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Abstract: With the rise in cloud computing architecture, the development of service-oriented
simulation models has gradually become a prominent topic in the field of complex system simulation.
In order to support the distributed sharing of the simulation models with large computational
requirements and to select the optimal service model to construct complex system simulation
applications, this paper proposes a service-oriented model encapsulation and selection method.
This method encapsulates models into shared simulation services, supports the distributed scheduling
of model services in the network, and designs a semantic search framework which can support
users in searching models according to model correlation. An optimization selection algorithm
based on quality of service (QoS) is proposed to support users in customizing the weights of QoS
indices and obtaining the ordered candidate model set by weighted comparison. The experimental
results showed that the parallel operation of service models can effectively improve the execution
efficiency of complex system simulation applications, and the performance was increased by 19.76%
compared with that of scatter distribution strategy. The QoS weighted model selection method based
on semantic search can support the effective search and selection of simulation models in the cloud
environment according to the user’s preferences.

Keywords: complex system simulation; cloud computing architecture; service-oriented modeling;
semantic search framework; QoS-based service selection

1. Introduction

The continuous evolution of complex systems (e.g., social systems, ecosystems, and war systems)
has had a tremendous impact on people’s daily life and social development. Due to the limitation
of existing theoretical analysis methods and the difficulty of experimental analysis methods in some
real-world complex systems (e.g., geological changes, nuclear explosions, economic growth [1], and
ecosystem evolution), complex system simulation technology has gradually become an attractive
approach for the research on complex systems and their complexity [2].

Complex system simulation applications often contain a large number of simulation model entities,
and there are complex interactions between these entities, also the entities and the external environment.
Such system simulations usually have a large computational load [3]. With the increase in scale and
complexity of complex system simulation applications, there are increasingly requirements for the
composite mode of simulation models, the computational capabilities of simulation architectures, and
the execution efficiency of simulation applications. The popularity of cloud computing technology
provides a new approach, platform architecture, and efficient computing power for the research and
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development of complex system simulations. Simulation users can use the computing resources in
the cloud environment on demand at different terminals and invoke the simulation model services
stored in the cloud center to assemble complex system simulation applications. Therefore, the
development of service-oriented simulation models has gradually become a prominent topic in the field
of complex system simulation [4]. Service-oriented technology is mainly directed at models with large
computational requirements, such as an electromagnetic environment calculation model, a ballistic
path planning model, a radar detection model, and so forth. These models are expected to be provided
outward as a shared service. Then, their integration and code porting could be eliminated, and the
construction efficiency of complex system simulation applications and the utilization of related models
could be improved. The interoperability between heterogeneous simulation models and the distributed
collaborative calculation of simulation models on multiple computing nodes could be realized, which
could improve the execution efficiency of simulation applications. Therefore, it is necessary to carry
out the research on how to construct and select the service-oriented complex simulation models based
on cloud computing environment.

To make the complex system simulation model into a shared service in cloud, firstly, models
with large computational requirements need to be encapsulated into simulation services in the cloud
environment and be parallel processed in the execution of complex system simulation applications
under a cloud-based simulation model service framework. Because the simulation model services
released and stored in the cloud center have differences in attributes, functions, and quality of service
(QoS), it is necessary to find and select the appropriate simulation model that accurately meets the user’s
requirements in terms of function and can provide high QoS for building complex system simulation
applications [5]. Reusable model development (RUM) specification [6] cannot support network
communication between a simulation model and a simulation engine under the cloud architecture.
Ontology web language [7] (OWL)-based simulation model search methods lack the mechanism to
search simulation models through the correlations between models. Also, current simulation model
optimization selection algorithms lack the induction for QoS [8] attributes of simulation models in the
cloud environment and cannot provide a selection mechanism that satisfies the user’s preference for a
model’s QoS.

In order to solve the abovementioned problems in the existing studies, this paper proposes a
service-oriented model encapsulation and selection method for complex system simulation based
on cloud architecture. The novelty and contribution of this method includes that it designs
a cloud-service-oriented reusable model development (C-RUM) specification to encapsulate the
simulation model into a shareable simulation service in the cloud, and then devises a cloud-based
simulation model service framework, which solves the problem of network communication in the
former RUM specification. This method also uses a knowledge graph [9] to describe the simulation
model services and establishes a model semantic search framework in the constructed model description
knowledge graph, which supports users in setting correlations between models to obtain the required
model. A QoS weighted-based optimization selection algorithm is also proposed, which can select
the optimal simulation model that satisfies the user’s preference for QoS according to a weighted
comparison of QoS indices.

