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Abstract: Brain and heart continuously interact through anatomical and biochemical connections.
Although several brain regions are known to be involved in the autonomic control, the functional
brain–heart interplay (BHI) during emotional processing is not fully characterized yet. To this
aim, we investigate BHI during emotional elicitation in healthy subjects. The functional linear and
nonlinear couplings are quantified using the maximum information coefficient calculated between
time-varying electroencephalography (EEG) power spectra within the canonical bands (δ, θ, α, β

and γ), and time-varying low-frequency and high-frequency powers from heartbeat dynamics.
Experimental data were gathered from 30 healthy volunteers whose emotions were elicited through
pleasant and unpleasant high-arousing videos. Results demonstrate that functional BHI increases
during videos with respect to a resting state through EEG oscillations not including the γ band
(>30 Hz). Functional linear coupling seems associated with a high-arousing positive elicitation, with
preferred EEG oscillations in the θ band ([4, 8) Hz) especially over the left-temporal and parietal
cortices. Differential functional nonlinear coupling between emotional valence seems to mainly occur
through EEG oscillations in the δ, θ, α bands and sympathovagal dynamics, as well as through δ, α, β

oscillations and parasympathetic activity mainly over the right hemisphere. Functional BHI through
δ and α oscillations over the prefrontal region seems primarily nonlinear. This study provides novel
insights on synchronous heartbeat and cortical dynamics during emotional video elicitation, also
suggesting that a nonlinear analysis is needed to fully characterize functional BHI.

Keywords: brain–heart interplay; brain–heart axis; heart rate variability; EEG; maximum information
coefficient; coupling; nonlinearity; emotion; psychophysiology

1. Introduction

Emotions in humans are fundamental psychophysiological adaptations to the external
environment [1–3]. According to the James–Lange theory [4], emotions are cognitive reactions to
physiological peripheral responses to stimuli, whereas they are peripheral reactions to a central nervous
system (CNS) processing to stimuli according to Cannon–Bard and Papez–MacLean theories [5].
Indeed, although contradicting, these theories all assert that a significant interplay between CNS and
peripheral systems exists, particularly referring to the autonomous nervous system (ANS) activity on
cardiovascular control [3]. The ANS maintains the body homeostasis and thus regulates emotional
processes through the continuous activity of its sympathetic and parasympathetic branches [2].
CNS-ANS interplay has recently been scientifically formalized through the definition of the so-called
central autonomic network, which comprises CNS areas known to be involved in the autonomic
control including brainstem nuclei and a number of forebrain regions [6–8].
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Autonomic Nervous System activity on cardiovascular regulation, comprising sympathetic
and parasympathetic (vagal) dynamics, involves complex cortical, subcortical, and medullary
efferents [9,10]. For instance, the insular cortex, which participates in the control of both ANS branches,
plays a primary role in emotional processing [11,12]. Indeed, autonomic alterations and cardiovascular
instabilities may be caused by insular damage after stroke [13]. Furthermore, medial prefrontal cortex
is activated with mental stress, which is known to be associated with cardiac arrhythmias [14,15].
On the other hand, heart afferent inputs strongly affect cerebral functions associated with perception,
cognition, or emotions through areas including amygdala, hypothalamus, and thalamus [16,17]. These
exemplary BHI involve nonlinear relationships through activity synchronisation between amygdala
and cardiac dynamics [18].

CNS studies on emotions have mostly been carried out through functional neuroimaging and
electroencephalography (EEG) [19–21], whereas ANS studies primarily focused on heart rate variability
(HRV) analysis [3,21–23]. Studies investigating brain–heart interplay (BHI) have focused on the
concurrent quantification of EEG-, and HRV-derived features, also in the frame of an emotional
scenario [9,24–33]. According to the so-called frequency domain paradigm, the EEG signal can be
analysed by deriving the power within the following canonical bands δ ∈ [0, 4)Hz, θ ∈ [4, 8)Hz, α ∈
[8, 13)Hz, β ∈ [13, 30)Hz, γ > 30Hz, whereas the power in a low-frequency (HRV-LF, 0.04− 0.15 Hz)
band and a high-frequency (HRV-HF, 0.15− 0.40Hz) band may be calculated from HRV series to derive
markers of sympathovagal and parasympathetic dynamics, respectively [23,34].

