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Abstract: Decision Tree is widely applied in many areas, such as classification and recognition.
Traditional information entropy and Pearson’s correlation coefficient are often applied as measures of
splitting rules to find the best splitting attribute. However, these methods can not handle uncertainty,
since the relation between attributes and the degree of disorder of attributes can not be measured
by them. Motivated by the idea of Deng Entropy, it can measure the uncertain degree of Basic
Belief Assignment (BBA) in terms of uncertain problems. In this paper, Deng entropy is used as
a measure of splitting rules to construct an evidential decision tree for fuzzy dataset classification.
Compared to traditional combination rules used for combination of BBAs, the evidential decision
tree can be applied to classification directly, which efficiently reduces the complexity of the algorithm.
In addition, the experiments are conducted on iris dataset to build an evidential decision tree that
achieves the goal of more accurate classification.
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1. Introduction

Decision trees are one of the efficient techniques that are widely used in various areas,
like machine learning, image processing, and pattern recognition. Decision trees are good due to
having better comprehensibility of classification in terms of extracting from feature-based samples [1–3].
In addition, decision trees were not only proven efficient in many fields [4], but also have less
parameters [5]. There are two main rules considered in the process of building decision trees [6].
One is the stopping criterion to determine when to stop the growth of tree and generate leaf nodes [7].
The other is how to assign class labels in leaf nodes [8]. The first rule means that the growth of the
tree should be ended [9] if all samples belongs to the same class [9]. The second rule emphasizes the
importance of setting a threshold [10]. There exist many methods of decision trees, such as ID3 [7],
C4.5 [11,12], and CART [10].

However, all rules in the processing of decision trees are under certain situations; while the
real world is filled with uncertainty [13–16]. Thus, when it deals with uncertain issues, all the rules
should take uncertainty into consideration. Dempster-Shafer evidence theory (D–S) [17,18] is widely
used in many applications such as decision making [19–24], evidential reasoning [25–28], information
fusion [29,30], pattern recognition [31–33], fault diagnosis [34–37], risk evaluation [38–40], network
analysis [41], conflicting management [42–45], uncertainty modeling [46–50], and so on [51–54]. In the
D–S evidence theory, Basic Belief Assignment (BBA) measures the uncertainty. Deng entropy [55] is
proposed to quantify the uncertain measure of BBA.

Some works combined with evidence theory and decision trees are presented [56–60], but,
motivated by the idea of building decision tree based on Pearson correlation coefficient [61] and
the proposed Deng entropy instead of information entropy [62–66], in this paper, the evidential
decision tree is proposed for classification of fuzzy data sets using BBAs, which are applied directly for
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classification instead of using combination rules for classification indirectly. That is to say, the evidential
decision tree is constructed for classification directly based on BBAs rather than using combination
rules, which not only reduce the complexity of algorithm but also avoid designing the combination
rules, which is always complicated. Moreover, the proposed evidential decision trees are much more
efficient than traditional decision tree methods, illustrated by the analysis of experiments with the iris
data set and wine data set.

The organization of this paper is introduced briefly as follows. Section 2 presents the introduction
of preliminaries. The building of the evidential decision tree is shown in Section 3. Experiments are
conducted in Section 4. This paper ends with the conclusion in Section 5.

2. Preliminaries

In this section, D–S evidence [17,18], Deng Entropy [55], and Pearson’s correlation coefficient
based on the decision tree (PCC-Tree) [61] are briefly introduced. D–S evidence theory is introduced to
present the definitions in terms of uncertain problems. Additionally, the Deng entropy is introduced
to calculate the uncertain degree of BBAs. Finally, PPC-Tree is followed by the proposed method,
replacing Pearson’s correlation coefficient with Deng entropy to build an evidential decision tree.

2.1. D–S Evidence Theory

Handling uncertainty is an open issue, and many methods have been developed [67–69]. In D–S
evidence theory [17,18], Θ = (A1, A2, A3, · · · , An) is a frame of discernment. Ai(1 ≤ i ≤ n) represents
the identification of every element in the framework.

Basic Belief Assignment (BBA), a mass function, is one of the most important definitions of D–S
evidence theory and many operations are presented based on it such as negation [70,71], divergence
measure [72], and correlation [73]. BBA has two features: m(∅) = 0 and ∑A⊆Θ m(A) = 1. It should be
mentioned that the BBA of an empty set in classical evidence theory is zero [74].

