
entropy

Article

Improved Adaptive Successive Cancellation List
Decoding of Polar Codes

Xiumin Wang 1, Jinlong He 1, Jun Li 2,*, Zhuoting Wu 1, Liang Shan 1,* and Bo Hong 1

1 College of Information Engineering, China Jiliang University, Hangzhou 310018, China;
05a0303091@cjlu.edu.cn (X.W.); S1803081215@cjlu.edu.cn (J.H.); P1603085219@cjlu.edu.cn (Z.W.);
hongbo@cjlu.edu.cn (B.H.)

2 Binjiang College, Nanjing University of Information Science & Technology, Wuxi 214105, China
* Correspondence: 07a0303105@cjlu.edu.cn (J.L.); lshan@cjlu.edu.cn (L.S.)

Received: 28 June 2019; Accepted: 15 September 2019; Published: 17 September 2019
����������
�������

Abstract: Although the adaptive successive cancellation list (AD-SCL) algorithm and the
segmented-CRC adaptive successive cancellation list (SCAD-SCL) algorithm based on the cyclic
redundancy check (CRC) can greatly reduce the computational complexity of the successive
cancellation list (SCL) algorithm, these two algorithms discard the previous decoding result and
re-decode by increasing L, where L is the size of list. When CRC fails, these two algorithms waste
useful information from the previous decoding. In this paper, a simplified adaptive successive
cancellation list (SAD-SCL) is proposed. Before the re-decoding of updating value L each time,
SAD-SCL uses the existing log likelihood ratio (LLR) information to locate the range of burst error
bits, and then re-decoding starts at the incorrect bit with the smallest index in this range. Moreover,
when the segmented information sequence cannot get the correct result of decoding, the SAD-SCL
algorithm uses SC decoding to complete the decoding of the subsequent segmentation information
sequence. Furthermore, its decoding performance is almost the same as that of the subsequent
segmentation information sequence using the AD-SCL algorithm. The simulation results show that
the SAD-SCL algorithm has lower computational complexity than AD-SCL and SCAD-SCL with
negligible loss of performance.

Keywords: polar codes; SC decoding; SCL decoding algorithm; AD-SCL algorithm; segmentation
decoding algorithm

1. Introduction

The polar codes [1], as a channel coding technique for 5G communication, are used as the coding of
the control channel for transmitting signaling or synchronizing data. Polar codes become the research
hotspot. In decoding, the SC decoding algorithm based on polarization characteristics of the channel
proposed by Professor Arikan is a suitable decoding algorithm for polar codes. Based on this decoding
algorithm, polar codes have been proved capable of reaching the Shannon limit when the code length
approaches infinity. Later, Tian et al. proposed a scenario-simplified successive cancellation decoding
algorithm based on the erasure channel, which can simplify the calculation operations in the decoding
process [2].

However, SC decoding has some disadvantages, such as large decoding delay and strong
inter-symbol interference, which make SC decoding performance worse in the case of limited code
length. In order to improve the decoding performance in the SC algorithm, the SCL decoding
algorithm proposed in [3] uses a binary tree to represent the multiple possibilities of the SC algorithm
in bitwise decoding and retains L candidate decoding paths, where L is the size of list. This method
can effectively reduce the inter-symbol interference and improve the decoding performance of polar

Entropy 2019, 21, 899; doi:10.3390/e21090899 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/1099-4300/21/9/899?type=check_update&version=1
http://dx.doi.org/10.3390/e21090899
http://www.mdpi.com/journal/entropy

Entropy 2019, 21, 899 2 of 13

codes. Subsequently, Niu et al. proposed a CA-SCL algorithm, which selects reliable paths of SCL
in [4] through the cyclic redundancy check aided (CRC-aided) decoding of polar codes. The algorithm
further improves the performance of SCL, and when L is big enough, the performance of the algorithm
can approach the maximum likelihood probability. In [5], a successive cancellation priority (SCP)
decoding algorithm was proposed to reduce the decoding delay by avoiding the expansion of some
unnecessary paths.

In [6], a new SCL decoding was proposed by using multiple CRC codes, which can improve the
performance of decoding. However, using multiple CRC codes increases memory and time complexity,
which can be reduced by optimizing CRC positions in combination with a modified decoding operation.
Cheng et al. proposed the bit-flip algorithm for the CA-SCL algorithm, which can improve the decoding
performance of polar codes compared to CRC-aided decoding of polar codes [7]. Although the SCL
decoding algorithm has excellent decoding performance by adding CRC, its memory complexity and
time complexity increase with the increase of L.

The method of reducing the complexity in SCL decoding is mainly divided into two types. On the
one hand, the computational parallelism of SCL is improved and the computational process is simplified
to reduce the time complexity of SCL decoding. In [8], a method for estimating path metrics (PM) by
using Rate-1 and SPC nodes for the SSC and SCL algorithm in parallel was proposed. This method
greatly reduces the time complexity of the SCL algorithm, but it brings about the uncertainty of the
estimation results and leads to performance loss. Based on this, the simplified successive cancellation
list (SSCL) algorithm proposed in [9] can identify and simplify the redundancy calculation in SCL.
This method greatly reduces the time complexity without loss of performance.

On the other hand, it is the optimization of path management in SCL decoding. Zhou et al.
proposed the segmented CRC-aided successive cancellation list (SCA-SCL) decoding technique which
can reduce the complexity of decoding [10]. Path selection can also be optimized. In [11–15], different
schemes for optimizing L paths were proposed. In order to reduce the complexity of SCL, Yang et al.
proposed a more convenient method to select L paths from 2L paths based on RS sorting [16],
which reduces the complexity of selecting paths in SCL from O

(
NL log2 L

)
to O(NL).

In [17], they proposed a method to simplify the number of paths retained in the SCL decoding
process according to the transition probability, which realizes SCL decoding with variable L and also
reduces the complexity.

Hashemi et al. proposed partitioned SCL (PSCL) decoding technique which can reduce the
required memory [18]. Although the method above reduces the complexity of SCL to a certain extent,
they all have a certain impact on the performance of SCL. Based on the PSCL algorithm, the generalized
PSCL (GPSCL) algorithm proposed by Hashemi et al. can improve performance under the same
complexity [19].

Li et al. put forward the adaptive SCL (AD-SCL) decoding algorithm [20], which reduces the
complexity of SCL in the case of specified performance. The difference between AD-SCL and CA-SCL
lies in that AD-SCL sets the minimum path value and the maximum path value, while SCL starts to
decode from Lmin. If there is an error decoding result after CRC, re-decoding starts by increasing L
until the decoding passes the CRC or L equals to Lmax.

Although the algorithm reduces the computation complexity without loss of performance, when a
CRC fails, it has to re-decode from the first bit, which greatly increases the decoding delay caused by
error bits.

