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Abstract: This paper describes evolution of new active element that is able to significantly simplify the
design process of lumped chaotic oscillator, especially if the concept of analog computer or state space
description is adopted. The major advantage of the proposed active device lies in the incorporation
of two fundamental mathematical operations into a single five-port voltage-input current-output
element: namely, differentiation and multiplication. The developed active device is verified inside
three different synthesis scenarios: circuitry realization of a third-order cyclically symmetrical vector
field, hyperchaotic system based on the Lorenz equations and fourth- and fifth-order hyperjerk
function. Mentioned cases represent complicated vector fields that cannot be implemented without the
necessity of utilizing many active elements. The captured oscilloscope screenshots are compared with
numerically integrated trajectories to demonstrate good agreement between theory and measurement.

Keywords: bifurcation diagram; chaotic oscillator; Lyapunov exponents; polynomial vector field;
squarer; trans-conductance mode

1. Introduction

The synthesis and practical realization of chaotic deterministic dynamical systems in the form
of lumped electronic circuits is an old and well-established problem. Several design methods have
already been described and verified in journal papers as well as conference contributions. The rest of
this section provides detailed insight into various circuitry realizations of chaotic oscillators. We will
focus especially on the problems of implementing complex nonlinear mathematical models; that is,
differential equations having many terms and scalar nonlinear functions of the polynomial shape.

The very first concepts of the analog chaotic oscillators were designed to be simple and transparent,
in order to demonstrate the fundamental nature of chaos and the conditions that are required for
the evolution of chaotic behavior. These circuits can be considered as a parallel connection of the
higher-order admittance network and nonlinear active two-terminal device. This resistor can be
piecewise linear; for example, where a third-order admittance network contains both capacitors and
inductors as functional accumulation elements is provided in [1], while an RC passive ladder network
connected as a load for active nonlinear resistors is the primary subject of [2]. Polynomial resistors with
arbitrary degrees [3] can be connected in parallel with a third-order fully passive admittance network
to obtain a robust chaotic oscillator [4,5] as well. Moreover, higher-order polynomial resistors can be
used to approximate goniometric functions and connected as the fundamental nonlinearity inside
suitable circuit topology to generate the so-called multiscroll [6–8] or multigrid strange attractors [9,10].
By generalization of such a design approach, very simple chaotic systems with a fully passive ladder
filter working in the trans-immittance regime can be constructed [11]. So far, it seems that this is also
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the simplest way to practically implement the so-called jerky (motion or Newtonian) dynamics, i.e.,
autonomous deterministic system defined by a single third-order ordinary differential equation [12–15].
Here, a trans-immittance passive ladder filter having low-pass type of frequency response is connected
in the closed loop with the active nonlinear two-port. Thus, the total number of circuit elements can be
theoretically reduced to four. For a trans-immittance filter with low quality factor (dynamical system
with the higher dissipation), the RLC structure can be substituted by an RC equivalent.

Concepts of fully analog oscillators with a nonlinear composition generated by passive-only
nonlinear devices, such as diodes or transistors, timing network, and simple active energy source,
also belong to the simplest robust chaotic systems [16,17]. Of course, second-order two-terminal
devices (both ideal and lossy) can be used for energy distribution toward the rest of circuitry [18,19].
Chaotic oscillators can be also designed by a slight modification of the well-known generators of
harmonic waveforms. Such a modification is often based only on inclusion of suitable nonlinear circuit
element into common circuitry [20,21].

If second-order-driven dynamical systems become included in our considerations, the state
variable filters are also examples of jerky dynamics. Recent discoveries reveal that robust chaos can be
observed in the common structures of Kerwin-Huelsmann-Newcomb (KHN) filters [22,23] if some sort
of intrinsic saturation-type nonlinearity is respected. Of course, chaos can be intentionally generated
by non-autonomous dynamical systems. The simplest of such an example can be found in a short
study [24] where the second-order-driven dynamical system only has three terms, including the scalar
non-proportional relation of a state variable. Forced chaotic oscillators can be knowingly constructed
as nicely demonstrated in [25,26]. The evolution of chaos is conditioned by the shape of the harmonic
input variable, i.e., amplitude and/or frequency. This means that one of these basic parameters of the
input signal can be used as the natural bifurcation parameter and serve to control some route-to-chaos
scenario. Thus, new network components that can be marked as analog-to-chaos converter can be
constructed. Two types become available depending on the input variable (output is always voltage);
in the case of voltage, we are referring to the two-port chaos converter [27], and for current input
variable, we are dealing with a two-terminal chaos converter [28], i.e., a chaotic impedance. So far,
despite its robustness, the described network elements are still awaiting practical application.