For the same evidence, different Basic Belief Assignments will be obtained due to different
independent evidence sources. Assuming the frame of discernment is Θ, m1, m2, m3, · · ·mn are n
different BBAs which are all independent. According to Dempster’s combination rule, the result is
presented as follows:

m = m1
⊕

m2
⊕

m3
⊕
· · ·

⊕
mn, (1)

m(A) =


0 i f A = ∅;

K−1 ∑
∩Aj=A

n

∏
i=1

mi(Aj) otherwise,
(2)

K is normalization factor, which is defined as follows:

K = 1− ∑⋂
Aj=∅

n

∏
i=1

mi(Aj). (3)

The reliability factor α(α ∈ [0, 1]) is given to construct the discounted mass function αm, m is one
of the BBAs on the identification frame Θ:

αm(A) =

{
αm(A) i f A ⊂ Θ, A 6= Θ;

1− α + αm(Θ) otherwise,
(4)
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2.2. Deng Entropy

Inspired by Shannon Entropy, a new uncertainty method called Deng Entropy is proposed [55]:

Ed(m) = − ∑
A⊆Θ

m(A) log2
m(A)

2|A| − 1
. (5)

As shown in the above definition, different from the classical Shannon entropy, the belief for each
focal element A is divided by

(
2|A| − 1

)
, which means the potential number of states in A. Through

a simple transformation, it is found that Deng entropy is actually a type of composite measure,
as follows: If the quotient rule of logarithm transformation of Deng Entropy is carried out, it is actually
a comprehensive measurement:

Ed(m) = ∑
A⊆Θ

m(A) log2

(
2|A| − 1

)
− ∑

A⊆Θ
m(A) log2 m(A), (6)

where the first term could be explained as a measure of total nonspecificity in the mass function m, and
the second term could be interpreted as the measure of discord of the mass function among distinct
focal elements.

2.3. PCC-Tree

During building decision trees, the Pearson’s correlation coefficient can be used as the optimal
splitting point—PCC-Tree [61].

Following the idea of building the traditional decision tree, one new type of decision tree was
reconstructed by Pearson’s correlation coefficient through a top-down recursive way. The detailed
constructing process can be found in Algorithm 1.

Algorithm 1 Constructing a PCC-Tree

Require: A root node X = {xi}N
i=1, where xi is the i th instance with n condition attributes {Ak}n

k=1

and one decision attribute D; the stopping criterion ε.
Ensure: A PCC-Tree.

if the samples in X belong to some class then

Mark X as a leaf node and assign the class as its label.
return.

end if
for each attribute Ak, k = 1, 2, · · · , n in X do

for each value ci in Ak do

Compute the Pearson’s correlation coefficient P of two vectors: Pcj(Ak) = P(V(Ak, cj) and

V(D)),
where P denotes Pearson’s correlation coefficient and V denotes one vector.

end for
c∗jk = arg maxcj Pcj (Ak).

end for
Get the best attribute Ak∗ and the splitting point ck∗ , where k∗ = arg maxk Pcj (Ak).
Suppose p(X) is the proportion of samples covered by X.
if p(X) < ε then

Mark X as leaf node.
Assign the maximum class of samples in X to this leaf node.
return

else
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Split X into two subsets X1 and X2, based on Ak∗ and ck∗ .
if p(X1) == 0 or p(X2) == 0 then

Mark X as a leaf node.
Assign the maximum class of samples in X to this leaf node.
return

end if
Recursively search the new tree nodes from X1 and X2 by Algorithm 1, respectively.

end if

3. Proposed Method

Evidential decision tree is introduced in this section. Motivated by the idea of building a
decision tree based on Pearson’s correlation coefficient, the Deng Entropy is calculated as a measure in
splitting rules processing the decision tree. The difference is that the relation between the probability
distributions of attributes and the probability distribution of decision attributes can be measured by
Pearson’s correlation coefficient, but BBAs can not in terms of uncertainty. Thus, the Deng Entropy
is proposed in this paper, as a measure of splitting rules processing in the decision tree. In the end,
the decision tree is built in the situation of uncertainty.

3.1. BBA Determination

It is an open issue to determine the BBAs of attributes. In this paper, one of them is chosen to
determine the BBAs [75]. The procedures are introduced in detail as follows.

1. Step 1: Normality test is carried out for each attribute column from each training set class.
Consider a case where there are N samples in each class i(i = 1, 2, · · · , n) in the training set,
and the attribute j(j = 1, 2, · · · , k) column (length N) are normality tested to get a Normality
Index for the attribute j of class i, donated as NIij (binary expression). If NIij = 0, it means
the selected attribute obeys the experimental assumption. Otherwise, if NIij = 1, it represents
that the attribute does not follow normal distribution. Transformation of the original data to an

equivalent normal space will occur when condition ∑n
i=1 NIij ≥

n
2

is adopted.

2. Step 2: Calculate the value of the mean and the sample standard deviation of each sample for
selected class and selected attribute.

µij =
1
N

N

∑
l=1

xijl ,

sij =

√√√√ 1
N − 1

N

∑
l=1

(
xijl − µij

)2
.