Recently, Wang et al. proposed a segmented adaptive SCL decoding algorithm (SCAD-SCL) based
on AD-SCL in [21]. This algorithm divides codewords into two segments by adding CRC in the middle
of the codewords and uses the AD-SCL method in decoding. Hence, when decoding errors from the
second part occur, there is no need to re-decode from the first bit.

Compared with AD-SCL, SCAD-SCL reduces computation complexity. However, both AD-SCL
and SCAD-SCL discard the previous decoding results and directly re-decode by increasing L when CRC
fails, which wastes the useful information from the previous decoding. In addition, the experiment

Entropy 2019, 21, 899 3 of 13

analysis shows that the performance of the second part is almost independent of size L, when there is
an error in the first part of the decoding. Based on the above analysis, SCAD-SCL proposed in [21]
still needs to be improved further. In this paper, a simplified adaptive SCL segmentation algorithm
(SAD-SCL) based on CRC-aided is proposed. Before the re-decoding of updating value L each time,
SAD-SCL uses the existing log likelihood ratio (LLR) information to locate the range of burst error
bits. This proposed method is to locate a starting bit in the re-decoding. Then, the re-decoding starts
at the locating bit with the smallest index in this range. The SAD-SCL algorithm further avoids
redundant computation in the decoding process with negligible loss of performance and has a lower
computational complexity than SCAD-SCL.

2. Theory of Polar Codes

A method for constructing polar codes based on channel polarization is given in [1].
The construction of the polar codes can be defined by (N, K, Λ, uΛC), where N denotes the code
length, K denotes the number of information bits, the code rate is K/N, Λ denotes the set of the index
of the information bits, uΛ denotes the set of the information bits, and uΛC denotes the frozen bits. the
frozen bits are usually set to zero. uN

1 denotes the information sequence before encoding, and then the
encoding process can be expressed as

xN
1 = uN

1 GN (1)

where xN
1 is the encoding sequence, GN is the generator matrix of polar codes. GN is represented by

GN = BNF⊗n (2)

where n = log2N, F⊗n denotes n-order Kronecker power, and F =

[
1 0
1 1

]
.

The decoding of polar codes can be regarded as the process of channel splitting, and the transition
probability of each sub-channel is related to each other. For the information bit i, the hard decision value
ûi is calculated by the received sequence yN

1 and the sequence ûi−1
1 that has been decoded previously.

The specific calculation formula is [1]

δ
(
yN

1 , ûi−1
1

)
=

 0, L(i)
N

(
yN

1 , ûi−1
1

)
≥ 0

1, L(i)
N

(
yN

1 , ûi−1
1

)
< 0

(3)

where L(i)
N

(
yN

1 , ûi−1
1

)
represents the log likelihood ratio of i-th bit, which is

L(i)
N

(
yN

1 , ûi−1
1

)
= ln

Wi
N

(
yN

1 , ûi−1
1

∣∣∣0)
Wi

N

(
yN

1 , ûi−1
1

∣∣∣1)
 (4)

It can be seen that the decoding result of the current codeword is related to all previous decoding
results in SC decoding, that is, the previous error bit will affect the decoding result of the current bit.
In order to solve this problem, the SCL algorithm proposed in [3] expresses all possibilities of SC
decoding in the form of a binary tree, as shown in Figure 1. The red dotted line represents a path of
list4, and the two branches of each node represent the two possibilities of the node with “1” or “0”.
For example, the information bit u1 corresponds to the two paths of the first layer in Figure 1. PM1

1 and
PM2

1 represent the reliability of the two paths, respectively.

Entropy 2019, 21, 899 4 of 13

Entropy 2019, 21, x FOR PEER REVIEW 3 of 13

proposed in [21] still needs to be improved further. In this paper, a simplified adaptive SCL
segmentation algorithm (SAD-SCL) based on CRC-aided is proposed. Before the re-decoding of
updating value L each time, SAD-SCL uses the existing log likelihood ratio (LLR) information to
locate the range of burst error bits. This proposed method is to locate a starting bit in the
re-decoding. Then, the re-decoding starts at the locating bit with the smallest index in this range. The
SAD-SCL algorithm further avoids redundant computation in the decoding process with negligible
loss of performance and has a lower computational complexity than SCAD-SCL.

2. Theory of Polar Codes

A method for constructing polar codes based on channel polarization is given in [1]. The
construction of the polar codes can be defined by 푁, 퐾, 훬, 푢 , where 푁 denotes the code length, 퐾
denotes the number of information bits, the code rate is 퐾/푁, 훬 denotes the set of the index of the
information bits, 푢 denotes the set of the information bits, and 푢 denotes the frozen bits. the
frozen bits are usually set to zero. 푢 denotes the information sequence before encoding, and then
the encoding process can be expressed as

푥 = 푢 퐺 (1)

where 푥 is the encoding sequence, 퐺 is the generator matrix of polar codes. 퐺 is represented by

퐺 = 퐵 퐹⊗ (2)

where 푛 = 푙표푔 푁, 퐹⊗ denotes 푛-order Kronecker power, and 퐹 = 1 0
1 1 .

The decoding of polar codes can be regarded as the process of channel splitting, and the
transition probability of each sub-channel is related to each other. For the information bit 푖, the hard
decision value 푢 is calculated by the received sequence 푦 and the sequence 푢 that has been
decoded previously. The specific calculation formula is [1]

훿 푦 , 푢 =
0, 퐿() 푦 , 푢 ≥ 0

1, 퐿() 푦 , 푢 < 0
 (3)

where 퐿() 푦 , 푢 represents the log likelihood ratio of 푖-th bit, which is

퐿() 푦 , 푢 = 푙푛
푊 푦 , 푢 |0
푊 푦 , 푢 |1

 (4)

It can be seen that the decoding result of the current codeword is related to all previous
decoding results in SC decoding, that is, the previous error bit will affect the decoding result of the
current bit. In order to solve this problem, the SCL algorithm proposed in [3] expresses all
possibilities of SC decoding in the form of a binary tree, as shown in Figure 1. The red dotted line
represents a path of list4, and the two branches of each node represent the two possibilities of the
node with “1” or “0”. For example, the information bit 푢 corresponds to the two paths of the first
layer in Figure 1. PM and PM represent the reliability of the two paths, respectively.

Figure 1. Binary tree of SCL (successive cancellation list) decoding. Figure 1. Binary tree of SCL (successive cancellation list) decoding.

3. Improved Segmented CRC-Based Adaptive SCL Algorithm

The SCAD-SCL proposed in [21] adds some segmented CRC based on the AD-SCL algorithm,
which further reduces the complexity of AD-SCL, but it still has high computation complexity. In our
work, we propose an improved algorithm SAD-SCL based on the existing CRC adaptive successive
cancellation list algorithm.