Recent findings highlight that EEG power in the θ band correlates with HRV-derived features
when recorded over the temporal regions [35], which are sensitive to emotions [36–38]. EEG power
in the α band correlates with HRV complexity indices during relaxation [26], whereas the power
in the β band is functionally linked to HRV-LF and HRV-HF powers during yoga [31], emotional
imageshow [35], sleep [32], or physical stress [28].

Most of the aforementioned studies have quantified BHI by calculating the correlation between
EEG and HRV measures at a group-wise level, thus, neglecting intra-subject coupling and related
time-varying brain–heart dynamics. Also, whether the functional nature of functional BHI follows
a linear or nonlinear coupling function is not fully understood yet. Note that a nonlinear coupling
function describes a functional relationship between variables that are not associated with input–output
proportionality. In a recent study [35], we investigated functional linear or nonlinear BHI by computing
the maximum information coefficient (MIC) between EEG and HRV power series in healthy subjects
whose emotions were elicited through images. MIC, in fact, may be equivalent to the Pearson
correlation coefficient in the case of a purely linear coupling while also detecting different kinds of
nonlinear couplings [39]. Therefore, a MIC value close to one may be indistinctly associated with a
high functional linear or nonlinear coupling between systems, possibly limiting the interpretation
of results.

Here, we overcome this limitation by combining the Pearson correlation coefficient with MIC [39],
thus quantifying fully linear or nonlinear functional BHI during emotional elicitation. To this end, we
use high-arousing emotional video clips as suggested in [40–43]. Videos, in fact, are known to enhance
the emotional experience through a multisensory elicitation (see [44] for review), and BHI during
emotional video processing is still unknown to us. Particularly, we study differential BHI occurring
between positive and negative videos, and express experimental results as p-values topographic maps,
as well as continuous Z-score topographic maps to comply with latest recommendations on p-value
interpretation and thresholding [45,46]. These results, followed by Discussion and Conclusion, and
Materials and Methods sections follow below.

2. Results

We report experimental results on 30 healthy subjects whose emotions were elicited using
high-arousing, pleasant and unpleasant videos (see details in Section 5.1). The following frequency
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bands are considered for further analysis (all expressed in Hz): LF = [0.04, 0.15) and HF = [0.15, 0.4]
for heartbeat dynamics, and δ = [0.5, 4), θ = [4, 8), α = [8, 13), β = [13, 30), γ = [30, 60] for EEG signals.

Series of time-varying power spectra were computed throughout the recordings at each frequency
band and for each subject. A characterisation of the spectral power of EEG and heartbeat dynamics at
different frequency bands is provided in Table 1, in which the reported values refer to a grand average
between subjects/channels at each experimental phase.

Table 1. Descriptive EEG and heartbeat dynamics and HRV parameter statistics.

Power Units Resting Phase Positive Valence Negative Valence

EE
G

δ (mV2) 1.608± 1.714 1.000± 1.044 1.045± 1.201
θ (mV2) 0.4834± 0.5515 0.2989± 0.3139 0.2964± 0.3125
α (mV2) 1.414± 1.727 0.405± 0.3359 0.400± 0.3233
β (mV2) 0.3395± 0.3895 0.213± 0.1821 0.210± 0.173
γ (mV2) 0.475± 1.264 0.332± 0.9024 0.526± 1.659

H
RV

HF (mV2) 1.432± 0.1455 0.9907± 0.0418 1.241± 0.0459
LF (mV2) 1.375± 0.2253 0.8439± 0.0528 1.197± 0.0617
HR (sec) 0.8276± 0.066 0.8356± 0.0526 0.8421± 0.0637

values are expressed as mean ± std.