The organization of this paper is as follows: Section 2 discusses related works. Section 3 introduces
the C-RUM specification and the cloud-based simulation model service framework. Section 4 introduces
the selection method of simulation models based on semantic search. Section 5 describes a case study
of the service-oriented model encapsulation and selection method. Section 6 is the summary and the
outlook for future work.
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2. Related Works

2.1. High-Level Architecture (HLA)-Based Simulation Model Development Specification

The basic idea of HLA is to use an object-oriented method to design, develop, and implement object
models of different levels and granularities and to obtain high-level interoperability and reusability
of simulation models and simulation systems. The object model template (OMT) is a standardized
description of the properties of simulation models and their interaction formats, but it is not a standard
for establishing the object model. With the development of complex system simulation, there are higher
requirements for the efficiency, flexibility, and openness of simulation model development. HLA-based
simulation model development specification gradually exposes some problems in the application
process, such as efficiency, ease of use, fault tolerance, dynamic compatibility, and so forth [10].

2.2. RUM Specification

In order to realize the interapplication and interplatform reuse of simulation models and the rapid
development of simulation applications, many researchers have proposed reusable and composable
development specifications and methods for simulation models. Lee et al. applied the product line
engineering concept to the development of simulation model components [11]. Feng et al. proposed a
reusable component model development approach for parallel and distributed simulation, requiring
that the simulation model have self-contained features; that is, the model can be packaged and released
independently, without relying on other models, and is separate from the simulation engine [6]. Jianbo
and Yiping proposed a reusable component model framework (RCMF) model development tool called
SuKit, which can be used to regenerate models and guide model integration [12].

A patent for RUM specification [13] was proposed by Yiping and Feng and revised in 2017,
which has been widely used. RUM specification encapsulates the simulation model into a separate
service entity, and the model and the outside world can only interact through the “service interface”.
RUM specification enables local reuse and composition of simulation models, realizing invocation and
communication of simulation models by passing local parameters. However, in the cloud environment,
the user terminal and the cloud server are connected by the network, and RUM specification does not
support communication between the simulation model and the specific simulation engine framework
in the network. Therefore, the simulation model developed by RUM specification cannot be provided
as a shared service released and stored in the cloud environment.

2.3. OWL-Based Simulation Model Search Method

Ontologies in the Semantic Web can describe simulation models at the semantic level. Web
service ontology description language (OWL-S) was designed to make the Web service an entity which
computers can understand based on the description of ontology. OWL-S describes Web services in three
aspects: (1) service profile, (2) service model, and (3) service grounding [14,15]. Ontology can improve
the accuracy of simulation model search by describing simulation models based on semantics [16].
In order to support the composite modeling of complex system simulation applications, some experts
have carried out research on simulation service description methods based on semantics and have
proposed description ontologies of simulation model resources (e.g., OWL-SS [17] and OWL-SM [18]).
At present, OWL-based simulation model description methods generally lack descriptions of the
characteristics of simulation models in the cloud environment [19] and lack expression of the correlations
between simulation models, which are not effective enough to support users in searching and selecting
relevant models conveniently through the correlations between models in the cloud environment.

2.4. QoS-Based Simulation Model Selection Method

Similar to Web services, QoS is a key factor in choosing simulation models that are stored in the
cloud environment as a service [20]. At present, many researchers have defined suitable QoS indices
for simulation services and have proposed model selection mechanisms based on QoS [21]. However,
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current descriptions of simulation models lack the induction of QoS attributes of simulation models in
the cloud environment [22]. Current selection algorithms lack a selection mechanism that can select
models in the cloud environment according to users’ preferences for QoS indices and thus cannot meet
users’ specific QoS requirements when constructing complex system simulation applications.

In summary, current HLA-based simulation model development specification and RUM
specification cannot support simulation models as a shared service to be invoked and operated
on cloud architecture by developers. Existing OWL-based model search methods and QoS-based model
selection methods cannot support users in searching for relevant models through the correlations
between models and selecting simulation models that meet their QoS requirements to construct
complex system simulation applications in the cloud environment.

3. C-RUM Specification and Cloud-Based Simulation Model Service Framework

3.1. C-RUM Specification

Complex system simulation applications usually contain some simulation models which have a
large computational load. The operation of such a model requires an immense amount of computing
resources, making other simulation models in the same process fall into a long queue, thus delaying
the advancement of the simulation timing and reducing the execution efficiency of the simulation
application. If such simulation models are encapsulated in the form of shared services and are
distributed and stored in the cloud environment, the construction efficiency of complex system
simulation applications and the utilization of related models could be improved. Cloud computing
resources can be used to realize interoperability between heterogeneous simulation models and
distributed collaborative computing of simulation models on multiple computing nodes, so as to
improve the execution efficiency of simulation applications.