The SAD-SCL algorithm introduces segmented CRC for SCAD-SCL and uses a new method
to reduce the redundancy calculation of the AD-SCL algorithm. Before each update, the value L is
re-decoded, SAD-SCL first uses the existing LLR information to determine the range of the burst error
bit, and then only re-decodes the information sequence of this range. Moreover, when SAD-SCL cannot
obtain the correct decoding value in the first part of the information sequence, it uses SC decoding to
complete the decoding in the second part of the information sequence, and the decoding performance
of SAD-SCL is almost the same as that of second part of the AD-SCL algorithm. This paper introduces
two improvements to SAD-SCL in Sections 3.1 and 3.2. The specific decoding process for SAD-SCL is
given in Section 3.2.

3.1. Adaptive SCL Decoding Based on Burst Error Bits

The error bits of the SC decoding algorithm can be divided into two categories. One is burst error
caused by channel interference, and the other is error propagation caused by burst error bits. In [22],
an SC decoding algorithm which eliminates inter-symbol interference is designed to count the number
of burst error bits generated by channel interference. When code length is N = 1024 and code rate
is R = 0.5, Figure 2 illustrates the number of error bits counted for 500,000 data frames for different
signal to noise ratio (SNR) by using the experimental method designed in [22,23].

Entropy 2019, 21, x FOR PEER REVIEW 4 of 13

3. Improved Segmented CRC-Based Adaptive SCL Algorithm

The SCAD-SCL proposed in [21] adds some segmented CRC based on the AD-SCL algorithm,
which further reduces the complexity of AD-SCL, but it still has high computation complexity. In
our work, we propose an improved algorithm SAD-SCL based on the existing CRC adaptive
successive cancellation list algorithm.

The SAD-SCL algorithm introduces segmented CRC for SCAD-SCL and uses a new method to
reduce the redundancy calculation of the AD-SCL algorithm. Before each update, the value 퐿 is
re-decoded, SAD-SCL first uses the existing LLR information to determine the range of the burst
error bit, and then only re-decodes the information sequence of this range. Moreover, when
SAD-SCL cannot obtain the correct decoding value in the first part of the information sequence, it
uses SC decoding to complete the decoding in the second part of the information sequence, and the
decoding performance of SAD-SCL is almost the same as that of second part of the AD-SCL
algorithm. This paper introduces two improvements to SAD-SCL in Sections 3.1 and 3.2. The specific
decoding process for SAD-SCL is given in Section 3.2.

3.1. Adaptive SCL Decoding Based on Burst Error Bits

The error bits of the SC decoding algorithm can be divided into two categories. One is burst
error caused by channel interference, and the other is error propagation caused by burst error bits. In
[22], an SC decoding algorithm which eliminates inter-symbol interference is designed to count the
number of burst error bits generated by channel interference. When code length is 푁 = 1024 and
code rate is 푅 = 0.5, Figure 2 illustrates the number of error bits counted for 500,000 data frames for
different signal to noise ratio (SNR) by using the experimental method designed in [22,23].

Figure 2. The number of error bits for different SNR at N = 1024, R = 0.5.

It can be seen that the burst error bits of the SC decoding are mostly within three bits, and the
probability of only one burst error bit is the largest. Therefore, if the decoding result does not pass
the CRC, there is a great possibility caused by a burst error bit of information. We can select an
appropriate information bit 푖 , which is located in front of all the error bits. When re-decoding, the
decoded bits before the 푆-th bit are reserved, and the information bits after the 푆-th bit are decoded
by using the increasing 퐿 decoding algorithm. A schematic diagram of the process is shown in
Figure 3.

Figure 3. SCL decoding structure diagram starting from 푆.

Figure 2. The number of error bits for different SNR at N = 1024, R = 0.5.

Entropy 2019, 21, 899 5 of 13

It can be seen that the burst error bits of the SC decoding are mostly within three bits, and the
probability of only one burst error bit is the largest. Therefore, if the decoding result does not pass the
CRC, there is a great possibility caused by a burst error bit of information. We can select an appropriate
information bit is, which is located in front of all the error bits. When re-decoding, the decoded bits
before the S-th bit are reserved, and the information bits after the S-th bit are decoded by using the
increasing L decoding algorithm. A schematic diagram of the process is shown in Figure 3.

Entropy 2019, 21, x FOR PEER REVIEW 4 of 13

3. Improved Segmented CRC-Based Adaptive SCL Algorithm

The SCAD-SCL proposed in [21] adds some segmented CRC based on the AD-SCL algorithm,
which further reduces the complexity of AD-SCL, but it still has high computation complexity. In
our work, we propose an improved algorithm SAD-SCL based on the existing CRC adaptive
successive cancellation list algorithm.

The SAD-SCL algorithm introduces segmented CRC for SCAD-SCL and uses a new method to
reduce the redundancy calculation of the AD-SCL algorithm. Before each update, the value 퐿 is
re-decoded, SAD-SCL first uses the existing LLR information to determine the range of the burst
error bit, and then only re-decodes the information sequence of this range. Moreover, when
SAD-SCL cannot obtain the correct decoding value in the first part of the information sequence, it
uses SC decoding to complete the decoding in the second part of the information sequence, and the
decoding performance of SAD-SCL is almost the same as that of second part of the AD-SCL
algorithm. This paper introduces two improvements to SAD-SCL in Sections 3.1 and 3.2. The specific
decoding process for SAD-SCL is given in Section 3.2.

3.1. Adaptive SCL Decoding Based on Burst Error Bits

The error bits of the SC decoding algorithm can be divided into two categories. One is burst
error caused by channel interference, and the other is error propagation caused by burst error bits. In
[22], an SC decoding algorithm which eliminates inter-symbol interference is designed to count the
number of burst error bits generated by channel interference. When code length is 푁 = 1024 and
code rate is 푅 = 0.5, Figure 2 illustrates the number of error bits counted for 500,000 data frames for
different signal to noise ratio (SNR) by using the experimental method designed in [22,23].

Figure 2. The number of error bits for different SNR at N = 1024, R = 0.5.

It can be seen that the burst error bits of the SC decoding are mostly within three bits, and the
probability of only one burst error bit is the largest. Therefore, if the decoding result does not pass
the CRC, there is a great possibility caused by a burst error bit of information. We can select an
appropriate information bit 푖 , which is located in front of all the error bits. When re-decoding, the
decoded bits before the 푆-th bit are reserved, and the information bits after the 푆-th bit are decoded
by using the increasing 퐿 decoding algorithm. A schematic diagram of the process is shown in
Figure 3.

Figure 3. SCL decoding structure diagram starting from 푆. Figure 3. SCL decoding structure diagram starting from S.

In the decoding process, the larger the absolute value of LLR of an information bit is, the more
reliable the decision value of the information bit is. Let R be the set of values LLR of the decoded
information bits and frozen bits in SCL, and I is the set of indexes in R in the original information
sequence. Based on this feature, we can find a suitable value by following these steps:

Step 1: When the decoding of the segmented CRC fails, we find the m bits with smaller absolute
LLR values in set R and record the indexes as a set Ie.