Functional linear or nonlinear BHI was then quantified by computing the MIC between
EEG-derived and HRV-derived power series during the emotional elicitation when normalized
(divided) by the relative power estimated during the resting state.

Group-wise (median) MIC values are shown in the Supplementary Information as topographical
maps for positive and negative elicitation sessions. At a qualitative level, MIC ranges increase at
higher EEG frequencies, with grand average values as high as 0.38 for oscillations in the γ band.
Moreover, higher group-wise MIC values seem to occur over the right hemisphere for EEG oscillations
in the β and γ bands, whereas central brain areas seems to be more functionally correlated to heartbeat
dynamics than others especially in θ, α and β bands.

Statistical testing over MIC values was then considered to quantitatively investigate significant
differences between positive and negative videos. To this end, Z-score and corresponding thresholded
p-value topographic maps were built from non-parametric Wilcoxon tests for paired samples. A p-value
related to the null hypothesis of equal median between samples was deemed to be significant if
lower than 0.05 following a correction for multiple comparison based on permutation tests with
1000 permutations.

Results indicate that MIC values increase during emotional videos with respect to a resting state
for EEG oscillations below 30 Hz (see Supplementary Information for details).

Results also indicate that differences in functional linear or nonlinear coupling between positive
and negative videos are in the temporal, parietal, and pre-frontal regions (see Figure 1a,b). Particularly,
the left-temporal lobe shows significant differences considering the EEG-θ and HRV-LF coupling,
as well as in the EEG-δ coupling with HRV-LF and HRV-HF powers. The right-parietal cortex seems to
be involved in the differential functional coupling with EEG-δ, EEG-α, and EEG-β oscillations, whereas
the pre-frontal lobes seem to be involved in the differential coupling between EEG-δ and HRV-HF
power, and EEG-α and HRV-LF power. Functional linear or nonlinear BHI through cortical oscillations
in the γ band did not show significant differences between positive and negative elicitations.
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(a) (b)
Figure 1. (a) Z-score topographic maps from the Wilcoxon non-parametric test for paired data applied
to MIC estimates between positive and negative elicitations. (b) Associated significant p-values. Green
areas indicate non-significant (corrected) p-values (p > 0.05), whereas yellow/red (blue) areas indicate
that BHI was significantly higher during positive (negative) valence than during negative (positive) one.

To further investigate which cortical region is mainly associated with a linear functional coupling
compared to a nonlinear interplay, we performed a BHI analysis based on the Pearson linear correlation
coefficient ρ. Results from this analysis, which followed the same statistical procedure applied to MIC,
are shown in Figure 2a,b.

(a) (b)
Figure 2. (a) Z-score topographic maps from the Wilcoxon non-parametric test for paired data
applied to Pearson linear correlation coefficient ρ estimates between positive and negative elicitations.
(b) Associated significant p-values. Green areas indicate non-significant (corrected) p-values (p > 0.05),
whereas yellow/red (blue) areas indicate that functional linear BHI was significantly higher during
positive (negative) valence than during negative (positive) one.

Major differences in functional linear coupling between negative and positive valence are with
EEG oscillations in the θ band, especially over the left-temporal and parietal cortices. A higher
functional linear coupling is associated with a high-arousing positive video.

For a comprehensive characterization of the BHI, we also investigated functional nonlinear
coupling between EEG and HRV powers by calculating the nonlinear index MIC− ρ2. Results for this
nonlinear index expressed as Z-score and corresponding thresholded p-value topographic maps are
shown in Figure 3a,b, respectively.