A systematic approach, that is the most often utilized for the design of chaotic oscillators based on
a mathematical model, follows the well-known concept of analog computers. Individual first-order
ordinary differential equations are implemented by using summing inverting integrators with single
voltage-feedback operational amplifier. If required, additional summation and/or subtraction linear
operations are realized by a single operational amplifier-based differential amplifier. Final building
blocks bring the folding mechanism into vector field geometry; nonlinear two-ports are constructed
with prescribed voltage transfer function. Now, it is the right time to recall a few interesting chaotic
oscillators that utilize the method mentioned above and provide some unique features. Circuitry
realization of the complex butterfly chaotic attractors having multiple wings can be found in [29,30],
and a multiscroll strange attractor is implemented in an overview paper [31]. Here, curious reader can
compare several design methods from different perspectives. We can also consider systematic design
procedures toward multispiral chaotic attractors with user-defined complexity of the piecewise-linear
transfer function; see details in [32]. Described integrator-based block method is universal and
can be utilized (without changes) for design of the higher-order dynamical systems. For example,
a four-dimensional oscillator is the subject of [33]. The discussed integrator-based circuit synthesis
is summarized and turned into a systematic design process in a comprehensive study [34]. In the
case of nonlinear transfer functions having very complicated shapes, corresponding two-port blocks
can be implemented by using digital parts, i.e., via combination of a simple processor and by using a
lookup table approach, and A/D and D/A converters. Remember that this substitution turns a chaotic
system into the piecewise constant. However, global dynamics can be preserved [35]. The recent
trend is to utilize field programmable analog arrays for complete design of nonlinear dynamical
systems. This is advantageous due to the fast design and easy reconfiguration of topology of the



Entropy 2019, 21, 871 3 of 37

chaotic oscillators [36]. On the other hand, chaotic oscillators can be implemented as systems-on-chip
using uniform fabrication technology. Both advantages and limitations of such analog realizations can
be found in interesting research studies [37,38].

All integrator-based designs have something in common, namely, a complicated structure with
many active and passive circuit elements. The aim of this paper is to partly remove this drawback and
slightly simplify the final circuit topology. As authors, we have to admit that this effort is not unique.
Chua’s original circuit was simplified by adopting different active devices, such as a current-feedback
operational amplifier with frequency compensation in [39] or, alternatively, by a differential voltage
current conveyor as given in [40]. The monolithic implementation of Chua’s circuit is the subject of [41].
Negative resistance chaotic oscillators can be effectively constructed by using a second generation
current conveyor [42], by standard voltage-feedback operational amplifier [43], as well as any other
active element, including a two-terminal structure containing only few discrete FET components [44].
This paper contributes to this kind of research by introducing a versatile multiport active element
suitable for modeling nonlinear dynamics.

This paper is organized as follows. The next section briefly describes layout design of a new
active device and also contains measurement results of its key properties from the viewpoint of
modeling nonlinear dynamics. The third section is focused on the presentation of several mathematical
models that undergo true experimental verification. Within this section, the fundamental analysis
of these models based on the numerical integration process is presented. The fourth section brings
circuitry realizations of chaotic systems, where both linear and nonlinear mathematical operations
are performed by a new active element. The fifth section provides us with measurement results and
comparison between theoretical and practical experiments. Finally, some discussion and concluding
remarks are presented.

2. Evolution of Differential Voltage Trans-Conductance Multiplier (DV-TC-M)

The new active cells, DV-TC-M, were preliminarily tested in non-problematic applications [45,46]
and will be utilized in the structures of fully analog chaotic oscillators presented in this paper. Layout
designs of the individual developed functional blocks are visualized inside Appendix A. Idealized
models of these structures are provided in Figure 1, and fabricated examples are based on I3T25
0.35 µm ON Semiconductor CMOS process that comprised a single integrated circuit (IC) package.
The trans-conductance transfer function of device is available in two equivalent forms but with different
value of constant k depending on the internal topology:

k·(VX1 −VX2)·(VY1 −VY2) = IZ, (1)

where k = 4.9 mA/V2 for a bipolar multiplier and k = 1.3 mA/V2 for a CMOS multiplier. Note that such
transfer function is versatile especially in the case where individual ordinary differential equations are
implemented by directly following Kirchhoff’s first law; that is, the sum of the currents associated
with a single node equals zero. Summation/subtraction building block performs a useful operation,
returning the sum and subtraction of three input voltages in accordance to the following equation:

VY1 −VY2 + VY3 = VW . (2)

A complete view of the internal topologies of the active cells is shown in Figure 2, including W/L
ratios of FET transistors and values of resistors.
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Figure 1. Symbols of active cells employed in designed chaotic oscillators: multiplier with internal 
voltage-to-current conversion (left) and summation/subtraction (right) unit. 
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Figure 2. Internal topologies of the active cells fabricated in a single integrated circuit (IC) package. Figure 2. Internal topologies of the active cells fabricated in a single integrated circuit (IC) package.
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DC transfer curves belong to the most important characteristics of the active devices employed
in the design process of chaotic oscillators and linear and nonlinear systems in general. Figure 3
shows that transfer linearity is good over the entire allowed dynamical range of the input voltages.
The measured features of the bipolar multiplier predetermine this cell for all applications that operate
with input voltages of ±500 mV (this limits the state space volume occupied by a constructed chaotic
attractor). There is only linear distortion that can be easily compensated by the external circuitry,
in practice, by simple component value recalculation. The maximal allowed output current is 1500 mA.
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Figure 3. Comparison between measured and simulated responses of bipolar core-based multiplier: 
DC transfer responses X1→Z for VY1 controlled by DC voltage (upper plot), DC transfer responses 
Y1→Z for VX1 controlled by DC voltage (middle plot), and dependence of gm on VY1/VX1 (lower plot). 