Step 2: Let S be the smallest index in set Ie.
In this paper, the above method is used to dynamically find a position S in the information

sequence, so that all possible burst error bits are located at the right of S (assuming the decoding order
is from left to right), and the SCL decoding is restarted from this bit. It ensures that SCL contains all
burst error bits. Compared with the SCAD-SCL and AD-SCL algorithms, the SAD-SCL makes full
use of previous decoding results and digs out the available information, which reduces redundant
calculation. From the above analysis, the larger the value m is, the higher the probability of burst error
bits contained in the set Ie will be, but the position of S will be closer to the starting bit of the decoding
sequence, which means that this SCL decoding will calculate more nodes. In addition, if the value
m is too small, the burst error bit may be missed in the set Ie, which will result in loss of decoding
performance. The value m will be analyzed in detail in Section 4.

3.2. Improved Algorithm Based on Segmented Adaptive SCL

Since SC decoding has error propagation characteristics, the number of decoded error bits will be
very large when errors occur. SCL also shares a similar phenomenon. In [24], there are two types of
errors in SCL, which can be divided into disappearing errors and selection errors. Disappearing errors
are when the correct paths are not included in the L paths of SCL. Selection errors are when error paths
are selected from the L paths which include correct paths, because the value PM of correct paths is not
enough to be selected. When the decoding has disappearing errors, the correct paths will never be
selected after the decoding of this bit.

In the SCAD-SCL algorithm, if the first part using SCL decoding with the parameter L = Lmax

fail to pass CRC, it means that the correct decoding result is not included in the L paths in the first
part. The decoding error at this time is a disappearing error. The decision of SCAD-SCL is to take
the optimal path as an output, and then the algorithm begins the next part of adaptive SCL decoding.
However, the decoding of the latter part is based on the previous part, no matter how large L is,
SCL cannot decode the correct codes of the latter part. In addition, due to the failure of the CRC,
the adaptive SCL decoding of this segment will increase from Lmin to Lmax, which greatly increases delay
and complexity. Thus, the decoding of the latter part under this situation is completely unnecessary.

The SAD-SCL algorithm proposed in this paper makes full use of the above analysis and improves
the existing SCAD-SCL algorithm in two aspects.

Entropy 2019, 21, 899 6 of 13

Improvement 1: The SAD-SCL algorithm uses the method described in 3.1 to find the value S
before each update value L is re-decoded and takes S as the starting bit for decoding.

Improvement 2: When the SAD-SCL algorithm cannot get the correct decoding result of the first
part, the SAD-SCL algorithm directly uses SC decoding to complete the decoding of the second part.

The flow chart of the SAD-SCL decoding algorithm is shown in Figure 4. Let û denote the decoding
output value of SAD-SCL. The decoding algorithm can be divided into the following decoding steps:

Entropy 2019, 21, x FOR PEER REVIEW 6 of 13

algorithm goes to step 3 until the CRC of 푢 passes(0 < 푡 ≤ 푙표푔 퐿 ,where 푡 denotes the
number of re-decoding of the first part). In addition, when 퐿 = 퐿max, if the decoding result still fails
to pass CRC, the first part of the codes is judged to include error bits, and the decoder goes directly
to step 4.

Step 3: SAD-SCL begins the decoding of the second part, the decoding result and its
corresponding LLR values of second part are 푢 and 푅 (0 < 푡 ≤ 푙표푔 퐿 ，where 푡 denotes
the number of re-decoding of the second part), respectively. The decoding process of the second part
is the same as that of the improved adaptive SCL in step 2. However, in the decoding of the second
part, when 퐿 = 퐿max, the decoder directly outputs the final decoding result 푢 = 푢 , 푢 if the
decoding result of 푢 does not pass CRC.

Step 4: Since there are some error bits in this decoding result, the SC algorithm is directly used
for the decoding of the second part. Assume the result of the decoding is 푢 , then the final output
decoding result is 푢 = 푢 , 푢 .

Figure 4. SAD-SCL decoding process.

Considering the FER performance of the algorithm, the proposed algorithm can be further
improved. If the first part of decoding fails to pass CRC with 퐿 = 퐿 , then the whole codeword
will be in error. When the decoding is terminated, the number of error frames can also be counted.
Therefore, the termination of the second part of decoding will not lose FER performance. So, the
second part of decoding is unnecessary in this situation. This decoding can be terminated to avoid
wasting resources. This can reduce the complexity of decoding without loss of performance. The
modified algorithm decoding process is shown in Figure 5.

Figure 4. SAD-SCL decoding process.

Step 1: L is set as Lmin = 1, then û1
1 and R1

1 are obtained after the SCL decoding starts in the
first part, where û1

1 represents the SCL decoding result of the first part, and R1
1 is the value LLR

corresponding to û1
1.

Step 2: If the CRC of û1
1 fails, then the decoding process of the first part begins to re-decode by

the improved adaptive SCL algorithm. The decoder makes a comparison between L and Lmax. If L is
less than Lmax, then sets L = 2L, and calculates S according to R1

1, where S indicates the starting bit of
re-decoding. Then û2

1 and R2
1 are obtained by re-decoding, if the CRC of û2

1 fails, continue to increase L
and update the value S, then û3

1 and R3
1 are obtained by re-decoding and so on, the algorithm goes to

step 3 until the CRC of ût1
1 passes (0 < t1 ≤ log2Lmax, where t1 denotes the number of re-decoding of the

first part). In addition, when L = Lmax, if the decoding result still fails to pass CRC, the first part of the
codes is judged to include error bits, and the decoder goes directly to step 4.

Step 3: SAD-SCL begins the decoding of the second part, the decoding result and its corresponding
LLR values of second part are ût2

2 and Rt2
2 (0 < t2 ≤ log2Lmax, where t2 denotes the number of re-decoding

of the second part), respectively. The decoding process of the second part is the same as that of the
improved adaptive SCL in step 2. However, in the decoding of the second part, when L = Lmax,
the decoder directly outputs the final decoding result û =

{
ût1

1 , ût2
1

}
if the decoding result of ût2

2 does
not pass CRC.

Entropy 2019, 21, 899 7 of 13

Step 4: Since there are some error bits in this decoding result, the SC algorithm is directly used
for the decoding of the second part. Assume the result of the decoding is û2, then the final output
decoding result is û =

{
ût1

1 , û2
}
.

Considering the FER performance of the algorithm, the proposed algorithm can be further
improved. If the first part of decoding fails to pass CRC with L = Lmax, then the whole codeword
will be in error. When the decoding is terminated, the number of error frames can also be counted.
Therefore, the termination of the second part of decoding will not lose FER performance. So, the second
part of decoding is unnecessary in this situation. This decoding can be terminated to avoid wasting
resources. This can reduce the complexity of decoding without loss of performance. The modified
algorithm decoding process is shown in Figure 5.Entropy 2019, 21, x FOR PEER REVIEW 7 of 13

Figure 5. Modified SAD-SCL decoding process.