Significant changes in functional nonlinear BHI between positive and negative videos are mainly
linked to EEG oscillations below 30 Hz (i.e., δ, θ, α and β band). In the δ band, significant changes are
mainly over the temporal lobes considering a functional BHI with the HRV-LF band. The EEG-θ leads
the BHI over the dorso-parietal lobes through the HRV-HF power, as well as over the ventro-parietal
lobes through the HRV-LF power. Differences in nonlinear coupling between emotional valence are
mainly located over the left tempo-parietal and pre-frontal cortices for EEG oscillations in the δ, θ, α

bands functionally coupled with HRV-LF power. No significant differences between pleasant and
unpleasant videos were found for EEG-β, γ and HRV-LF power. Preferred brain areas for the functional
nonlinear BHI through HRV-HF power seem to be over the right hemisphere, especially for the δ, α, β

oscillations. Also, BHI through EEG-α oscillations seems to mainly occur over the pre-frontal and
frontal regions.
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(a) (b)
Figure 3. (a) Z-score topographic maps from the Wilcoxon non-parametric test for paired data applied
to MIC−ρ2 nonlinear estimates between positive and negative elicitations. (b) Associated significant
p-values. Green areas indicate non-significant (corrected) p-values (p > 0.05), whereas yellow/red
(blue) areas indicate that functional nonlinear BHI was significantly higher during positive (negative)
valence than during negative (positive) one.

3. Discussion

We investigated brain–heart interplay (BHI) in healthy young adults and, more specifically,
focused on the difference between pleasant and unpleasant high-arousing video through EEG and
HRV series. We considered five canonical EEG bands, namely, δ, θ, α, β, γ, and LF and HF powers from
HRV series to derive time-varying estimates of synchronous brain and heart activity.

We built on our previous study [35] in which functional linear or nonlinear BHI were investigated
by computing MIC, and healthy subjects’ emotions were elicited through images at different
valence/arousal levels. Here, we used a more realistic and effective elicitation based on high-arousing
videos, and further quantified fully linear or nonlinear functional couplings by combining the Pearson
correlation coefficient with MIC, as suggested in [39]. Note that in this study, the SPWVD method
was used for the time-varying derivation of HRV-LF and HRV-HF powers. A functional linear BHI
refers to a proportional variation between the neural activity of a specific cortical region and in the
cardiovascular parasympathetic and/or sympathetic activity. On the other hand, a nonlinear coupling
function associates the dynamics of the two systems with a general function, where the input–output
proportional variation may not be observed. It is widely accepted that functional BHI may hardly be
considered as linear given the multiple feedbacks occurring at many biological and system levels, so
knowledge on the actual linear or nonlinear nature of BHI may guide and inform future research on
multisystem physiological modelling.

Experimental results are expressed as p-value topographic maps, as well as continuous
Z-score topographic maps to comply with latest recommendations on p-value interpretation and
thresholding [45,46]. Results show that functional BHI increases during videos with respect to a resting
state considering EEG oscillations up to the β band (<30 Hz). This is in line with previously reported
differences in functional BHI over EEG γ oscillations with respect to lower frequencies [28]. In fact,
according to a MIC analysis, functional BHI increases in some brain regions with respect to a resting
condition following a strong sympathetic elicitation (cold-pressor test) considering EEG oscillations
<30 Hz [28]. For the same EEG frequency, MIC values did not show significant differences between
positive and negative images for cardiovascular oscillations in the HRV-LF band, whereas differences in
the occipital region were found for the HRV-HF band [35]. We speculate that these differences could be
due to the use of different elicitation media (images vs. video), or to the different valence/arousal levels
implemented in the two experimental setups. Note that EEG γ oscillations may become significant
markers of functional BHI when considering a directional brain–heart modelling [9,28] or cortical
dynamics exclusively [47].

Consistent with previous studies [35–38], we found that major BHI differences in processing
positive and negative emotional stimuli are associated with EEG oscillations in the θ band. Our
findings also suggest that the functional nature of such a BHI is mainly linear, especially occurring
over the left-temporal and parietal cortices.
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Although it has been pointed out that lateralisation of brain regions could be part of differential
positive vs. negative emotional processing [9,48], we did not find major differences in valence between
left and right hemispheres for MIC or its derived quantifiers. However, we may speculate that major
differences in functional linear BHI seem to occur in the θ band through the left hemisphere, whereas
nonlinear BHI tends to occur over the right hemisphere through δ, α and β oscillations. Note that the
significant role in BHI of EEG-δ and β oscillations has recently been reported [32].