The RUM specification can implement local invocation and communication of simulation models.
However, in the cloud architecture, the cloud server where the simulation service model is located
and the user terminal are interconnected through the network. The RUM specification does not
support communication between the simulation model and the specific simulation engine framework
on the network. This paper proposes C-RUM specification by transforming the RUM specification.
The purpose is to invoke the simulation model encapsulated by C-RUM specification as a form of
shared service in the cloud architecture, to make the model service transmit the data through the
network protocol to interact with the simulation engine framework, and to implement distributed
collaborative computing and heterogeneous execution of simulation applications. The original RUM
specification specifies seven standard (service) interfaces for the simulation model to interact with the
outside world—model initialization, parameter input, model status recovery, parameter and status
adjustment, data output, model status acquisition, and model calculating interfaces—to provide seven
standard operations, as shown in Figure 1.

In the cloud architecture, the service interfaces in the original RUM specification cannot identify
or parse the network data. Therefore, the C-RUM specification defines the network data input interface
and network data output interface. These two interfaces are used to encapsulate the seven service
interfaces in order to implement data conversion between the network and the original interfaces.
According to the execution flow of the simulation model under the original RUM specification [6], the
C-RUM specification divides the network interaction into three types: model invoke command, model
calculate command, and calculating data and model status output, as shown in Figure 1. The detailed
function of the two new interfaces and the network interaction of the C-RUM-encapsulated simulation
model is discussed below.

Network data input interface. This interface is mainly used for parsing network data transmitted
based on the socket network transmission protocol. The purpose of the parsing is to obtain the
target standard service interface of the network data packet and convert the input data into the
specified standard data format of the corresponding service interface. Finally, the parsed instructions
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or parameters are passed to the target standard service interface. The model invoke and calculate
commands need to be analyzed by the network data input interface.
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Model invoke command: When the simulation system of the user terminal needs to be initialized,
the terminal will send a model invoke command to the simulation model in the cloud server, and
the distributed invocation system in the cloud server will mount the simulation service model into
a process. Then, the model initialization command and related parameters are passed to the model
initialization interface through the network data input interface to complete the initialization operation
of the simulation service model.

Model calculate command: When the simulation system in the user terminal needs the simulation
service model to calculate, the model calculate command will be sent to the simulation model. After the
command is parsed by the network data input interface, the model will (1) first recover its status
through the model status recovery interface, (2) then check whether there is a working parameter
adjustment instruction to adjust the working parameters and status, (3) then set the input data through
the parameter input interface, and (4) finally start the simulation model calculating operation through
the model calculating interface.

Network data output interface. This interface is used to encapsulate the data output from the
simulation model after calculation and the status information of the simulation model. That includes
indicating the standard interface source of the data and the destination address of the transmission
and converting them into the format for the socket network communication protocol. Before output
to the network, the calculating result and model status need to be encapsulated by the network data
output interface.
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Calculating result and model status output: After the simulation service model finishes its
calculation, the network data output interface will obtain the data after calculating from the simulation
model output interface and acquire the model status from the simulation model status acquisition
interface and encapsulate the data into a socket communication protocol package. The package will
be forwarded to the simulation system in the corresponding user terminal through the distributed
architecture in the cloud environment.

3.2. Cloud-Based Simulation Model Service Framework

Most of the current complex simulation system application frameworks need to integrate or
migrate simulation models into specific simulation platforms, making it difficult to separate the models
from the platform. For different simulation platforms, the operation mechanism of the simulation
engine is quite different, and it is not easy to bind the service simulation model of the cloud center
to a specific simulation platform. In order to invoke the service-oriented simulation model in the
cloud architecture without relying on the simulation platform, running under any simulation engine
framework [23,24], this paper proposes a cloud-based simulation model service framework, as shown
in Figure 2.
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The complex system simulation application consists of a large number of simulation object
instances, and there are complex interactions and collaborative calculations between the instances.
The simulation object framework is built on a specific simulation engine, and the simulation object
instances are defined by the simulation object framework (including the declarations of these simulation
object instances, their roles in the simulation application, the interaction between them, etc.). Each object
instance is implemented by a specific simulation model. The local simulation model can be directly
mounted or integrated into the object framework, while the simulation model service stored in the
cloud environment relies on the communication with its proxy model in the corresponding object
framework. The proxy model does not have the specific function of the simulation service model; it
only takes the place of the simulation service model in the entire simulation object framework, defining
the interaction relationship with other models. When the simulation application needs to interact with
the simulation service model in the cloud server or obtain its status, the simulation object framework
will accept and transmit the corresponding parameters and data through the socket communication
between the proxy model and the simulation service model. The cloud-based simulation model service
framework is applicable to the invocation and operation of the C-RUM-encapsulated simulation model
in the cloud environment and does not depend on a specific simulation platform.
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4. Simulation Model Selection Method Based on Semantic Search in Cloud Environment