4. Experiment and Analysis

An adaptive segmented SCL decoding algorithm uses S as the starting bit of re-decoding in this
experiment. In order to measure the computation complexity of the decoding algorithm, the average
number of calculations of 푃푀 value proposed in [21] is used. The segmented method is to divide
the bits of information into two parts and decode them respectively, which is same as that in the
SCAD-SCL algorithm. When the code length and code rate are 1024 and 0.5, respectively, the
number of information bits are 512, the last 8-bit information of each segmentation are CRC bits.
After adding the frozen bits, there are 748 bits at the first part of the information sequence and just
276 bits at the second part of the information sequence. There are 492 frozen bits at the first part
while there are only 20 frozen bits at the second part. Because the second part of information
sequence is shorter and contains more intensive information bits, the computational complexity
reduction caused by adding 푆 is not enough to compensate for its performance loss. Therefore, this
experiment only adds 푆 at the first 748 bits of information sequence.

In order to observe the change of computational complexity under different values of 푚 more
intuitively, the average number of calculations of 푃푀 values are counted when the decoding starts
at 푆-th bit. The experimental parameters are shown in Table 1.

Table 1. Experiment parameter.

Category Parameter
Encoding CRC and polar code

Channel type AWGN
Code length 1024

퐿 (the size of list) 퐿 , 퐿
Code rate 0.5

modulation method BPSK

Decoding
Adaptive segmented Decoding Algorithm for AD-SCL with

푆 as the starting bit of re-decoding
푚 (the number of LLR) 20, 50, 70, 80, 90, 100, 140, 256

Figure 5. Modified SAD-SCL decoding process.

4. Experiment and Analysis

An adaptive segmented SCL decoding algorithm uses S as the starting bit of re-decoding in this
experiment. In order to measure the computation complexity of the decoding algorithm, the average
number of calculations of PM value proposed in [21] is used. The segmented method is to divide
the bits of information into two parts and decode them respectively, which is same as that in the
SCAD-SCL algorithm. When the code length and code rate are 1024 and 0.5, respectively, the number
of information bits are 512, the last 8-bit information of each segmentation are CRC bits. After adding
the frozen bits, there are 748 bits at the first part of the information sequence and just 276 bits at the
second part of the information sequence. There are 492 frozen bits at the first part while there are
only 20 frozen bits at the second part. Because the second part of information sequence is shorter and
contains more intensive information bits, the computational complexity reduction caused by adding S
is not enough to compensate for its performance loss. Therefore, this experiment only adds S at the
first 748 bits of information sequence.

Entropy 2019, 21, 899 8 of 13

In order to observe the change of computational complexity under different values of m more
intuitively, the average number of calculations of PM values are counted when the decoding starts at
S-th bit. The experimental parameters are shown in Table 1.

Table 1. Experiment parameter.

Category Parameter

Encoding CRC and polar code
Channel type AWGN
Code length 1024

L (the size of list) Lmin, Lmax
Code rate 0.5

modulation method BPSK

Decoding Adaptive segmented Decoding Algorithm for
AD-SCL with S as the starting bit of re-decoding

m (the number of LLR) 20, 50, 70, 80, 90, 100, 140, 256

Figure 6 shows the bit error rate (BER) performance curves of SAD-SCL (Lmax) and CA-SCL
(L = 16) with a code length of 1024 and a code rate of 0.5 under AWGN channel and BPSK modulation.
Figure 7 shows the frame error rate (FER) performance curves of SAD-SCL (Lmax) and CA-SCL (L = 16)
under the same condition as Figure 6. As can be seen from Figures 6 and 7, with the increase
of m, the performance of adaptive algorithm designed by this experiment improves continuously.
The performance of this algorithm is almost the same with that of SCL when m = 140, which illustrates
that Re contains almost all burst error bits. Table 2 shows the average number of calculations of PM
value when m takes different values. It can be seen in Table 2 that the smaller the value of m, the smaller
the average number of calculations of PM value. But the performance decreases as the value of m
reduces, which indicates that a smaller value of m will make Re more likely to miss burst error bits.
Taking performance and computational complexity into account, m = 140 is used as the parameter of
SAD-SCL decoding algorithm.

Entropy 2019, 21, x FOR PEER REVIEW 8 of 13

Figure 6 shows the bit error rate (BER) performance curves of SAD-SCL (����) and CA-SCL

(� = 16) with a code length of 1024 and a code rate of 0.5 under AWGN channel and BPSK

modulation. Figure 7 shows the frame error rate (FER) performance curves of SAD-SCL (����) and

CA-SCL (� = 16) under the same condition as Figure 6. As can be seen from Figure 6 and Figure 7,

with the increase of � , the performance of adaptive algorithm designed by this experiment

improves continuously. The performance of this algorithm is almost the same with that of SCL when

� = 140, which illustrates that �� contains almost all burst error bits. Table 2 shows the average

number of calculations of �� value when � takes different values. It can be seen in Table 2 that

the smaller the value of �, the smaller the average number of calculations of �� value. But the

performance decreases as the value of � reduces, which indicates that a smaller value of � will

make �� more likely to miss burst error bits. Taking performance and computational complexity

into account, � = 140 is used as the parameter of SAD-SCL decoding algorithm.

Figure 6. BER Performance of SCL at � = 16 under different values of �.

Figure 7. FER Performance of SCL at � = 16 under different values of �.

B
E

R

F
E

R

Figure 6. BER Performance of SCL at L = 16 under different values of m.

Entropy 2019, 21, 899 9 of 13

Entropy 2019, 21, x FOR PEER REVIEW 8 of 13

Figure 6 shows the bit error rate (BER) performance curves of SAD-SCL (����) and CA-SCL

(� = 16) with a code length of 1024 and a code rate of 0.5 under AWGN channel and BPSK

modulation. Figure 7 shows the frame error rate (FER) performance curves of SAD-SCL (����) and

CA-SCL (� = 16) under the same condition as Figure 6. As can be seen from Figure 6 and Figure 7,

with the increase of � , the performance of adaptive algorithm designed by this experiment

improves continuously. The performance of this algorithm is almost the same with that of SCL when

� = 140, which illustrates that �� contains almost all burst error bits. Table 2 shows the average

number of calculations of �� value when � takes different values. It can be seen in Table 2 that

the smaller the value of �, the smaller the average number of calculations of �� value. But the

performance decreases as the value of � reduces, which indicates that a smaller value of � will

make �� more likely to miss burst error bits. Taking performance and computational complexity

into account, � = 140 is used as the parameter of SAD-SCL decoding algorithm.

Figure 6. BER Performance of SCL at � = 16 under different values of �.

Figure 7. FER Performance of SCL at � = 16 under different values of �.

B
E

R

F
E

R

Figure 7. FER Performance of SCL at L = 16 under different values of m.