(7)

xijl is the sample value of the jth attribute from the lth sample in class i. Thus, obtain the
corresponding normal distribution function:

f
(

x; µij, s2
ij

)
=

1√
2πs2

ij

e−(x−µij)
2
/
(

2s2
ij

)
. (8)

For each attribute, n normal distribution functions (or curves) can be obtained as models of
different classes in the specific attribute.

3. Step 3: Determine the relationship between the test sample and the normal distribution
models. Choose a sample from the test set, the n intersection of the selected sample is
obtained by calculating the intersection of xj(j = 1, 2, · · · , k) and the n normal distribution
functions f (x; µij, s2

ij).
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4. Step 4: For the n intersections of the selected attribute j(j = 1, 2, · · · , k), yr(r = 1, 2, · · · , n) ranks
them in decreasing order, wr(r = 1, 2, · · · , n). For wr(r = 1, 2, · · · , n), its corresponding class
(i.e., the class the normal distribution curve belonged to) can be denoted as Cr(r = 1, 2, · · · , n).
Assign wr(r = 1, 2, · · · , n) to a proposition by the following rule:

m ({C1}) = w1,
m ({C1, C2}) = w2,
· · ·
m ({C1, C2, . . . , Cn}) = m(Θ) = wn.

(9)

If wr = wr+1 = ·· = wq, then m
({

C1, C2, . . . , Cq
})

= ∑
q
p=r wp. If xj is a missing value,

its corresponding BBA will be assigned as m(Θ) = 1, which means that the attribute is regarded
as ignorance.

3.2. Deng Entropy Calculation

In this part, Deng Entropy is used to measure the degree of uncertainty of BBAs in each attribute.
Deng Entropy will then be used as the measure of splitting rules. According to Equations (5) and (9),
the Deng Entropy can be calculated as follows:

Ed(mj) = − ∑
w⊆Θ

mj(w) log2
mj(w)

2|w| − 1
. (10)

3.3. Evidential Decision Tree Construction

Based on the above equations, the decision tree based on Deng Entropy can be constructed in a
top-down recursive way, which follows the traditional progress of decision trees. Firstly, the algorithm
is proposed to find the best attribute for splitting rules shown in Algorithm 2.

Algorithm 2 Splitting Rules based on Deng Entropy

Require: A root node X = {xi}N
i=1, where xi is the ith instance with n condition attributes {Ak}n

k=1

and one decision attribute D; the stopping criterion: Until all conditional attributes are used up.
Ensure: An Evidential Decision Tree.

if the samples in X belong to some class then

Mark X as a leaf node and assign the class as its label.
return.

end if
for each attribute Ak, k = 1, 2, · · · , n in X do

Computer Deng Enropy Ed(Ak) according to Equation (10)

Ed(Ak) = −
∑N

i=1 ∑w⊆Θ ck
i (w) log2

ck
i (w)

2|w|−1
N

ck
i represent a BBA for the instance i of attribute Ak

Ed(Ak∗) = argminAk Ed(Ak). The smaller the entropy value, the better the subsequent division.
end for
Get the best attribute Ak∗ and the splitting point ck∗ .

Secondly, Algorithm 3 is proposed to classify samples by maximum value and minimum value
of training set and find the child nodes of decision tree. In this section, the implementation of the
algorithm is illustrated by taking the case of only three classes as an example. Similar to Algorithm 3,
branches only need to be added when the number of classes increases.
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Algorithm 3 Construct an Evidential Decision Tree

Require: Set attributes as Features. Set classes as A,B,C, etc.
Ensure: An Evidential Decision Tree.

for All samples do

for All Feature do

if Feature≥max(Bmax, Cmax, Amin, · · · )

&& Feature1≤min(Amax, Bmin, Cmin, · · · ) then

return A.
end if
if Feature≥max(Amax, Cmax, Bmin, · · · ) && Feature1≤min(Bmax, Amin, Cmin, · · · ) then

return B.
end if
if Feature≥max(Amax, Bmax, Cmin, · · · ) && Feature1≤min(Cmax, Amin, Bmin, · · · ) then

return C.
end if

end for
end for

An Illustration For Evidential Decision Tree Construction

Assuming that there is a set of training instance S = {e1, e2, · · · , eN}, λ = {A1, A2, · · · , An} is
a set of evidential test attributes, and each attribute Ak is represented by a belief function on the
set of possible terms. Let D be the decision attribute and the members of it compose the frame of
discernment Θ.

In order to better illustrate the implementation of the algorithm in the process of building a
decision tree based on Deng entropy, a numerical example shown in Table 1 is given to illustrate the
meaning of each notations.

Table 1. Two Basic Belief Assignments (BBAs) of numerical examples.