4.1. Semantic Search Framework

The traditional Web services description language (WSDL)-based [25] simulation model search
mechanism uses keyword matching to find simulation model description texts with the same keywords.
A knowledge graph uses a more expressive way to describe simulation models by semantic description,
and a search method based on a knowledge graph can find simulation models at the semantic level
through the link relations between data and things [26]. Compared with ontology description language,
a knowledge graph stores resource description framework (RDF) [27] triples in the graph database
directly, which means the correlations between simulation models can be described in a simple and
intuitive way in the form of graphs.

In this study, a description method of cloud simulation model resources based on a knowledge
graph [28] was used to describe simulation models, which describe the characteristics of cloud
simulation models and their QoS indices. Then, a simulation model semantic search framework
was proposed based on the simulation model description knowledge graph. This search framework
provides two patterns for simulation model search: (1) users can associate the required simulation
model by attribute information such as the name, domain, type, time scale, and model granularity of
the simulation model; or (2) users can search for the required simulation model by the correlations
between models. According to the search conditions input by the user, simulation models that meet
the search conditions can be found in the knowledge graph stored in the graph database, as shown in
Figure 3.
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Under the search framework proposed in this paper, users input model attribute requirements
as semantic search conditions stored in the array Attributes_conditions [M]. Each item of the array
corresponds to 1 to M attribute requirements of the simulation model. The user can input one or
more attribute requirements (e.g., model name, domain, category, time scale, model granularity, etc.)
as semantic search conditions to search for simulation models that meet the requirements of these
attributes. The user can also input the required association model and specific association relationships
(e.g., command relationship, equipment-carrying relationship, etc.) as semantic search conditions
stored in the two variables Correlated model and Relationship, respectively, to search for simulation
models that have a certain relationship with the correlated model. The input of correlated models is
necessary in this search pattern. Algorithm 1 shows the semantic search algorithm.

Data_Base represents a knowledge graph database that stores simulation model description
information and correlation relationships. model ≮ α indicates that the simulation model does not
satisfy the attribute requirement α by the judgment method of fuzzy search combined with synonym
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expansion. relationship (Correlated model, model) indicates the correlation between correlated model
and present model. Relationship � β indicates that the specified association relationship does not
satisfy the correlation between correlated model and present model by means of fuzzy search combined
with synonym expansion. push_into_list (model, Ω) indicates adding the simulation model into the
model initial set Ω.

Algorithm 1 Semantic_Search

Input: Attributes_conditions [M], the vector for storing model attribute requirements;
Correlated model; Relationship, the relationship with correlated model;
Output: Ω, simulation model initial set;
1: Boolean flag1← true , flag2← true ;
2: if (Attributes_search_conditions , null)||(Relationship_search_conditions , null) then
3: for each model ∈ Data_Base do // Loop traversal of the simulation model
4: for i← 0 to M do // Loop traversal of model attribute requirement condition
5: if model ≮ Attributes_search_conditions [i] then flag1← false ;
6: end for
7: if relationship (Correlation model, model) , NULL
8: if Relationship � relationship (Correlation model, model)
then flag2← false ;
9: else flag2← false;
10: if (flag1 & flag2) then push_into_list (model, Ω);
11: end for
12: end if
13: return Ω

4.2. QoS Weighted-Based Simulation Model Selection Method in Cloud Environment

The simulation model that the user needs to use has to not only meet the requirements of
its function but also have high QoS to reach the quality requirements of building complex system
simulation applications. The simulation models obtained under the semantic search framework
proposed in Section 4.1. are not unique, and they have similar functions and attributes, but they differ
in terms of QoS. In order to build higher-quality complex system simulation applications, after the
initial set that meets the search conditions is acquired under the semantic search framework, it is
necessary to order that set through a QoS-based selection mechanism and select the optimal simulation
models from the ordered candidate set, as shown in Figure 4.
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The QoS weighted-based simulation model selection mechanism proposed in this paper can
support users in customizing QoS index weights and selecting the simulation model that satisfies their
QoS preference from the initial set according to the weighted comparison of QoS indices. The specific
method is discussed below.