Table 2. Calculation times of average PM under different values of m.

m Eb/N0 = 0.5 Eb/N0 = 1 Eb/N0 = 1.5 Eb/N0 = 2 Eb/N0 = 2.5

PM PM PM PM PM

50 16402 6548 1436 218 32
80 16692 6199 1486 218 25

100 16962 6352 1497 220 26
140 17277 7132 1580 228 28
256 19076 7983 1724 261 32

When the code length, the number of information bits and the length of CRC are N, K, M,
respectively, the AD-SCL algorithm needs to consume additional (N −M) ×M times of addition
calculation for CRC every decoding, while the SCAD-SCL algorithm and the SAD-SCL algorithm
proposed in this paper need additional (N/2−M) ×M × 2 times of addition for CRC each
time. In addition, the SAD-SCL algorithm proposed in this paper needs a merge sorting of
N/2-bits when choosing the starting point S of re-decoding. The merge sorting requires at most
(K/2) log2(K/2) −K + 1 additional calculations. Figure 8 shows the number of addition calculation
times of CRC, two-segmentation CRC and merge sorting algorithms when the code rate is 0.5 and the
code lengths are 64, 512, 1024, 2048, 4096.

Entropy 2019, 21, 899 10 of 13

Entropy 2019, 21, x FOR PEER REVIEW 9 of 13

Table 2. Calculation times of average �� under different values of �.

�
��/�� = �.� ��/�� = � ��/�� = �.� ��/�� = � ��/�� = �.�

�� �� �� �� ��

50 16402 6548 1436 218 32

80 16692 6199 1486 218 25

100 16962 6352 1497 220 26

140 17277 7132 1580 228 28

256 19076 7983 1724 261 32

When the code length, the number of information bits and the length of CRC are �, �, �,

respectively, the AD-SCL algorithm needs to consume additional (� − �) ×� times of addition

calculation for CRC every decoding, while the SCAD-SCL algorithm and the SAD-SCL algorithm

proposed in this paper need additional (�/2 −�) × � × 2 times of addition for CRC each time. In

addition, the SAD-SCL algorithm proposed in this paper needs a merge sorting of �/2-bits when

choosing the starting point � of re-decoding. The merge sorting requires at most (�/2) ����(�/2) −

� + 1 additional calculations. Figure 8 shows the number of addition calculation times of CRC,

two-segmentation CRC and merge sorting algorithms when the code rate is 0.5 and the code lengths

are 64, 512, 1024, 2048, 4096.

Figure 8. The number of �� calculations for CRC, two-segmentation CRC and merge sort

of N/2-bits under different code lengths.

It can be observed that the computation complexity of CRC and two-segmentation CRC is

almost the same whatever the code length is, and the difference between them can be ignored.

Compared with CRC and two-segmentation CRC, there exists an extra �/2 merge sort in SAD-SCL.

In [12], the calculation of CRC is almost negligible compared with the average number of

calculations of value �� (LLR value, etc.) each time in SCL. Therefore, the computation resource

consumed by merge sort can be ignored in SCL. Compared with the SCAD-SCL and AD-SCL

algorithms, SAD-SCL makes full use of previous decoding results and digs out the available

information, which reduces redundant calculations.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

code lengths

102

103

104

105

th
e

 n
u

m
b

e
r

o
f
P

M
 c

a
lc

u
la

tio
n

s

CRC

CRC(Segmented)

SORT(MERGE)

Figure 8. The number of PM calculations for CRC, two-segmentation CRC and merge sort of N/2-bits
under different code lengths.

It can be observed that the computation complexity of CRC and two-segmentation CRC is almost
the same whatever the code length is, and the difference between them can be ignored. Compared
with CRC and two-segmentation CRC, there exists an extra N/2 merge sort in SAD-SCL.

In [12], the calculation of CRC is almost negligible compared with the average number of
calculations of value PM (LLR value, etc.) each time in SCL. Therefore, the computation resource
consumed by merge sort can be ignored in SCL. Compared with the SCAD-SCL and AD-SCL
algorithms, SAD-SCL makes full use of previous decoding results and digs out the available information,
which reduces redundant calculations.

When the code length is 1024 and the code rate is 0.5 respectively, the average number of
calculations of value PM for AD-SCL, SCAD-SCL, SAD-SCL with Lmax = 16 is shown in Figure 9. It is
observed that the complexity of the three adaptive algorithms declines with the increase of SNR.Entropy 2019, 21, x FOR PEER REVIEW 10 of 13

Figure 9. The average number of calculations of value �� for AD-SCL, SAD-SCL,

SCAD-SCL with ���� = 16.

When the code length is 1024 and the code rate is 0.5 respectively, the average number of

calculations of value �� for AD-SCL、SCAD-SCL、SAD-SCL with ���� = 16 is shown in Figure 9.

It is observed that the complexity of the three adaptive algorithms declines with the increase of SNR.

The reason is that there are more error frames caused by inter-symbol error propagation in low

SNR and the adaptive algorithm needs a large value of � to complete the decoding. With the

increase of SNR, the frame number of inter-symbol error propagation decreases gradually, and less

values of L are required for the adaptive algorithm, so the complexity in high SNR is lower than that

in low SNR. In addition, the computation complexity of the SAD-SCL algorithm proposed in this

paper is lower than AD-SCL and SCAD-SCL. But with the increase of SNR, the adaptive algorithm

tends to complete decoding once. At this time, the complexity of three kinds of algorithms is almost

the same. In conclusion, the gap of complexity of three kinds of algorithms will narrow with the

increase of SNR.

Figure 10 shows the comparison curves of the average number of calculations of �� value for

SAD-SCL algorithm under different code rates and ���� . It can be seen that the smaller the code rate

and � are, the less the average �� update times of SAD-SCL are.

Figure 10. Average �� update times of SAD-SCL algorithm under different ���� and m.

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
C

a
lc

u
la

tio
n
s
 o

f
P

M
 V

a
lu

e

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

C
a
lc

u
la

tio
n
s

o
f

P
M

 V
a
lu

e

Figure 9. The average number of calculations of value PM for AD-SCL, SAD-SCL, SCAD-SCL with Lmax = 16.

Entropy 2019, 21, 899 11 of 13

The reason is that there are more error frames caused by inter-symbol error propagation in low
SNR and the adaptive algorithm needs a large value of L to complete the decoding. With the increase
of SNR, the frame number of inter-symbol error propagation decreases gradually, and less values of
L are required for the adaptive algorithm, so the complexity in high SNR is lower than that in low
SNR. In addition, the computation complexity of the SAD-SCL algorithm proposed in this paper is
lower than AD-SCL and SCAD-SCL. But with the increase of SNR, the adaptive algorithm tends to
complete decoding once. At this time, the complexity of three kinds of algorithms is almost the same.
In conclusion, the gap of complexity of three kinds of algorithms will narrow with the increase of SNR.