Figure 3. Comparison between measured and simulated responses of bipolar core-based multiplier:
DC transfer responses X1→Z for VY1 controlled by DC voltage (upper plot), DC transfer responses
Y1→Z for VX1 controlled by DC voltage (middle plot), and dependence of gm on VY1/VX1 (lower plot).
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To make the electronic equivalents precise for the prescribed mathematical models, we should
perform accurate operations such as squaring and multiplication. Note that amplification/attenuation
can be considered as the product of a state variable and DC constant voltage. Thus, it also belongs to
this class of scalar mathematical operations.

Since all chaotic signals are naturally wideband, module frequency responses of active devices
involved in a design process should be maximally horizontally flat. In this context, Figure 4 shows that
DV-TC-M has a bandwidth 50 MHz; i.e., sufficiently wide for any type of strange attractor.
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Figure 4. Magnitude of AC transfer responses X1→Z for VY1 controlled by DC voltage (upper left
plot), magnitude of AC transfer responses Y1→Z for VX1 controlled by DC voltage (upper right graph),
magnitude vs. frequency plot of input impedance at X1 terminal (middle left plot), magnitude vs.
frequency plot of input impedance at Y1 terminal (middle right plot), and magnitude vs. frequency
plot of output impedance at Z terminal, example for VX,Y = −0.5 V (lower plot).
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Wide bandwidth is very important because roll-off effects can filter out the frequency components
required to form a desired strange attractor. This value should also be respected when choosing a
frequency de-normalization constant. A nice case study has focused on the current feedback operational
amplifiers that can be found in [47].

The CMOS multiplier has an allowed level of input signal up to ±500 mV, and the bandwidth
reaches at least 30 MHz. Further interesting (from the viewpoint of modeling nonlinear dynamics)
measured results are documented via Figures 5 and 6. Summation/subtraction unit allows operation of
useful signals up to ±700 mV and 3 dB bandwidths of transfers overcome 45 MHz. For details, see the
graphical visualization given in Figures 7 and 8.
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Figure 6. Measured magnitude of AC transfer X1→Z responses for VY1 controlled by DC voltage 
(upper left plot), magnitude of AC transfer responses Y1→Z for VX1 controlled by DC voltage (upper 
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Figure 6. Measured magnitude of AC transfer X1→Z responses for VY1 controlled by DC voltage (upper
left plot), magnitude of AC transfer responses Y1→Z for VX1 controlled by DC voltage (upper right
plot), magnitude vs. frequency plot of input impedance at X1 node (middle left image), magnitude vs.
frequency plot of input impedance at Y1 node (middle right plot), and magnitude vs. frequency plot
of output impedance at Z terminal, example for VX1 = −0.5 V (lower graph).
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Figure 8. Summation/subtraction unit and magnitude AC transfer responses between terminals
Y1,2,3→W (upper left plot), magnitude of the input impedances Y1,2,3 vs. frequency (upper right
graph), and magnitude vs. frequency plot of output impedance measured at W terminal (lower image).

3. Numerical Analysis of Chaotic Systems Dedicated for Circuit Synthesis

Before starting a design process of the analog chaotic oscillator, its dynamics need to be deeply
analyzed by using computer algorithms that are mostly based on the numerical integration process.
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Individual upcoming subsections provide numerical investigation of several mathematical models.
The analysis provided here is primarily focused on the upcoming circuit realization of dynamical
systems. The algorithms that are utilized here can be summarized as follows.

(1) Largest Lyapunov exponent (LLE). It is a real number that specifies the rate of exponential
divergence of two neighboring state trajectories. For chaos, it is necessary to achieve one positive LLE,
while for hyperchaos, we need two positive LLEs. This measure is plotted with respect to single or
several system parameters which can change the global behavior of an analyzed circuit. A high value of
LLE can be understood as dynamical motion that is unpredictable for short times. Transient behavior is
always omitted such that calculation starts on the ω-limit set. During each routine step, Gram–Schmidt
orthogonalization is performed. LLE can be calculated by using either a mathematical model [48] or
data sequences generated by the system under inspection [49]. Subsequently, this measure can be used
for flow qualification or optimization [50]. Rules for correct calculation of LLE are specified in [51].

(2) Approximate entropy (AE) is a real number that can quantify degree of similarity between
consecutive patterns of the waveforms generated in a time domain. A significantly high value of AE
suggests possible application of analyzed continuous-time chaotic signal in secure communications,
chaos-based modulation, or masking of the useful analog signal. AE is established for each designed
chaotic oscillator using real measured data sequences.

(3) Basins of the attraction (BoA) are subspaces of the state space volume that specify attraction
sets for individual types of ω-limit sets. Possible types of attraction sets, including hidden chaotic
attractors, need to be calculated by appropriate algorithms. It is important from both a theoretical
and practical viewpoint. If the evolution of some specific state attractor is bounded to a specific set of
initial conditions, these need to be imposed into an oscillator by suitable circuitry. Fortunately, for the
proposed voltage-mode structures of a chaotic system, one or several capacitors can quite easily be
pre-charged at any time.