Weather m(A) m(A, B) m(A, B, C) Humidity m(A) m(A, C) m(A, B, C)
e1 0.8 0.2 0 e1 0.3 0.3 0.4
e2 0 0.5 0.5 e2 0.2 0.3 0.5
e3 0.8 0 0.2 e3 0.4 0 0.6
e4 0.15 0.15 0.7 e4 0 0.8 0.2
e5 0.2 0.3 0.5 e5 0.8 0 0.2
· · · · · · · · · · · · · · · · · · · · · · · ·

In this example, there are two test attributes and one decision attribute. According to proposed
approach steps, the Deng entropy should be calculated under these circumstances.

In the implementation of Algorithm 2, Ak means each attribute, ck
i represents the value of each

focal element in the identification framework for the instance ei of attribute Ak. In other words, ck
i is

the term mj(w) in Equation (10).
For the two properties of Table 1, there are some specific notation representations:

• D = Θ = {A, B, C};
• A1 = {Weather}, A2 = {Humidity};
• c1

1 = {{A} : 0.8, {A, B} : 0.2, {A, B, C} : 0} c3
2 = {{A} : 0.4, {A, C} : 0, {A, B, C} : 0.6};

• E(A1) = −
∑w⊆Θ c1

1(w) log2
c1

1(w)

2|w|−1
+ ∑w⊆Θ c1

2(w) log2
c1

2(w)

2|w|−1
+ · · ·+ ∑w⊆Θ c1

N(w) log2
c1

N(w)

2|w|−1
N

.
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By comparing the calculation result of each attribute of Deng entropy, Algorithm 2 can find the
father nodes of the decision tree, and Algorithm 3 is used to find the child of the decision tree.

4. Experiment

4.1. The Application of the Proposed Method

The Iris data set contains three classes, and each classes has 50 samples. These BBAs are used to
generate the evidential decision tree instead of being combined to do classification work.

First, the iris data set is used to generate the BBAs shown in Table 2. Set classes as A,B,C, etc.

Table 2. BBAs of Iris Dataset.

m(B) m(B,C) m(A,B,C)

1 0.6601 0.3246 0.0153
2 0.6772 0.3096 0.0132
3 0.6341 0.3659 0
4 0.5823 0.4177 0
5 0.5407 0.4586 0
6 0.5564 0.4436 0
7 0.8978 0.1022 0
· · · · · · · · · · · ·

Second, samples should be classified simply by maximum value and minimum value of iris
dataset used in Algorithm 3, shown in Table 3. Classifications of wines are shown in Table 4.

Table 3. Samples Preclassification for Iris.

SL SW PL PW

Setosa 4.3–5.8 2.3–4.4 1–1.9 0.1–0.6
Versicolour 4.9–5.7 2–3.4 3–5.1 1–1.8
Virginica 4.9–7.9 2.2–3.8 4.5–6.9 1.4–2.5

Table 4. Samples Preclassification for Wine.

Alcohol Malic acidm Ash Alcalinity of ash Magnesium
Class 1 14.34–14.83 2.86–3.22
Class 2 11.62–12.25 0.89–1.24 1.36–2.1 10.6–11.2/27–30 7.0–8.0/132–162
Class 3 3.99–5.51

Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins Color intensity
Class 1 3.52–3.85
Class 2 0.34–0.57/3.75–3.93 0.13–0.17 0.41–0.55/2.96–3.28 1.74–3.52
Class 3 0.98–1.1 1.57–2.19 8.7–13.0

Hue OD280/OD315 Proline
Class 1 0.48–0.79 985–1680
Class 2 1.28–1.45 2.47–2.51 278–415
Class 3 1.27–1.59/3.5–4.0

Then, according to the BBAs in Table 2, the Deng entropy is calculated, as shown in Table 5, which
will be used as the measure of splitting rules to find the best splitting attribute. Deng entropy for wines
are shown in Table 6.
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Table 5. Deng Entropy for each attribute of Iris.

SL SW PL PW

Deng Entropy 0.9600 0.8828 0.9865 0.8157

Table 6. Deng Entropy for each attribute of Wine.

Alcohol Malic acidm Ash Alcalinity of ash Magnesium
Deng_Entropy 196.8 216.2 297.05 268.91 301.28

Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins Color intensity
Deng_Entropy 193.08 115.13 263.15 269.62 188.89

Hue OD280/OD315 Proline
Deng_Entropy 155.22 148.52 169.15

Finally, Algorithm 2 is used to find the father nodes of decision tree and Algorithm 3 is used to
find the child nodes of decision tree. In the end, the evidential decision tree for iris is constructed and
shown in Figure 1; and is shown for wines in Figure 2.

Figure 1. Evidential decision tree for Iris.
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Figure 2. Evidential decision tree for Wine.