Finally, at a qualitative level, we report that no major differences in MIC and related quantifiers
were found between HRV-LF or HRV-HF powers. This could be due to the fact that both powers seem
mainly determined by the parasympathetic system [49], therefore masking possible differential BHI
dynamics when considering a non-directional brain–heart modelling.

4. Conclusions

In conclusion, functional BHI increases during video emotional processing with respect to a
resting state considering EEG oscillations below 30 Hz. No significant changes in functional linear
or nonlinear BHI occur between positive and negative videos for EEG oscillations in the γ band.
Moreover, high-arousing positive videos increase BHI through a functional linear coupling with
EEG oscillations in the θ band, especially over the left-temporal and parietal cortices. Differential
functional nonlinear coupling between positive and negative valence seems to mainly occur with EEG
oscillations in the δ, θ, α bands through sympatho-vagal (HRV-LF) dynamics, whereas preferred brain
areas for a functional nonlinear interplay seem to occur over the right hemisphere, especially for the
δ, α, β oscillations, through parasympathetic activity (HRV-HF). In addition, the functional interactions
between cardiovascular dynamics and brain oscillations in the δ and α bands over the prefrontal region
seem to be primarily nonlinear. From a physiological viewpoint, the specific phenomena underlying
the different linear and nonlinear brain–heart interplay are still unknown to us. Finally, BHI changes
between positive and negative videos through EEG-α oscillations seem to mainly occur over the
pre-frontal and frontal regions.

This study provides novel insights into synchronous cortical and heartbeat dynamics during
emotional elicitation, also suggesting that a nonlinear analysis is needed to fully characterize
functional BHI.

5. Materials and Methods

5.1. Experimental Setup

Thirty healthy subjects (15 females; 26.3 years on average) signed an informed consent and
volunteered to participate in the study. Volunteers sat comfortably on a chair for a few minutes also to
make them reach a hemodynamic stabilization. Then, sensors for a one-lead ECG and a 128-channel
EEG recordings were placed onto the subjects. The signals sampling frequency was set at 500 Hz.

For each subject, a video projector was used to perform an emotional elicitation using video clips.
The experimental protocol started with a 3-min resting state session with closed eyes, followed by a
4:30-min of emotional video elicitation. This eliciting session comprised the following sub-sessions:
(i) a 1:30-min session with high-arousing and unpleasant videos, (ii) a 1:30-min session with
high-arousing and pleasant videos, and (iii) a 1:30-min session with neutral videos. The subjects were
presented with arousing elicitation sessions in a randomized order. Videos were selected from a set
that was presented to a group of 20 healthy subjects. Each subject was then asked to score the videos in
terms of arousal and valence level, and only videos with highest arousal and highest positive/negative
valence were chosen for further use. None of the subjects participating to this preliminary assessment
was enrolled for the subsequent physiological data recordings. All experimental procedures were
approved by the local ethical committee Area Vasta Nord-Ovest Toscana.
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5.2. ECG and EEG Data Pre-Processing

ECG processing steps to derive HRV series are detailed in [35]. Briefly, R-peaks were identified
using the well-known Pan-Tompkins algorithm, and algorithmic and physiological artefacts from
each RR interval series were corrected using a procedure based on a local log-likelihood point-process
statistics [50].