(4) One-dimensional bifurcation diagram (BD) can be very useful for tracing the ideal routing-to-
chaos scenario with continuous change of a single system parameter; especially if a very small step size
of swept parameter is used. This graph is commonly considered as suitably chosen Poincare sections
(subspaces of the state space) plotted and arranged next to each other.

The numerical algorithms mentioned above were implemented in Mathcad 15 program; to be
more specific, a built-in fourth-order Runge–Kutta method with a fixed time step was employed as the
core process, i.e., for numerical integration. Since chaotic dynamics is expected, possible problems
with conventional numerical algorithms can be expected: such as convergence, chaos suppression,
finite precision of real numbers, etc. In other words, credibility of the results may be compromised;
as pointed out in [52]. For example, too large step sizes used for integration process can cause chaos
suppression. Thus, only higher-order integration methods with a step size several orders lower than the
lowest time constant of the designed chaotic circuit were considered for analysis (LLE, AE, BoA, BD).
The second observed problem is related to finite precision of floating-point numbers. This will cause
final periodicity of all chaotic orbits under one condition: if these are integrated for an enormously long
time; however, this is not the case. The examples of chaotic flows considered in this paper are obviously
durable against rounding errors [53]. Vector fields are smooth and continuously differentiable with
fast trajectory stretching and transparent trajectory folding mechanisms. All parameters required
for numerical re-simulation of results will be provided in the proper places in the text to ensure
repeatable analysis. Closer insight into the analysis of autonomous deterministic chaotic dynamical
systems and the problems of flow discretization, including corresponding solutions, can be found in a
comprehensive study [54]. Although this paper warns readers to rely solely on the computer-aided
results, especially if a chaotic dynamic is involved, we can trust our simulations are rigorous because
these are verified by true experimental measurements.

Results from the numerical analysis are closely bounded to concrete circuit implementation and
the real circuit parameters. This means that describing mathematical models are not normalized;
i.e., neither time constants nor impedance scaling factors are introduced.
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3.1. Numerical Investigation of Dynamical System with Cyclically Symmetrical Vector Field

So far, several autonomous chaotic dynamical systems with cyclically symmetrical vector field
and associated chaotic behavior were discovered [55,56]. One such example can be mathematically
described by the following set of ordinary differential equations

d
dt

x = a·y2
− b·z

d
dt

y = a·z2
− b·x

d
dt

z = a·x2
− b·y, (3)

where a and b are system parameters. To observe robust strange attractor, these parameters should be
set to a = 1.9 and b = 0.42. Straightforward linear analysis yields a fixed point located at x0 = (0, 0,
0)T and x0 = (b/a, b/a, b/a)T. Phase portrait of a typical chaotic attractor together with the measure of
its sensitivity to tiny changes in the initial conditions is provided as in Figure 9. Sensitivity graphs
are plotted for 104 randomly generated initial conditions that are uniformly distributed in all three
state space dimensions to create a filled cube with edge size 0.01 (red dots). Final states are marked
by a green color. Note that the dynamical system is clearly extremely sensitive to tiny changes in
initial conditions. The desired strange attractor occupies a state space cube with edges −0.2 up to 0.3 in
all directions, i.e., for all state variables. Thus, the essential condition for a dynamical system to be
implementable by using DV-TC-M active elements is satisfied. However, the larger state attractor can
be also modeled by circuitry with DV-TC-M, as long as suitable linear transformation of the coordinates
is applied to the original system that makes the state attractor smaller.

Figure 10 provides rough insight into the energy distribution over the typical strange attractor
generated by a dynamical system (3) and for standard values of the internal parameters. From the left
to the right plot, one can see how potential and kinetic energy changes from very small (left picture),
small, medium up to high (right plot).
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dynamical system (3) (black color) and corresponding plane projections: x vs. y (green), x vs. z (blue)
and y vs. z (orange) for initial conditions x0 = (0.1, 0, 0)T. Sensitivity of the dynamical system (3) to
initial conditions for different final time of integration; see text for clarification.

Note that kinetic energy is negligible near the state space origin and large at the perimeter of a
chaotic attractor. During simulations, the final time was set to 5000 s with time step 10 ms and initial
conditions were chosen as x0 = (0.1, 0, 0)T. The static system energy has a direct connection to the power
dissipation of chaotic oscillator while the dynamic energy is bounded to a slew rate and measured
frequency responses (pole frequencies, GBP in particular) of used active elements. Figure 11 shows
a plot of LLE associated with a mathematical model (3) as two-dimensional function of the internal
system parameters. Here, various limit cycles correspond to magenta while light blue stands for weak
chaos, green represents strong chaos, and red means unbounded solution. During calculations, the
final time was set to 1000 s with variable time step and the initial conditions x0 = (0.1, 0, 0)T. In the
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optimal circumstances, a dynamical system can possess the following promising set of three Lyapunov
exponents 0.106, 0, −0.967 and corresponding fractal Kaplan–Yorke dimension of about 2.11. Note that,
in a given two-dimensional space of system parameters, the region of chaos is wide enough for practical
construction of a robust generator of chaotic waveform and surrounded by a limit cycle solution.
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3.2. Numerical Analysis of Fourth-Order and Fifth-Order Jerky Dynamics

Recent studies [57,58] reveal the possibility to observe robust strange attractors within the
dynamics of fourth-, fifth-, and even higher-order differential equations with many types and shapes
of scalar nonlinearity, including quadratic polynomials. Such dynamical flows are usually coined in
literature as hyperjerk systems. These n-th order systems can be rewritten in the form of n first-order
ordinary differential equations and implemented in developed numerical algorithms 1–4 without
changes. As will be proved in this subsection, these mathematical models can exhibit a large variety of
dense strange attractors.