4.2. Analysis of the Experiments

The evidential decision tree of the iris dataset is constructed, as shown in Figure 1. According
to SL, SW, PL, and PW’s value of Deng entropy, the father nodes are PW, SW, PL, and SL. Then,
according to the designed Algorithm 3, the child nodes are replenished to build the complete decision
tree. A total of 150 samples are classified using the entropy decision. As a result, 147 samples can be
absolutely classified and 3 samples cannot be classified. Almost 98% of samples are classified under
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the uncertain situation. In the process of building the evidential decision tree, the lowest value of Deng
entropy (PW) firstly is used as the best splitting attribute, which is efficient to classify almost 3/4 of all
samples into certain decision attributes. The reason is that the Deng entropy measures the uncertain
degree of BBAs. The lower the Deng entropy is, the more accurate the attribute can classify samples.
The wine dataset is also used to generate the evidential decision tree for classification. Moreover, there
have been more experiments conducted to have a comparison. The average accuracy is 95%, which is
much higher than traditional decision methods like Exhaustive CHAID, CART, CHAID, and QUEST.
The same applies for wine, shown in Table 7 and Figure 3.

Table 7. Comparison between traditional decision tree and evidential decision tree.

Average Accuracy Iris Wine

Exhaustive CHAID 64% 74.20%
CART 66.70% 69.70%

CHAID 64% 74.20%
QUEST 66.70% 39.90%

Evidential Decision Tree 98% 95%

Figure 3. Average Accuracy of Decision Tree Methods.

Compared with evidence fusion processing fuzzy data classification, in terms of time complexity
of the algorithm, the evidential decision tree is almost O(n) during the process of building the decision
tree, which can still complete the task of fuzzy data classification. Instead, the traditional evidence
combination methods at least cause O(n2) since the orthogonal-sum calculator (Equation (2)) is used
in the evidence combination equation. The reason why time complexity of the algorithm increases
is that the measurement of Deng entropy is directly used as the indicator of information gain before
building the tree.

5. Conclusions

The existing methods have been based on Pearson’s correlation coefficient and information
entropy to find the best splitting attribute in the process of building a decision tree. However, they
are all impossible to handle with uncertain data classification, since Pearson’s correlation coefficient
and the traditional information entropy both can only be used in the probability problem. When it
comes to uncertain issues, the definition of BBA in D–S evidence theory can be seen as the probability
in uncertain problems. Moreover, motivated by the idea of Deng entropy—which can measure the
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uncertain degree of BBAs—the evidential decision tree is proposed in this paper. The Deng entropy
values of attributes’ BBAs are used as the measurement of the best splitting attribute. The lower the
Deng entropy is, the more accurate the attribute can classify samples. Without using BBAs combination
rules, 98% samples of iris and 95% samples of wine can be classified into certain decision attributes.
In other words, the application of the evidential decision tree based on belief entropy efficiently reduces
the complexity of algorithms for fuzzy data classification.
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quality assurance in contractor contracts by multi-attribute decision-making methods. Econ. Res-Ekonomska
Istraživanja 2017, 30, 1152–1180. [CrossRef]

21. Huynh, V.N.; Nakamori, Y.; Ho, T.B.; Murai, T. Multiple-attribute decision making under uncertainty: The
evidential reasoning approach revisited. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2006, 36, 804–822.

22. Mardani, A.; Nilashi, M.; Zavadskas, E.K.; Awang, S.R.; Zare, H.; Jamal, N.M. Decision making methods
based on fuzzy aggregation operators: Three decades review from 1986 to 2017. Int. J. Inf. Technol. Decis.
Mak. 2018, 17, 391–466. [CrossRef]

23. Maghsoodi, A.I.; Abouhamzeh, G.; Khalilzadeh, M.; Zavadskas, E.K. Ranking and selecting the
best performance appraisal method using the MULTIMOORA approach integrated Shannon’s entropy.
In Frontiers of Business Research in China; Springer International Publishing: Cham, Switzerland, 2018; p. 2.

24. Nakamori, Y.; Hu, C.; Kreinovich, V. On decision making under interval uncertainty: A new justification of
Hurwicz optimism-pessimism approach and its use in group decision making. In Proceedings of the 39th
International Symposium on Multiple-Valued Logic, Naha, Okinawa, Japan, 21–23 May 2009; pp. 214–220.