For the EEG pre-processing, a subset of 90 EEG channels was selected to improve the subsequent
Independent Component Analysis (ICA) performance while avoiding so-called over-learning
issues [51]. A detailed map of the 90 EEG channels selected for further analyses is reported in
the Supplementary Information. We exploited a pipeline structure called HAPPE that is thoroughly
described in [52]. Briefly, bad channels rejection is implemented by calculating the normed joint
probability of the mean log power from 1 to 125 Hz, and EEG channels belonging to the external 1%
tails of the distribution are not considered for further analyses. Bad channels are recovered through a
spherical interpolation algorithm using neighbour EEG data. EEG signals are then high-pass filtered at
1 Hz, and electrical noise at 50 Hz and possibly at 100 Hz is rejected through a multi-taper regression
approach [52]. Afterwards, wavelet-enhanced ICA steps are performed to correct for EEG artefacts,
including eye- or muscle-related activities and discontinuities in the recording. This correction is further
refined using a machine learning-based approach applied to ICA components [52]. A re-reference of
all EEG data to the average calculated from all of the channels (i.e., average re-reference) was the final
processing step.

5.3. EEG and HRV Time-Varying Spectra

A time course estimation of the power spectrum was performed through short-time Fourier
transform, using a Hanning window of 1 s and 1 s step size on EEG series, whereas a smoothed
pseudo-Wigner-Ville distribution (SPWVD) method was applied to HRV series [53]. The latter choice
is justified by the time-frequency resolution of SPWVD, as well as by the low variance of the estimated
power spectra.

5.4. Maximum Information Coefficient (MIC) and Linear–Nonlinear Coupling

MIC [39] quantifies a linear or nonlinear coupling between two series, and ranges within [0, 1].
Starting from the scatterplot of the ordered pairs of two vectors x and y, a number of rows and

columns can be drawn to obtain different partitions and define the following metrics:

mx×y =

max {Ig}
g∈Gx×y

log min{x, y} (1)

with x ≤ n and y ≤ n, where n is the dimension of the vectors, Gx×y the sample of all the possible
partitions with x rows and y columns, and Ig the mutual information of a specific partition.

MIC is then calculated as the maximum mx×y over all the ordered pairs (x, y). Formally, it is
possible to estimate MIC = max

xy<B
{mx×y} with B empirically defined as B = n0.6 [39].

It is then possible to derive metrics of nonlinear coupling exclusively as: MIC−ρ2 by estimating
the well-known Pearson linear correlation coefficient ρ.

5.5. Statistical Analysis

Variable statistical comparison between positive and negative elicitation sessions was performed
through non-parametric Wilcoxon tests for paired samples, with a null hypothesis of equal medians
between sessions. Results from this analysis are shown as topographical maps where green areas
indicate non-significant p-value (p > 0.05). Brain areas with p < 0.05 are indicated with a different
colour depending on the associated Z statistics from the Wilcoxon test. All p-values were corrected for
a multiple comparison using the permutation test, with a total of 1000 permutations.
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Supplementary Materials: The following are available at http://www.mdpi.com/1099-4300/21/9/892/s1,
Figure S1: Topographic maps of Z-score values from the Wilcoxon non-parametric test for paired data applied
to MIC estimates between resting state and positive video elicitations, Figure S2: Topographic maps of Z-score
values from the Wilcoxon non-parametric test for paired data applied to MIC estimates between resting state
and negative video elicitations, Figure S3: MIC values topographic maps calculated over a 1.5 min high-arousing,
positive video elicitation (median among all subjects for each EEG channel). The top panels refer to the functional
interaction between the HRV-HF power and EEG oscillations at all bands, whereas the bottom panels refer to the
HRV-LF power, Figure S4: MIC values topographic maps calculated over a 1.5 min high-arousing, negative video
elicitation (median among all subjects for each EEG channel). The top panels refer to the functional interaction
between the HRV-HF power and EEG oscillations at all bands, whereas the bottom panels refer to the HRV-LF
power, Figure S5: Topographic distribution of the relative variation between MIC values extracted during positive
and negative elicitation phases, Figure S6: HydroCel Geodesic Sensor Net. External EEG channels in the red
circle were discarded for further coupling analyses, Table S1: EEG channels associated with statistically significant
brain-heart interplay changes between positive and negative elicitation sessions, grouped by HRV and EEG
frequency bands. EEG channel labels and numbers refer to the EGI channel map shown below.
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