General circuitry realization of a fourth-order polynomial hyperjerk function can be described by
the following ordinary differential equation:

d4

dt4
x + a

d3

dt3 x + b
d2

dt2 x + c
d
dt

x = d·
(
x2
− 1

)
, (4)
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where x is some network quantity (depending on circuit realization) and a, b, c, d are internal system
parameters, i.e., real numbers. There are just two equilibrium points of the flow located in position
xe = (±1, 0, 0, 0)T. To observe structurally stable strange attractors, the following values need to be
kept: a = 1, b = 5.2, c = 2.7, and d = 4.5. For these numerical values, a typical single-scroll strange
attractor provided in Figure 12 can be observed. Here, a numerical FFT calculation for the real circuit
is also provided.

The fifth-order jerky dynamical system that produces robust chaotic motion can be expressed as a
single differential equation:

d5

dt5 x + a
d4

dt4
x + b

d3

dt3 x + c
d2

dt2 x + d
d
dt

x = e·
(
x2
− 1

)
. (5)

To generate the strange attractor, individual system parameters should be set to a = 1, b = 7.2,
c = 3.9, d = 9.2, and e = 3.9. Similarly as for system (4), there are just two equilibrium points of the
flow located in position xe = (±1, 0, 0, 0, 0)T. Graphical visualization of the typical chaoticω-limit set
associated with dynamical system (5) is given in Figure 13.

Figure 14 shows basin of attraction associated with dynamical system (4) calculated for kinetic
energy, i.e., if potential energy equals zero. For analyzed fourth-order dynamical system (4), rainbow
color-scaled surface contour plots of Kaplan–Yorke metric dimension as two-dimensional function of
two internal system parameters are visualized by means of Figure 15. It is shown that the region of
strong chaos is surrounded either by the unbounded solution (white) or a weak chaos dynamical motion
(green). Note that if the circuit parameters are calculated precisely, the corresponding chaotic oscillators
can produce stable chaotic waveforms, both in terms of geometric structure and time. Bifurcation
diagrams provided in the same figure demonstrate that a standard period-doubling route-to-chaos
scenario can be traced via continuous change of both external voltages.
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3.3. Numerical Analysis of Hyperchaotic Dynamics

Hyperchaotic dynamics is specific in the sense that we have two positive Lyapunov exponents.
One of the most famous mathematical models capable of producing this kind of dynamical behavior is
the so-called fourth-order Lorenz system [59,60]. This system can be described by the following set of
first-order ordinary differential equations:

d
dt x = a

xr
(yr·y− xr·x) d

dt y = 1
yr
[x(b− zr·z)xr − yr·y + wr·w]

d
dt z = 1

zr
(xr·yr·x·y− c·zr·z) d

dt w = − d
wr

xr·x,
(6)

where T = diag(xr, yr, zr, wr) = (50, 50, 100, 150) represents a fundamental transformation matrix
used for strange attractor compression and a = 10, b = 28, c = 2.7, and d = 5 are system parameters
that lead to hyperchaotic motion. By considering mathematical model (6) and the numerical values
mentioned above, we can obtain the strange attractor provided in the different 3D projections by means
of Figure 16. During calculations, the final time was set to 1000 s with a fixed time step of 10 ms and
initial conditions x0 = (0, 0, 0, 0.1)T. By utilizing the proposed linear change of the state coordinates,
the desired state attractor shrinks from unfeasible cube (±20, ±30, +50, ±50) to much smaller cube (±0.4,
±0.5, +0.5, ±0.5). This process is graphically visualized by means of Figure 17. It turns out that even the
greater compression of the strange attractor is possible. However, large values of system constants can
cause practical problems, both from the viewpoint of trajectory convergence and basin of attraction.
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Figure 16. 3D perspective plots of typical strange attractor generated by 4D hyperchaotic system (6).
Upper left plot: y vs. z plane (orange), x vs. z plane (blue) and x vs. y plane (green). Upper middle plot:
z vs. w plane (orange), y vs. w plane (blue) and y vs. z plane (green). Upper right plot: x vs. w plane
(purple). Lower row represents 3D cross sections defined by planes x = {−0.25, −0.2, −0.1, 0, 0.1, 0.25}.