25. Jaunzemis, A.D.; Holzinger, M.J.; Chan, M.W.; Shenoy, P.P. Evidence gathering for hypothesis resolution
using judicial evidential reasoning. Inf. Fusion 2019, 49, 26–45. [CrossRef]

26. Zhou, M.; Liu, X.; Yang, J.; Chen, Y.; Wu, J. Evidential reasoning approach with multiple kinds of attributes
and entropy-based weight assignment. Knowl-Based Syst. 2019, 163, 358–375. [CrossRef]

27. Zhou, M.; Liu, X.; Chen, Y.; Yang, J. Evidential reasoning rule for MADM with both weights and reliabilities
in group decision making. Knowl-Based Syst. 2018, 143, 142–161. [CrossRef]

28. Sun, R.; Deng, Y. A new method to identify incomplete frame of discernment in evidence theory. IEEE Access
2019, 7, 15547–15555. [CrossRef]

29. Xu, H.; Deng, Y. Dependent evidence combination based on decision-making trial and evaluation laboratory
method. Int. J. Intell. Syst. 2019, 34, 1555–1571. [CrossRef]

30. Su, X.; Li, L.; Shi, F.; Qian, H. Research on the Fusion of Dependent Evidence Based on Mutual Information.
IEEE Access 2018. [CrossRef]

31. Vandoni, J.; Aldea, E.; Le Hégarat-Mascle, S. Evidential query-by-committee active learning for pedestrian
detection in high-density crowds. Int. J. Approx. Reason. 2019, 104, 166–184. [CrossRef]

32. Han, Y.; Deng, Y. An Evidential Fractal AHP target recognition method. Def. Sci. J. 2018, 68, 367–373.
[CrossRef]

33. Liu, Z.; Pan, Q.; Dezert, J.; Martin, A. Combination of classifiers with optimal weight based on evidential
reasoning. Int. J. Comput. Commun. Control 2017, 14, 329–343. [CrossRef]

34. Zhang, H.; Deng, Y. Engine fault diagnosis based on sensor data fusion considering information quality and
evidence theory. Adv. Mech. Eng. 2018, 11. [CrossRef]

35. Seiti, H. Developing pessimistic-optimistic risk-based methods for multi-sensor fusion: An interval-valued
evidence theory approach. Appl. Soft Comput. 2018, 1568–4946. [CrossRef]

36. Dong, Y.; Zhang, J.; Li, Z.; Hu, Y.; Deng, Y. Combination of Evidential Sensor Reports with Distance Function
and Belief Entropy in Fault Diagnosis. Def. Sci. J. 2019, 14, 293–307. [CrossRef]

37. Gong, Y.; Su, X.; Qian, H.; Yang, N. Research on fault diagnosis methods for the reactor coolant system of
nuclear power plant based on D-S evidence theory. Ann. Nucl. Energy 2018, 122, 395–399. [CrossRef]

38. Seiti, H.; Hafezalkotob, A.; Najafi, S.E.; Khalaj, M.N. A risk-based fuzzy evidential framework for FMEA
analysis under uncertainty: An interval-valued DS approach. Int. J. Fuzzy Syst. 2018, 1–12. [CrossRef]

39. Seiti, H.; Hafezalkotob, A.; Martínez, L. R-numbers, a new risk modeling associated with fuzzy numbers
and its application to decision making. Inf. Sci. 2019, 483, 206–231. [CrossRef]

40. Zhao, J.; Deng, Y. Performer selection in Human Reliability analysis: D numbers approach. Int. J. Comput.
Commun. Control 2019, 14, 437–452. [CrossRef]

41. Li, M.; Zhang, Q.; Deng, Y. Evidential identification of influential nodes in network of networks. Chaos
Solitons Fractals 2019, 117, 283–296. [CrossRef]

42. An, J.; Hu, M.; Fu, L.; Zhan, J. A novel fuzzy approach for combining uncertain conflict evidences in the
Dempster-Shafer theory. IEEE Access 2019, 7, 7481–7501. [CrossRef]

43. Huynh, V. Discounting and combination scheme in evidence theory for dealing with conflict in information
fusion. In Proceedings of the International Conference on Modeling Decisions for Artificial Intelligence,
Awaji Island, Japan, 30 November–2 December 2009; pp. 217–230.

http://dx.doi.org/10.1080/1331677X.2017.1325616
http://dx.doi.org/10.1142/S021962201830001X
http://dx.doi.org/10.1016/j.inffus.2018.09.010
http://dx.doi.org/10.1016/j.knosys.2018.08.037
http://dx.doi.org/10.1016/j.knosys.2017.12.013
http://dx.doi.org/10.1109/ACCESS.2019.2893884
http://dx.doi.org/10.1002/int.22107
http://dx.doi.org/10.1109/ACCESS.2018.2882545
http://dx.doi.org/10.1016/j.ijar.2018.11.007
http://dx.doi.org/10.14429/dsj.68.11737
http://dx.doi.org/10.1109/TFUZZ.2017.2718483
http://dx.doi.org/10.1177/1687814018809184
http://dx.doi.org/10.1016/j.asoc.2018.08.045
http://dx.doi.org/10.15837/ijccc.2019.3.3589
http://dx.doi.org/10.1016/j.anucene.2017.10.026
http://dx.doi.org/10.3233/JIFS-169684
http://dx.doi.org/10.1016/j.ins.2019.01.006
http://dx.doi.org/10.15837/ijccc.2019.3.3537
http://dx.doi.org/10.1016/j.chaos.2018.04.033
http://dx.doi.org/10.1109/ACCESS.2018.2890419


