter prior:

σρ ≈
√

σ2
obs − σ2

a − σ2
w. (43)

However, because the observed distribution P(ρ) and the waveform ambiguity cut |χNT(0, ρ)|2
are both periodic, the appropriate way to measure σobs and σw are using the circular standard
deviation [45]:

σobs =
√
−2 ln

(∣∣EP
[
ej2πρ/Fr

]∣∣)

σw =

√
−2 ln

(∣∣∣E|χ|2
[
ej2πρ/Fr

]∣∣∣
)

,
(44)

where E|χ|2 is expectation with respect to the normalized ambiguity squared.
The predicted spectrum using the WSSUS framework with the MaxEnt priors, labeled

“WSSUS u.v.” for the unknown variance case, and “WSSUS k.v.” for the known variance case,
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as well a plot of the “standard” Gaussian Doppler spectrum model for P(ρ), are shown in Figure 9.
It can be seen that both predicted spectra capture the shape of the empirical spectrum; the specification
of the variance produces a spectrum that is within approximately 1 dB of the empirical spectrum at
all frequencies. The Gaussian model for P(ρ) produces excelled agreement for in the main lobe but
does not predict the presence of the sidelobe clutter floor of approximately –29 dB. This could lead to
excessively optimistic predictions of radar performance in the sidelobe clutter region.

It is expected that for a side-looking radar in level flight the clutter Doppler spectrum will be
centered at 0 Hz. The negative frequency bias of the observed Doppler spectrum in Figure 9 could be
due to:

• Wave motion away from the radar, as described in Section 2.7.2, of approximately 0.71 m/s,
• Aircraft crabbing (i.e., translational motion in the Y-direction),
• Antenna pointing errors; using Equation (23) yields a pointing error of approximately 0.4 degrees,
• Some combination of the above effects.

2.8.2. Validation of WSSUS Assumption

Another validation test that was performed using the Ingara dataset was to determine the
validity of the WSSUS assumption. If the clutter impulse response h(τ, t) is non-WSS in t, then the
autocorrelation Ah(τ, ∆t) would not just depend on the time-difference ∆t, but also the absolute time t.

To characterize the change in the autocorrelation over time, we computed the autocorrelation of
the data over a sliding window of width 1 s over the entire record length of 305 s in range bin 1. The start
time of each window was advanced by 10 ms, leading to a 99% overlap between windows. We will
denote this function At(∆t). To characterize the autocorrelation at each time instant t, we measure the
decorrelation time Tc, defined implicitly by:

At(Tc)

At(0)
= e−1, (45)

i.e., Tc is the time it takes for the autocorrelation centered at time t to decay to 1/e from its peak value.
The measured values of Tc versus time are plotted in Figure 10.
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Figure 10. Clutter decorrelation times measured over time in range bin 1. Note that the decorrelation
time remains roughly constant over several intervals much longer than a CPI. This provides support
for the assumption that the clutter statistics are locally WSS for sufficiently long instants in time for the
assumptions in Section 2.4 to apply.

We will use the stability of Tc over time as a proxy to for the stationarity properties of the clutter.
It is clear that the clutter is nonstationary over long periods of time, but for short instants of time it may
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be approximated as being locally WSS. Ironically, even researchers that study the nonstationary nature
of clutter spectra must implicitly assume the clutter signal is locally WSS for them to be able to apply
the Wiener-Khinchin theorem to estimate the clutter power spectrum in the first place! So the important
question is not whether or not clutter is stationary, but how long does it remain locally stationary? Our
modeling so far has assumed that the stationarity duration is larger than a CPI.

To test this assumption, we created a statistic called the “stability duration” of Tc, which is
defined as the region of time over which Tc changes less than X%. (We used 10 percent, but this
is admittedly arbitrary.) Because Tc = Tc(t) is itself a function of time, the stability duration was
computed relative to the value of Tc(t) at each timestep. A histogram of the stability times over the
entire record length is shown in Figure 11. It can be seen that the median stability time is about 1.5 s,
with the mean being even higher. Thus for any waveform with a PRI on the order of one millisecond
or less (i.e., PRF > 1 kHz, which is very common) and integrating less than 1000 pulses, this is a
perfectly reasonable assumption. This assumption may be violated for low-PRF waveforms with long
integration times, such as those used in surveillance radars.
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Figure 11. Histogram of stability durations. It can be seen that the decorrelation time Tc is roughly
constant over intervals much greater than one CPI for medium- and high-PRF waveforms.

3. Discussion and Conclusions

Effective suppression of unwanted sea clutter returns requires an accurate characterization of
their spatio-temporal statistics. We have created a WSSUS model for sea clutter that allows for the
prediction of the clutter range-Doppler spectrum and provided a mechanism by which internal clutter
motion may be accounted for and quickly estimated. Validation against the Ingara medium grazing
angle dataset shows agreement between the WSSUS model and the ensemble average spectrum to
within 1 dB at all frequencies.

Future work could apply this model to developing signal processing techniques such as adaptive
transmit waveform design and improved MTI filtering to optimize signal detection in the presence of
heterogeneous clutter.

4. Materials and Methods

The Ingara dataset, which was used for all experiments in this paper, is not publicly available;
access is controlled by the Australian Defence Science and Technology (DST) Group [46]. Data analysis
methods are described fully in the paper.
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