It is worth nothing that in the case of the dynamical system with four degrees of freedom, just four
one-dimensional Lyapunov exponents can be calculated. For chaos, only one LLE is positive and
dynamical flow diverges in one state space direction at that moment. However, for hyperchaotic
dynamics, two Lyapunov exponents need to be positive. In the hyperspace of internal parameters a, b,
c, d of system (6), this situation is graphically demonstrated via Figure 18. For this plot, the final time
was set to 1000 s, and the initial conditions were randomly selected about the origin. The value of the
true LLE is marked by following the color scale: a negative value is blue (fixed point solution), zero is
green (limit cycle), while yellow and red are positive LLE (weak and strong chaos). Black contour lines
are, in fact, visualization of the second LLE. Thus, where these contour lines show a maximum and
this area is red, the inspected system exhibits robust hyperchaotic behavior. Each plot in Figure 18 is
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calculated as being high-resolution and having 101 × 101 points. Note that if the numerical values
provided below Equation (6) are considered, the time domain predictability of the generated signals
is not the best and can be further optimized. For basic parameters, the set of Lyapunov exponents
is 0.174, 0.132, 0, −15.6, as also indicated in [61]; leading to a Kaplan–Yorke dimension of about 3.02.
In this thorough study, a much more detailed linear analysis of the dynamical system (6) is provided.
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4. New Circuitry Realizations of Chaotic Dynamical Systems Employing DV-TC-M

This section describes the implementation of three different autonomous deterministic dynamical
systems as lumped analog circuits. Each case represents a certain type of network synthesis that is
straightforward, known, and generally universal but, without the proposed DV-TC-M active device,
always requires many active circuit elements. Moreover, common commercially available active
devices utilize significantly high supply voltage range, have high power consumption, and exhibit
larger parasitic properties. These parasitic features insert error terms into the describing differential
equations, change the predefined numerical values of the system parameters, can attenuate important
frequency components, can lower complexity of the dynamical solution, and deform or destruct the
desired strange attractor. It should be noted that conventional electronic systems such as mixers,
harmonic oscillators, modulators, amplifiers, and others can be constructed using single DV-TC-M.

Combination of the differential summing operation with polynomial trans-admittance transfer
function allows both building new functional blocks and is interesting from a synthesis perspective
(which will be discussed in the upcoming subsection) and optimization of the final oscillator with
respect to minimum circuit elements.

4.1. Analog Functional Blocks Based on DV-TC-M Active Element

Thanks to the proposed DV-TC-M active element, we were able to construct several handy
linear subcircuits, such as negative grounded resistors (two-port admittance matrix y12 = y21 = y22

= 0, y11 = −1/R), unilateral resistor (with current flowing in single direction, two-port admittance
matrix y11 = y12 = y22 = 0, y21 = 1/R), negative bilateral trans-admittance circuit (two-port admittance
matrix y11 = y22 = 0, y12 = −1/R1, y21 = −1/R2), differential voltage current source Iout = (VY1 − VY2)/R,
etc. Each mentioned building block is depicted in Figure 19, and can significantly simplify the final
network that creates the linear part of the vector field. If speaking about nonlinear elements of chaotic
oscillators, the trans-conductance nature of multiplier allows easy implementation of a polynomial
resistor by simple connection of input and output terminal. Besides common nonlinear operations
such as multiplication, division, squaring, and square rooting (corresponding circuitries can be found
in datasheets of almost any commercially available multiplier) developed DV-TC-M allow the user to
construct relatively simple resistors with sine-type and cosine-type ampere–voltage characteristics
in both signum variants. Change of sign can be realized by reconnection of one input terminal of
multiplier; there is no need to change circuit topology. An example of sine-type structure is provided
in Figure 20. It is a two-terminal device having input current

i = f (v) =
(

1
R3

+
1

R4
+

1
R5

)
v−

k2α
R3

v3 +
k3α2

R4
v5, (7)

where the subcircuit in the dotted area is a non-inverting amplifier with gain α = 1 + R2/R1. Numerical
values of all resistors can be calculated by comparing individual terms of (7) with a power series
expansion of sine function, that is, sin(x) = x − x3/6 + x5/120. Of course, because this series is
finite, approximation is valid only in in the close neighborhood of origin. This is a limitation of the
dynamical range.
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Figure 19. Four examples of differential voltage trans-conductance multiplier (DV-TC-M) subcircuits
that are interesting in terms of synthesis of the linear part of the vector field: (a) negative grounded
resistor, (b) unilateral resistor, (c) negative trans-admittance two-port, and (d) voltage controlled
current source.
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Figure 20. DV-TC-M based sine-type resistor that considers power series approximation with three
terms, cosine- type resistor can be implemented by a cascade of three squarers, negative resistor, and
constant current source (each can be implemented by single proposed summation/subtraction block).