Figure 10 shows the comparison curves of the average number of calculations of PM value for
SAD-SCL algorithm under different code rates and Lmax. It can be seen that the smaller the code rate
and L are, the less the average PM update times of SAD-SCL are.

Entropy 2019, 21, x FOR PEER REVIEW 10 of 13

Figure 9. The average number of calculations of value �� for AD-SCL, SAD-SCL,

SCAD-SCL with ���� = 16.

When the code length is 1024 and the code rate is 0.5 respectively, the average number of

calculations of value �� for AD-SCL、SCAD-SCL、SAD-SCL with ���� = 16 is shown in Figure 9.

It is observed that the complexity of the three adaptive algorithms declines with the increase of SNR.

The reason is that there are more error frames caused by inter-symbol error propagation in low

SNR and the adaptive algorithm needs a large value of � to complete the decoding. With the

increase of SNR, the frame number of inter-symbol error propagation decreases gradually, and less

values of L are required for the adaptive algorithm, so the complexity in high SNR is lower than that

in low SNR. In addition, the computation complexity of the SAD-SCL algorithm proposed in this

paper is lower than AD-SCL and SCAD-SCL. But with the increase of SNR, the adaptive algorithm

tends to complete decoding once. At this time, the complexity of three kinds of algorithms is almost

the same. In conclusion, the gap of complexity of three kinds of algorithms will narrow with the

increase of SNR.

Figure 10 shows the comparison curves of the average number of calculations of �� value for

SAD-SCL algorithm under different code rates and ���� . It can be seen that the smaller the code rate

and � are, the less the average �� update times of SAD-SCL are.

Figure 10. Average �� update times of SAD-SCL algorithm under different ���� and m.

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
C

a
lc

u
la

tio
n
s
 o

f
P

M
 V

a
lu

e

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

C
a
lc

u
la

tio
n
s

o
f

P
M

 V
a
lu

e

Figure 10. Average PM update times of SAD-SCL algorithm under different Lmax and m.

Figures 11 and 12 show the BER and FER performance curves of the SAD-SCL (m = 140),
SCAD-SCL, AD-SCL algorithms when Lmax = 16 under AWGN channel and BPSK modulation. It is
observed that there is little performance loss from the SAD-SCL algorithm compared to the other two
adaptive algorithms.

Entropy 2019, 21, x FOR PEER REVIEW 11 of 13

Figures 11 and 12 show the BER and FER performance curves of the SAD-SCL (m = 140),

SCAD-SCL, AD-SCL algorithms when ���� = 16 under AWGN channel and BPSK modulation. It is

observed that there is little performance loss from the SAD-SCL algorithm compared to the other

two adaptive algorithms.

Figure 11. Performance curve of BER about SAD-SCL, SCAD-SCL, CA-SCL with ���� = 16.

Figure 12. Performance curve of FER for SAD-SCL, SCAD-SCL, CA-SCL with ���� = 16.

5. Conclusion

In order to overcome the shortcomings of the existing adaptive SCL algorithm, this paper

proposes an improved SAD-SCL algorithm, which is from the idea of segmented CRC of SCAD-SCL.

The algorithm uses a new method to reduce the complexity of the AD-SCL algorithm. Before the

re-decoding of updating value � each time, SAD-SCL first uses the existing LLR information to

detect the range of burst error bits, and then decode the information sequence of this range again.

Moreover, when SAD-SCL cannot get the correct decoding value in the first part of the information

sequence, it uses SC decoding with less computation to complete the decoding in the second part of

the information sequence. Its decoding performance is almost the same as that in the second part of

the information sequence using the AD-SCL algorithm. The simulation results show that the

SAD-SCL algorithm has lower computational complexity than AD-SCL and SCAD-SCL without loss

of performance.

0.5 1 1.5 2 2.5

Eb/N0

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E

R

SAD-SCL(Lmax=16,m=140)

SCAD-SCL(Lmax=16) [21]

AD-SCL(Lmax=16) [20]

F
E

R

Figure 11. Performance curve of BER about SAD-SCL, SCAD-SCL, CA-SCL with Lmax = 16.

Entropy 2019, 21, 899 12 of 13

Entropy 2019, 21, x FOR PEER REVIEW 11 of 13

Figures 11 and 12 show the BER and FER performance curves of the SAD-SCL (m = 140),

SCAD-SCL, AD-SCL algorithms when ���� = 16 under AWGN channel and BPSK modulation. It is

observed that there is little performance loss from the SAD-SCL algorithm compared to the other

two adaptive algorithms.

Figure 11. Performance curve of BER about SAD-SCL, SCAD-SCL, CA-SCL with ���� = 16.

Figure 12. Performance curve of FER for SAD-SCL, SCAD-SCL, CA-SCL with ���� = 16.

5. Conclusion

In order to overcome the shortcomings of the existing adaptive SCL algorithm, this paper

proposes an improved SAD-SCL algorithm, which is from the idea of segmented CRC of SCAD-SCL.

The algorithm uses a new method to reduce the complexity of the AD-SCL algorithm. Before the

re-decoding of updating value � each time, SAD-SCL first uses the existing LLR information to

detect the range of burst error bits, and then decode the information sequence of this range again.

Moreover, when SAD-SCL cannot get the correct decoding value in the first part of the information

sequence, it uses SC decoding with less computation to complete the decoding in the second part of

the information sequence. Its decoding performance is almost the same as that in the second part of

the information sequence using the AD-SCL algorithm. The simulation results show that the

SAD-SCL algorithm has lower computational complexity than AD-SCL and SCAD-SCL without loss

of performance.

0.5 1 1.5 2 2.5

Eb/N0

10-7

10-6

10-5

10
-4

10-3

10-2

10-1

100

B
E

R

SAD-SCL(Lmax=16,m=140)

SCAD-SCL(Lmax=16) [21]

AD-SCL(Lmax=16) [20]

F
E

R

Figure 12. Performance curve of FER for SAD-SCL, SCAD-SCL, CA-SCL with Lmax = 16.

5. Conclusion

In order to overcome the shortcomings of the existing adaptive SCL algorithm, this paper
proposes an improved SAD-SCL algorithm, which is from the idea of segmented CRC of SCAD-SCL.
The algorithm uses a new method to reduce the complexity of the AD-SCL algorithm. Before the
re-decoding of updating value L each time, SAD-SCL first uses the existing LLR information to
detect the range of burst error bits, and then decode the information sequence of this range again.
Moreover, when SAD-SCL cannot get the correct decoding value in the first part of the information
sequence, it uses SC decoding with less computation to complete the decoding in the second part
of the information sequence. Its decoding performance is almost the same as that in the second
part of the information sequence using the AD-SCL algorithm. The simulation results show that the
SAD-SCL algorithm has lower computational complexity than AD-SCL and SCAD-SCL without loss
of performance.