Entropy 2019, 21, 891 9 of 18

Definition of QoS indices. Referring to the QoS indices of Web services and considering the
uniqueness of the simulation model as a kind of special Web service [21,29], the QoS indices of the
simulation model in the cloud environment can be summarized as follows:

1. Model performance (QM) is determined by the computation of the model. A simulation model
with more computations has lower model performance.

2. Communication capability (QC) reflects the communication capability of the link between the
user’s terminal node and the cloud server.

3. Availability (QA) indicates the probability that the simulation model can be called and used. It is
defined by the mean time between failures and the mean time to repair.

4. Reliability (QR) is defined by the execution success rate of the service, which refers to the
probability of obtaining the correct response to the user’s requirements within the maximum
expected time range.

5. Security (QS) is measured by the data management capability of a model service, which mainly
depends on the user’s historical experience. Terminal users should be given a [0, 10] range to
score the service (regarding the confidentiality, integrality, realness, etc., of data) after using it.
Then, the value of QS is the average score; with the increase and accumulation of evaluations, this
value becomes reliable.

QoS weighted-based selection algorithm. The above five attributes (QM, QC, QA, QR, and QS) are
all positive metrics; that is, the higher the value, the higher the quality. In order to eliminate the gap
between the different QoS indices, we used the following formula [22] to limit their values to the range
of [0, 1]:

V
(
Qk

i

)
=

maxQk
i −Qk

i

maxQk
i −minQk

i

. (1)

These five QoS indices are assigned numbers 1–5. Qk
i indicates the value of the ith QoS index of

the kth model in the candidate set, maxQk
i and minQk

i indicate the maximum and minimum values,

respectively, that the QoS index may reach, and V
(
Qk

i

)
indicates the value after standardization of this

QoS index.
After entering the search condition under the search framework, the simulation user also needs to

provide a QoS preference, which is expressed by a weight vector as the following formula:

W = (wi , 1 ≤ i ≤ 5,
∑

wi = 1). (2)

That is, the percentage each QoS index should be accounted for. According to the weight vector
given by the user, the total QoS index of the kth model in the candidate set is

Qk =
5∑

i=1

wi ← V
(
Qk

i

)
. (3)

The model that meets the user’s search conditions under the semantic search framework will be
added to the initial set. According to the weight vector representing the QoS preference provided by
the user, the target QoS index Q of each model in the initial set is obtained by the above formulas.
Finally, the candidate set of simulation models ordered by Q will be provided to the user for selection.
Algorithm 2 shows the QoS weighted-based model selection process.
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Algorithm 2 QoS Weighted-Based_Selection

Input: W, Simulation model QoS index weight vector;
Ω, Simulation model initial set (from Algorithm 1);
Output: Φ, Ordered model candidate set;
1: if Ω , null then
2: for each model ∈ Ω do // Loop traversal of model initial set
3: for each i← 0 to 5 do // Loop through 5 QoS indices
4: V(Qi) ←

maxQi−Qi
maxQi−minQi

// Calculate the standard value of the QoS index

5: Q←
5∑

i=1
wi·V(Qi) // Calculate the target QoS value of the simulation model

6: push_into_list(<model,Q>, Φ) // Insert the binary <model, Q> into the set Φ
7: end for
8: end for
9: rank_list_by (Φ, Q) // Sort the elements in Φ by Q
10: end if
11: return Φ

5. Case Study: Airport Operation Control System Simulation

An airport operation control system simulation is mainly used to simulate the control and
arrangement of an airport control center in different dispatching strategies. By simulating a period
in the real world, simulation results of airliners’ punctuality rates and average delay times can be
obtained. This complex system simulation provides an effective research method for the scheduling
and control of airliners in airports. The airport operation control simulation system mainly includes
airliner, airport runway, and air traffic control center (ATC) models. The airliner model records the
delay time and has three statuses: taking off, landing, and waiting. The airport runway model records
the idling and queuing status of runway. The ATC model needs to do many complex calculations
based on relevant strategy, queue waiting of runways, and delay time of airliners, and then schedule
the relevant airliners to wait on specified runways. Therefore, it takes much more time to calculate
than the other two models.