4.2. Chaotic Oscillator with Cyclically Symmetrical Vector Field

The direct circuitry realization of a dynamical system (3) is provided in Figure 21. Note that only
three DV-TC-M active elements are required. Straightforward analysis of this network yields following
set of ordinary differential equations

C
d
dt

v1 = k1·v2
3 −

v2

R
C

d
dt

v2 = k2·v2
1 −

v3

R
C

d
dt

v3 = k3·v2
2 −

v1

R
, (8)

where the state vector v = (v1, v2, v3)T is composed of voltages across grounded capacitors taken from
left to right, with kj being the trans-conductance of j-th multiplier. The simultaneous change of all
resistors (for example, via a tandem potentiometer) varies with system parameter b while parameter
a stays fixed on a constant value given by the impedance norm of this circuit. For experimental
verification, capacitors have a uniform value of 100 nF. Experiments show that the time constant of this
chaotic oscillator can be lowered; the smallest value of applicable capacitors is 33 pF together with
nominal resistance 1 kΩ. The measured power dissipation of this chaotic oscillator lies between 55 and
65 mW; the concrete value depends on the operational regime (chaos vs. limit cycles).
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4.3. Circuitry Implementation of Fourth-Order Hyperjerk Function

It is well-known that single third-order differential equations can be easily realized as electronic
circuits. The most straightforward approach is a cascade connection of the voltage-mode integrators,
two-port linear, and at least one nonlinear feedback [62]. To simplify the final realization, in some
cases, the integrator with an active element can be substituted by passive loss realization; i.e., bilinear
filter with a single real pole. This kind of realization is not restricted to third-order dynamical systems
and can be easily extended to an arbitrary degree of freedom. Circuit realizations of the chaotic
systems based on integrator-block schematics can be easily emulated using commercially available
field programmable analog array (FPAA) development kits [63,64]. However, remember that the
complexity of the implemented chaotic system is limited because the FPAA graphical user interface
provides a restricted area dedicated to circuit design. To realize more complex electronic systems,
several FPAA kits need to be combined, see [65] for an interesting example where the correct function
of the chaotic oscillator is demonstrated including synchronization.

Unlike other circuitry realization, our solution utilizes only one type of active element, the designed
DV-TC-M. Thus, the whole chaotic system except for external working capacitors and resistors can be
implemented on chip using the CMOS technology discussed in Section 2 of this paper.

It seems that the simplest practical implementation of mathematical model (2) is based on the
looped interconnection of a linear fully passive frequency filter working in the trans-resistance mode
(two-port, current input and voltage output) and nonlinear two-port that works in complementary
trans-admittance regime. One such example is provided by means of Figure 22; note that the
fundamental fourth-order RLC ladder low-pass frequency filter implements the linear part of the
vector field. In this case, Equation (2) can be rewritten providing more details as

d4

dt4
vout +

C2 + C3

C2C3R
d3

dt3 vout +
C1 + C2

C1C2L
d2

dt2 vout +
C1 + C2 + C3

C1C2C3LR
d
dt

vout =
1

C1C2C3LR
f (vout), (9)

where vout is output voltage of passive filter. Since both the energy source and nonlinearity are created
by a single active element (DV-TC-M), the corresponding chaotic oscillator cannot be simplified further.
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The proposed circuit exhibits a chaotic motion for C1 = 1 nF, C2 = 470 pF, C3 = 820 pF, L = 1.8 mH, and
R = 1.4 kΩ. The state description of this oscillator is

C1
d
dt v1 = k(v3 −Va)(v3 −Vb) − iL C2

d
dt v2 = iL − 1

R (v2 − v3)

C3
d
dt v3 = 1

R (v2 − v3) L d
dt iL = v1 − v2,

(10)

where state vector is x = (v1, v2, v3, iL)T and k is internally trimmed constant of DV-TC-M element,
namely k = 1.3 mA/V2. Structurally stable strange attractor can be observed for following list of the
circuit parameters: C1 = 3.9 nF, C2 = 1.7 nF, C3 = 4.2 nF, L1 = 1.8 mH, R1 = 200 Ω, R2 = 2500 Ω (both
resistances are potentiometers), and R3 = 750 Ω. External voltages Va and Vb can be considered as
natural bifurcation parameters. Similar concept will be used to design fifth-order chaotic oscillator. In
this case, Equation (3) can be rewritten providing more details as

d5

dt5 vout +
R
L2

d4

dt4 vout +
L1C1(C1+C3)+L2C3(C1+C2)

C1C2C3L1L2
d3

dt3 vout +
R2(C1+C2)
C1C2L1L2

d2

dt2 vout+

+ C1+C2+C3
C1C2C3L1L2

d
dt vout =

1
C1C2C3L1L2

f (vout),
(11)

where vout is output voltage of fifth-order low-pass passive filter. This is the right place to remark that
it is possible to substitute trans-impedance RLC passive ladder filter with active low-pass filter with
the same, i.e., a trans-impedance type, filter. This holds under specific circumstances, namely in case
of the same positions of the transfer function poles in the complex plane. State description of this
oscillator can be expressed as

C1
d
dt v1 = k(v3 −Va)(v3 −Vb) − iL1 C2

d
dt v2 = iL1 −

1
R2
(v2 − v3)

C3
d
dt v3 = 1

R2
(v2 − v3) L1

d
dt iL1 = v1 − v2 L2

d
dt iL2 = v1 − v2 −R2iL2,

(12)

where a state vector becomes x = (v1, v2, v3, iL1, iL2)T and k is a trans-conductance constant of DV-TC-M.
In order to generate a structurally stable dense strange attractor, a list of the circuit parameters should
be the following: C4 = 330 pF, C5 = 390 pF, C6 = 470 pF, L2 = L3 = 1.8 mH, R4 = 200 Ω, R5 = 2500 Ω
(both resistances are potentiometers). This set is not unique. During experimentation, few other value
configurations turn out to be reasonable for the evolution of robust chaos. The time constant of this
circuit can be lowered if each capacitor and inductor is divided by the same real number. The analogical
change of time constant can be applied in the case of the fourth-order jerky system.