Entropy 2019, 21, 897 13 of 14

44. Wang, J.; Qiao, K.; Zhang, Z.; Xiang, F. A new conflict management method in Dempster–Shafer theory. Int.
J. Distrib. Sens. Netw. 2017, 13, 1550147717696506. [CrossRef]

45. Wang, Y.; Zhang, K.; Deng, Y. Base belief function: an efficient method of conflict management. J. Ambient.
Intell. Humaniz. Comput. 2018. [CrossRef]

46. Xiao, F. A novel multi-criteria decision making method for assessing health-care waste treatment technologies
based on D numbers. Eng. Appl. Artif. Intell. 2018, 71, 216–225. [CrossRef]

47. Deng, X.; Jiang, W.; Zhen, W. Zero-sum polymatrix games with link uncertainty: A Dempster-Shafer theory
solution. Appl. Math. Comput. 2019, 340, 101–112. [CrossRef]

48. Li, Y.; Deng, Y. TDBF: Two Dimension Belief Function. Int. J. Intell. Syst. 2019, 34, 1968–1982. [CrossRef]
49. Kang, B.; Zhang, P.; Gao, Z.; Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R. Environmental assessment under

uncertainty using Dempster–Shafer theory and Z-numbers. J. Ambient. Intell. Humaniz. Comput. 2019.
[CrossRef]

50. Han, Y.; Deng, Y. A hybrid intelligent model for Assessment of critical success factors in high risk emergency
system. J. Ambient. Intell. Humaniz. Comput. 2018, 9, 1933–1953. [CrossRef]

51. Cuzzolin, F. A geometric approach to the theory of evidence. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
2008, 38, 522–534. [CrossRef]

52. Moral-García, S.; Castellano, J.G.; Mantas, C.J.; Montella, A.; Abellán, J. Decision Tree Ensemble Method for
Analyzing Traffic Accidents of Novice Drivers in Urban Areas. Entropy 2019, 21, 360. [CrossRef]

53. Yager, R.R. Interval valued entropies for Dempster–Shafer structures. Knowl-Based Syst. 2018, 161, 390–397.
[CrossRef]

54. Han, Y.; Deng, Y. A novel matrix game with payoffs of Maxitive Belief Structure. Int. J. Intell. Syst. 2019,
34, 690–706. [CrossRef]

55. Deng, Y. Deng entropy. Chaos Solitons Fractals 2016, 91, 549–553. [CrossRef]
56. Fan, X.; Han, D.; Yang, Y.; Ai, W. Comparative Study of Decision Tree with Different Evidential Uncertainty

Measures. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2
December 2018; pp. 3104–3108.

57. Trabelsi, A.; Elouedi, Z.; Lefevre, E. Handling uncertain attribute values in decision tree classifier using the
belief function theory. In Proceedings of the International Conference on Artificial Intelligence: Methodology,
Systems, and Applications, Varna, Bulgaria, 7–10 September 2016; pp. 26–35.

58. Boukhris, I.; Elouedi, Z.; Ajabi, M. Toward intrusion detection using belief decision trees for big data. Knowl.
Inf. Syst. 2017, 53, 671–698. [CrossRef]

59. Sutton-Charani, N.; Destercke, S.; Denoeux, T. Learning decision trees from uncertain data with an evidential
EM approach. In Proceedings of the 12th International Conference on Machine Learning and Applications,
Miami, FL, USA, 4–7 December 2013; Volume 1, pp. 111–116.

60. Smarandache, F.; Han, D.; Martin, A. Comparative study of contradiction measures in the theory of belief
functions. In Proceedings of the 15th International Conference on Information Fusion, Singapore, 9–12 July
2012; pp. 271–277.

61. Mu, Y.; Liu, X.; Wang, L. A Pearson’s correlation coefficient based decision tree and its parallel
implementation. Inf. Sci. 2018, 435, 40–58. [CrossRef]

62. Umanol, M.; Okamoto, H.; Hatono, I.; Tamura, H.; Kawachi, F.; Umedzu, S.; Kinoshita, J. Fuzzy decision
trees by fuzzy ID3 algorithm and its application to diagnosis systems. In Proceedings of the 1994 IEEE 3rd
International Fuzzy Systems Conference, Orlando, FL, USA, 26–29 June 1994; pp. 2113–2118.