The abovementioned airport operation control system simulation was used as an experimental
case to analyze the efficiency and practicability of the service-oriented model encapsulation and
selection method for complex system simulation based on cloud architecture proposed in this paper.
The simulation platform used in the case study was SUPE, and all experiments were run on two
computing nodes with a Linux (centos7) operating system. Each node was equipped with a 3.40 GHz
Intel (R) Core (TM) i7-6700 quad core CPU processor. Docker (version 1.13.0) container technology
was used as a virtualization method to build a two-node cloud architecture, in which the distributed
operation of the airport operation control simulation system was implemented. In the experiment, a
simulation time was set up corresponding to the physical time of 10 min to study the actual system
of 1 week (7 days), so each simulation promoted the logical simulation time of 1008. The time that
was measured in the test was the execution time when the simulation application finished the 1008
simulation steps (logical simulation time). Each piece of experimental data in the analysis chart was
the average value after 10 test runs. The experimental configuration is shown in Table 1.

Table 1. Experimental configuration.

Experimental Parameters Description/Value

Number of airliners (50, 250)
Number of airport runways 5
Number of air traffic control centers 1
Scheduling policy Punctuality prioritized
Simulation run time 1008
Model distribution mode Scatter, model servitization
Degree of parallelism 1, 2, 4
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5.1. Performance Evaluation

5.1.1. Cloud-Architecture-Based Distributed Simulation (CDS)

In order to test the performance of the CDS (which refers to the architecture, the computing nodes
of which communicate by a cloud architecture network), this experiment tested the execution time of
the airport operation control simulation application under three operation modes: serial simulation
on a single process in a single node (S-1P), traditional distributed simulation (TDS, which refers to
the architecture, the computing nodes of which communicate by local connection) on two processes
(TDS-2P, per process per node), and CDS on two processes (CDS-2P, per process per node) based on the
above experimental parameter settings. TDS-2P and CDS-2P used the scatter distribution method (each
type of simulation model was distributed to each process in turn), and each process ran in one node.

As shown in Figure 5, when the number of airliner instances was 50, 100, 150, 200, and 250,
compared with the running time of the simulation application using the S-1P operation mode, both the
CDS and TDS could reduce the running time of the simulation application and improve the execution
efficiency. As the number of airliner instances increased, because the model distribution mode was
scatter, the amount of computation assigned to each process would get closer to being equal. So, the
running time of TDS-2P and CDS-2P would get closer to half that of S-1P. Compared with TDS, the
performance of the CDS lost an average of 5.37% in five sets of experiments. This is because in the
cloud architecture, Docker container technology uses virtualization to isolate interprocess resources.
In CDS, processes at different nodes need to communicate through virtual addresses, which leads to
higher communication latency than TDS. However, cloud computing has the advantages of computing
resources being used on demand and service models being shareable, which would balance such
performance loss. Therefore, it is feasible to use CDS architecture to run complex system simulations.
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5.1.2. Model Servitization

This experiment packaged the simulation models with large computational requirements into a
shareable simulation service through the C-RUM specification. The service model ran in parallel on a
single process of a cloud server node, participating in the execution of a complex system simulation
application in the cloud-based simulation model service framework (model servitization, MS). In
order to study its performance, the case study encapsulated the ATC model, which has a greater
number of calculations than the other models, into a service model based on the C-RUM specification.
Then, we tested the effect of using scatter and MS distribution methods under CDS (Scatter-CDS and
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MS-CDS) on simulation execution time. The specific operation and distribution modes are shown in
Figure 6. The experiment used two-process (per process per node) and four-process (two processes
per node) parallel simulation to test the performance of Scatter-CDS and MS-CDS (Scatter-CDS-2P,
MS-CDS-2P, Scatter-CDS-4P, and MS-CDS-4P). The MS distribution method operated the service model
separately in one process, and the remaining models were distributed to the rest of the processes using
scatter distribution.
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The results of the test are shown in Figures 7 and 8, compared with the execution time of the
simulation application by S-1P operation mode: (1) In the two-process parallel operation mode, when
the number of airliner instances was less than 150, MS-CDS-2P was better able to reduce the execution
time of simulation applications than Scatter-CDS-2P and had a higher running time speed-up ratio.
However, when the number of airliner instances exceeded 150, the computation load was more
unbalanced on two computing nodes, and the speed-up ratio of MS-CDS-2P gradually decreased
and became even lower than that of Scatter-CDS-2P. (2) In the four-process parallel operation mode,
MS-CDS-4P was better able to reduce the execution time of the simulation application and had a higher
speed-up ratio (execution performance) than Scatter-CDS-4P when instantiating the number of airliners
from 50 to 250. When the number of airliners was 250, the execution performance of MS-CDS-4P
improved by 35.28% compared with Scatter-CDS-4P.
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Through the experimental results and analysis, we found that packaging models with large
computational loads into a shareable service, on the one hand, can provide support for quickly
constructing the simulation system in the form of service combination. On the other hand, it can
effectively improve the execution efficiency of the simulation system. Also, when the total calculation
of the remaining models is gradually increased, the degree of parallelism should be increased to
ensure load balancing, so as to maximize the effect of MS on increasing the execution efficiency of
simulation applications.