Author Contributions: X.W. and J.H. initiated the idea and designed the experiment scheme. J.L., X.W., J.H. and
Z.W. analyzed the experiment data and wrote the manuscript. Z.W., L.S. and B.H. made the revisions for the
paper. All authors participated in writing the manuscript, and have read and approved the final manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China, under Grant
No. 51874264, 61571108, 61379027.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Arikan, E. Channel polarization: A method for constructing capacity-achieving codes for symmetric
binary-input memoryless channels. In Proceedings of the 2008 IEEE International Symposium on Information
Theory, Toronto, ON, Canada, 6–11 July 2008; pp. 3051–3073.

2. Tian, K.; Liu, R. Scenario-Simplified Successive Cancellation Decoding of Polar Codes for Channel with
Deletions. IEEE ACCESS 2019, 7, 18172–18182. [CrossRef]

3. Tal, I.; Vardy, A. List decoding of polar codes. IEEE Trans. Inf. Theory 2015, 61, 2213–2226. [CrossRef]
4. Niu, K.; Chen, K. CRC-aided decoding of polar codes. IEEE Commun. Lett. 2012, 16, 1668–1671. [CrossRef]
5. Guan, D.; Niu, K.; Dong, C.; Zhang, P. Successive Cancellation Priority Decoding of Polar Codes. IEEE Access

2019, 7, 9575–9585. [CrossRef]
6. Kim, J.-H.; Kim, S.-H.; Jang, J.-W.; Kim, Y.-S. Low complexity list decoding for polar codes with multiple

CRC codes. Entropy 2017, 19, 183. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2019.2897114
http://dx.doi.org/10.1109/TIT.2015.2410251
http://dx.doi.org/10.1109/LCOMM.2012.090312.121501
http://dx.doi.org/10.1109/ACCESS.2019.2890838
http://dx.doi.org/10.3390/e19040183

Entropy 2019, 21, 899 13 of 13

7. Cheng, F.; Liu, A.; Zhang, Y.; Ren, J. Bit-Flip Algorithm for Successive Cancellation List Decoder of Polar
Codes. IEEE Access 2019, 7, 58346–58352. [CrossRef]

8. Sarkis, G.; Giard, P.; Vardy, A.; Thibeault, C.; Gross, W.J. Fast list decoders for polar codes. IEEE J. Sel. Areas
Commun. 2015, 34, 318–328. [CrossRef]

9. Hashemi, S.A.; Condo, C.; Gross, W.J. Fast Simplified Successive-Cancellation List Decoding of Polar Codes.
Presented at the 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW),
San Francisco, CA, USA, 19–22 March 2017.

10. Zhou, H.; Zhang, C.; Song, W.; Xu, S.; You, X. Segmented CRC-aided SC list polar decoding. In Proceedings
of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016;
pp. 1–5.

11. Kim, D.; Park, I.-C. A fast successive cancellation list decoder for polar codes with an early stopping criterion.
IEEE Trans. Signal Process. 2018, 66, 4971–4979. [CrossRef]

12. Gao, C.; Liu, R.; Dai, B.; Han, X. Path Splitting Selecting Strategy-Aided Successive Cancellation List
Algorithm for Polar Codes. IEEE Commun. Lett. 2019, 23, 422–425. [CrossRef]

13. Xu, Q.; Pan, Z.; Liu, N.; You, X. A complexity-reduced fast successive cancellation list decoder for polar
codes. Sci. China Inf. Sci. 2018, 61, 022309. [CrossRef]

14. Jin, H.; Liu, R. List Estimation-aided Successive-Cancellation List Decoding of Polar Codes. In Proceedings
of the 2018 IEEE/CIC International Conference on Communications in China (ICCC), Beijing, China, 16–18
August 2018; pp. 242–246.

15. Shi, S.; Han, B.; Gao, J.-L.; Wang, Y.-J. Enhanced successive cancellation list decoding of polar codes. IEEE
Commun. Lett. 2017, 21, 1233–1236. [CrossRef]

16. Yang, J.; Zhang, C.; Xu, S.; You, X. Low-complexity adaptive successive cancellation list polar decoder based
on relaxed sorting. In Proceedings of the 2015 International Conference on Wireless Communications &
Signal Processing (WCSP), Nanjing, China, 15–17 October 2015; pp. 1–5.

17. Zhang, C.; Wang, Z.; You, X.; Yuan, B. Efficient adaptive list successive cancellation decoder for polar codes.
In Proceedings of the 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA,
USA, 2–5 November 2014; pp. 126–130.

18. Hashemi, S.A.; Balatsoukas-Stimming, A.; Giard, P.; Thibeault, C.; Gross, W.J. Partitioned
successive-cancellation list decoding of polar codes. In Proceedings of the 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 957–960.

19. Hashemi, S.A.; Mondelli, M.; Hassani, S.H.; Condo, C.; Urbanke, R.L.; Gross, W.J. Decoder partitioning:
Towards practical list decoding of polar codes. IEEE Trans. Commun. 2018, 66, 3749–3759. [CrossRef]

20. Li, B.; Shen, H.; Tse, D. An adaptive successive cancellation list decoder for polar codes with cyclic redundancy
check. IEEE Commun. Lett. 2012, 16, 2044–2047. [CrossRef]

21. Wang, Q.; Luo, Y.; Li, S. Polar Adaptive Successive Cancellation List Decoding Based on Segmentation Cyclic
Redundancy Check. J. Electron. Inf. Technol. 2019, 1–7. [CrossRef]

22. Afisiadis, O.; Balatsoukas-Stimming, A.; Burg, A. A low-complexity improved successive cancellation
decoder for polar codes. In Proceedings of the 2014 48th Asilomar Conference on Signals, Systems and
Computers, Pacific Grove, CA, USA, 2–5 November 2014; pp. 2116–2120.

23. Li, G.; Mu, J.; Jiao, X. Successive cancellation multibit-flipping decoding algorithm for polar codes. J. Xidian
Univ. 2017, 44, 63–68.

24. Wang, T.; Qu, D.; Jiang, T. Cluster Pairwise Error Probability and Construction of Parity-Check-Concatenated
Polar Codes. arXiv 2018, arXiv:1810.04458.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2914691
http://dx.doi.org/10.1109/JSAC.2015.2504299
http://dx.doi.org/10.1109/TSP.2018.2864580
http://dx.doi.org/10.1109/LCOMM.2019.2894150
http://dx.doi.org/10.1007/s11432-017-9128-x
http://dx.doi.org/10.1109/LCOMM.2017.2676775
http://dx.doi.org/10.1109/TCOMM.2018.2832207
http://dx.doi.org/10.1109/LCOMM.2012.111612.121898
http://dx.doi.org/10.11999/JEIT180716
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theory of Polar Codes
	Improved Segmented CRC-Based Adaptive SCL Algorithm
	Adaptive SCL Decoding Based on Burst Error Bits
	Improved Algorithm Based on Segmented Adaptive SCL

	Experiment and Analysis
	Conclusion
	References