63. Yuan, Y.; Shaw, M.J. Induction of fuzzy decision trees. Fuzzy Sets Syst. 1995, 69, 125–139. [CrossRef]
64. Xue, J.; Wu, C.; Chen, Z.; Van Gelder, P.; Yan, X. Modeling human-like decision-making for inbound smart

ships based on fuzzy decision trees. Expert Syst. Appl. 2019, 155, 172–188. [CrossRef]
65. Zhai, J.; Wang, X.; Zhang, S.; Hou, S. Tolerance rough fuzzy decision tree. Inf. Sci. 2018, 465, 425–438.

[CrossRef]
66. Sardari, S.; Eftekhari, M.; Afsari, F. Hesitant fuzzy decision tree approach for highly imbalanced data

classification. Appl. Soft Comput. 2017, 61, 727–741. [CrossRef]
67. Abellan, J.; Bosse, E. Drawbacks of Uncertainty Measures Based on the Pignistic Transformation. IEEE Trans.

Syst. Man Cybern.-Syst. 2018, 48, 382–388. [CrossRef]

http://dx.doi.org/10.1177/1550147717696506
http://dx.doi.org/10.1007/s12652-018-1099-2
http://dx.doi.org/10.1016/j.engappai.2018.03.002
http://dx.doi.org/10.1016/j.amc.2018.08.032
http://dx.doi.org/10.1002/int.22135
http://dx.doi.org/10.1007/s12652-019-01228-y
http://dx.doi.org/10.1007/s12652-018-0882-4
http://dx.doi.org/10.1109/TSMCC.2008.919174
http://dx.doi.org/10.3390/e21040360
http://dx.doi.org/10.1016/j.knosys.2018.08.001
http://dx.doi.org/10.1002/int.22072
http://dx.doi.org/10.1016/j.chaos.2016.07.014
http://dx.doi.org/10.1007/s10115-017-1034-4
http://dx.doi.org/10.1016/j.ins.2017.12.059
http://dx.doi.org/10.1016/0165-0114(94)00229-Z
http://dx.doi.org/10.1016/j.eswa.2018.07.044
http://dx.doi.org/10.1016/j.ins.2018.07.006
http://dx.doi.org/10.1016/j.asoc.2017.08.052
http://dx.doi.org/10.1109/TSMC.2016.2597267


Entropy 2019, 21, 897 14 of 14

68. Meng, D.; Yang, S.; Zhang, Y.; Zhu, S. Structural reliability analysis and uncertainties-based collaborative
design and optimization of turbine blades using surrogate model. Fatigue Fract. Eng. Mater. Struct. 2018, 1–9.
[CrossRef]

69. Meng, D.; Liu, M.; Yang, S.; Zhang, H.; Ding, R. A fluid–structure analysis approach and its application
in the uncertainty-based multidisciplinary design and optimization for blades. Adv. Mech. Eng. 2018, 10,
1687814018783410. [CrossRef]

70. Gao, X.; Deng, Y. The generalization negation of probability distribution and its application in target
recognition based on sensor fusion. Int. J. Distrib. Sens. Netw. 2019, 15. [CrossRef]

71. Gao, X.; Deng, Y. The negation of basic probability assignment. Int. J. Distrib. Sens. Netw. 2019, 7. [CrossRef]
72. Song, Y.; Deng, Y. A new method to measure the divergence in evidential sensor data fusion. Int. J. Distrib.

Sens. Netw. 2019, 15. [CrossRef]
73. Jiang, W. A correlation coefficient for belief functionsn. Int. J. Approx. Reason. 2018, 103, 94–106. [CrossRef]
74. Sun, R.; Deng, Y. A new method to determine generalized basic probability assignment in the open world.

IEEE Access 2019, 7, 52827–52835. [CrossRef]
75. Xu, P.; Deng, Y.; Su, X.; Mahadevan, S. A new method to determine basic probability assignment from

training data. Knowl-Based Syst. 2013, 46, 69–80. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/ffe.12906
http://dx.doi.org/10.1177/1687814018783410
http://dx.doi.org/10.1177/1550147719849381
http://dx.doi.org/10.1109/ACCESS.2019.2901932
http://dx.doi.org/10.1177/1550147719841295
http://dx.doi.org/10.1016/j.ijar.2018.09.001
http://dx.doi.org/10.1109/ACCESS.2019.2911626
http://dx.doi.org/10.1016/j.knosys.2013.03.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	D–S Evidence Theory
	Deng Entropy
	PCC-Tree

	Proposed Method
	BBA Determination
	Deng Entropy Calculation
	Evidential Decision Tree Construction

	Experiment
	The Application of the Proposed Method
	Analysis of the Experiments

	Conclusions
	References