5.1.3. Simulation Model Selection Method Based on Semantic Search

In order to prove the practicability of the simulation model selection method based on semantic
search proposed in this paper, five kinds of ATC service models with different QoS attribute
characteristics were constructed by C-RUM specification. A simulation model description method
based on a knowledge graph [28] was used to describe the simulation models of the airport operation
control system simulation. The description information was added to the database that stored the
model description knowledge graph (a knowledge graph that contained the description information
of a large number of different models in various fields). Algorithm 1 was implemented by Cypher
query language [30], and the semantic search framework was built in the model description knowledge
graph database to find the required models. Then, based on Algorithm 2, according to different QoS
index weight vectors, the simulation model candidate set with optimization order could be obtained
for users to choose.

Under the simulation model semantic search framework, the five ATC service models (ATC-A,
ATC-B, ATC-C, ATC-D, and ATC-E) could be accurately found by correlation with the airliner or
runway model or by the attributes of the ATC model. These five models were added to the initial model
set, and then based on the QoS index values of the five simulation models and QoS index weight vector,
the target QoS value Q of each model could be obtained. The simulation model candidate set that was
obtained by sorting Q was available for users to select. The experiment assumed that the user wants
to select the service model that can optimize the execution efficiency of the simulation application.
Directed at two operation modes, two QoS index weight vectors for different experimental methods
were provided to select simulation models. The effectiveness of the semantic search framework and
the QoS weighted-based model selection method was verified by running and testing the performance
of the simulation application that was assembled by the selected ATC models

(1) When the entire simulation system is running on a single node, the external network
communication capability Qc does not affect the execution efficiency of the simulation application.
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The model performance QM dominates the effect (the other three QoS indices may have little effect on
the execution efficiency), so the QoS index weight was set to W = (0.7, 0, 0.1, 0.1, 0.1), and the specific
selection process is shown in Table 2.

Table 2. Selection process 1.

QoS1 [0,100] QoS2 [0,100] QoS3 [0,1] QoS4 [0,1] QoS5 [0,10] Q

ATC-A 85 (0.85) 83 (0.83) 0.98 0.9 9 (0.9) 0.873

ATC-B 65 (0.65) 55 (0.55) 0.96 0.92 9 (0.9) 0.733

ATC-C 92 (0.92) 52 (0.52) 0.95 0.92 10 (1) 0.931

ATC-D 71 (0.71) 70 (0.7) 0.97 0.93 10 (1) 0.787

ATC-E 74 (0.74) 65 (0.65) 0.95 0.91 9 (0.9) 0.794

W = (0.7, 0, 0.1, 0.1, 0.1)

Ordered candidate set: {ATC-C, ATC-A, ATC-E, ATC-D, ATC-B}

The QoS weight vector gave a large weight to QM, and the optimized candidate model set {ATC-C,
ATC-A, ATC-E, ATC-D, ATC-B} could be obtained through calculation. The five ATC service models
were assembled, respectively, to the same five airport operation control simulation systems, and the
airliner instance was set to 100. The execution times of the five simulation applications operated by
S-1P are shown in Figure 9.
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These applications could run effectively, and it can be seen that in S-1P operation mode, the
order of the ATC models corresponding to the execution efficiency of the five simulation applications
was consistent with the optimization order in the model candidate set. The simulation application
assembled by the model ATC-C, which ranked first in the candidate set, had the shortest running time
(3234 s).

(2) In cloud architecture, shareable simulation services are often stored in the cloud center.
The service model and simulation engine framework need to communicate through network
interconnection. Both QC and QM of the simulation service model affect the execution efficiency of the
simulation application, so the QoS preference weight vector was set to W = (0.35, 0.35, 0.1, 0.1, 0.1).
The specific selection process is shown in Table 3.
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Table 3. Selection process 2.

QoS1 [0,100] QoS2 [0,100] QoS3 [0,1] QoS4 [0,1] QoS5 [0,10] Q

ATC-A 85 (0.85) 83 (0.83) 0.98 0.9 9 (0.9) 0.866
ATC-B 65 (0.65) 55 (0.55) 0.96 0.92 9 (0.9) 0.698
ATC-C 92 (0.92) 52 (0.52) 0.95 0.92 10 (1) 0.847
ATC-D 71 (0.71) 70 (0.7) 0.97 0.93 10 (1) 0.7835
ATC-E 74 (0.74) 65 (0.65) 0.95 0.91 9 (0.9) 0.752

W = (0.35, 0.35, 0.1, 0.1, 0.1)

Ordered candidate set: {ATC-A, ATC-C, ATC-D, ATC-E, ATC-B}

The QoS weight vector assigned the same weight to QC and QM. After calculation, the optimized
candidate model set could be obtained as {ATC-A, ATC-C, ATC-D, ATC-E, ATC-B}. The five ATC
service models were assembled, respectively, to the same five airport operation control simulation
systems, and the airliner instance was set to 100. The execution times of the five simulation applications
operated by MS-CDS-2P are shown in Figure 10.
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These applications could run effectively, and it can be seen that in MS-CDS-2P operation mode, the
order of the ATC models corresponding to the execution efficiency of the five simulation applications
was not completely consistent with the optimization order in the model candidate set. Because the QoS
weight vector W was set merely according to the experimental architecture without detailed analysis,
it was impossible to accurately quantify the extent to which the model performance QM and network
communication capability QC affected the entire execution efficiency of the simulation application.

The experimental results show that the searched model can work together with other models
and implement the simulation task, which verifies the effectiveness of the semantic search framework.
Further, the proposed QoS-based simulation model selection method can support users in selecting
the model which has the biggest target QoS index (Q) according to their QoS preference. However,
it cannot always give the optimum solution that could optimize a certain performance (execution
efficiency) of a complex simulation system.

5.2. Discussion

The experiment first tested the performance of the simulation application under three patterns:
S-1P, TDS-2P, and CDS-2P. The results prove that, compared with TDS, CDS can also effectively improve
the execution efficiency of the simulation application with little performance loss, which demonstrates
the practicability of CDS. Experiment 2 encapsulated the models with large computational loads



Entropy 2019, 21, 891 16 of 18

into shareable services in the cloud environment by the C-RUM specification proposed in this paper.
Then, by comparing the performance of MS-CDS and Scatter-CDS, the results prove that the MS
distribution mode is better than the traditional scatter distribution mode at improving the execution
efficiency of complex system simulation. This demonstrates the feasibility of C-RUM specification
in cloud networking architecture and the effectiveness of the method, making the models with large
computational loads into shared services, proposed in this paper. In experiment 3, the required
ATC models were found under the proposed semantic search framework by attributes or correlation
searching in the model description knowledge graph. The experiment assembled the searched model
into the simulation application of the case study and verified that it can work together with other models
and effectively implement the simulation task, which verified the correctness of the semantic search
framework. Then, the model ranking based on the QoS weighted selection method was compared
with the ranking of the execution time of actual simulation systems assembled by the models in the
candidate set. This proved that the proposed QoS weighted-based simulation model selection method
can select simulation models according to users’ customized requirements, but the solution is not
always the optimum one that could optimize the performance of the complex system simulation.

6. Summary and Future Work

A service-oriented model encapsulation and selection method for complex system simulation was
proposed in this paper. This method first promotes the original RUM specification and puts forward
C-RUM specification, which solves the problem of network communication in RUM specification.
Models with large computational requirements are encapsulated into shareable services in the cloud
architecture. The experimental results showed that model servitization can effectively improve the
execution efficiency of complex system simulation applications. Then, the model semantic search
framework is built in the simulation model description knowledge graph, which increases the
correlation search ability compared with other semantic search methods. The QoS weighted-based
model selection method supports users in customizing the weight of QoS indices and obtaining the
ordered candidate model set by weighted comparison. This mechanism can support the selection of
the required simulation model that satisfies users’ QoS preference under the cloud architecture.

Future work should further improve the QoS weighted-based simulation model selection method,
considering the limitation that it cannot assist users in selecting the optimal simulation service
model directed at a specific simulation application or its certain performance. Also, future research
should confirm the metric of the model QoS indices and study how to assign the corresponding QoS
index weights.
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