Entropy 2019, 21, 871 22 of 38 

 

case of the same positions of the transfer function poles in the complex plane. State description of 
this oscillator can be expressed as 𝐶ଵ 𝑑𝑑𝑡 𝑣ଵ = 𝑘ሺ𝑣ଷ − 𝑉௔ሻሺ𝑣ଷ − 𝑉௕ሻ − 𝑖௅ଵ          𝐶ଶ 𝑑𝑑𝑡 𝑣ଶ = 𝑖௅ଵ − 1𝑅ଶ ሺ𝑣ଶ − 𝑣ଷሻ 

𝐶ଷ 𝑑𝑑𝑡 𝑣ଷ = 1𝑅ଶ ሺ𝑣ଶ − 𝑣ଷሻ          𝐿ଵ 𝑑𝑑𝑡 𝑖௅ଵ = 𝑣ଵ − 𝑣ଶ          𝐿ଶ 𝑑𝑑𝑡 𝑖௅ଶ = 𝑣ଵ − 𝑣ଶ − 𝑅ଶ𝑖௅ଶ, (12)

where a state vector becomes x = (v1, v2, v3, iL1, iL2)T and k is a trans-conductance constant of DV-TC-M. 
In order to generate a structurally stable dense strange attractor, a list of the circuit parameters 
should be the following: C4 = 330 pF, C5 = 390 pF, C6 = 470 pF, L2 = L3 = 1.8 mH, R4 = 200 Ω, R5 = 2500 Ω 
(both resistances are potentiometers). This set is not unique. During experimentation, few other 
value configurations turn out to be reasonable for the evolution of robust chaos. The time constant of 
this circuit can be lowered if each capacitor and inductor is divided by the same real number. The 
analogical change of time constant can be applied in the case of the fourth-order jerky system. 

 
Figure 22. Circuitry implementation of fourth-order (left schematic) and fifth-order (right picture) 
jerky dynamical system, both with only a single DV-TC-M active element. 

4.4. Hyperchaotic System 

Dynamical system (6) represents, from the viewpoint of circuit realization, a complex vector 
field. Such systems can be implemented by using an analog computer concept [31,35], i.e., a 
universal method that can be easily applied to almost any mathematical models but employs many 
active elements. To simplify the final structure, let us assume that individual differential equations 
describe a sum of currents flowing through a grounded linear capacitor. Considering this, both 
linear and nonlinear terms of differential equations should work in a trans-admittance regime, i.e., 
as the current source controlled by input voltage. Thus, the linear part of a vector field can be 
directly represented by an admittance matrix in terms of the matrix method of the unknown nodal 
voltages. The design approach based on this synthesis originally dedicated for the circuit analysis 
can adopt DV-TC-M directly. Assume the following set of ordinary differential equations derived 
from expression (6) 𝐶ଵ 𝑑𝑑𝑡 𝑣௫ = 𝑣௬ − 𝑣௫𝑅ଵ           𝐶ଶ 𝑑𝑑𝑡 𝑣௬ = 𝑣௫ − 𝑣௬𝑅ଵ + 𝑣௪𝑅ଷ + 𝑘ଶ𝑘ଷ𝑅ହ𝑉ଶሺ𝑉ଵ − 𝑣௭ሻ𝑣௫ 

𝐶ଷ 𝑑𝑑𝑡 𝑣௭ = 𝑘ଵ𝑣௫𝑣௬ − 𝑣௭𝑅ସ           𝐶ସ 𝑑𝑑𝑡 𝑣௪ = − 𝑣௫𝑅ଶ, (13)

where kj is trans-conductance of j-th DV-TC-M multiplier and V1, V2 are external DC voltages. This 
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three DV-TC-M elements are required for design of this chaotic oscillator. By considering unified 
values of the trans-conductances k1,2,3,4,5 = 1.3 mA/V2, the desired chaotic attractor can be observed if 
the values of the remaining circuit components are C1 = 10 nF, C2 = 5.2 nF, C3 = C4 = 100 nF, R1 = 1 kΩ, 
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jerky dynamical system, both with only a single DV-TC-M active element.

4.4. Hyperchaotic System

Dynamical system (6) represents, from the viewpoint of circuit realization, a complex vector
field. Such systems can be implemented by using an analog computer concept [31,35], i.e., a universal
method that can be easily applied to almost any mathematical models but employs many active
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elements. To simplify the final structure, let us assume that individual differential equations describe
a sum of currents flowing through a grounded linear capacitor. Considering this, both linear and
nonlinear terms of differential equations should work in a trans-admittance regime, i.e., as the current
source controlled by input voltage. Thus, the linear part of a vector field can be directly represented
by an admittance matrix in terms of the matrix method of the unknown nodal voltages. The design
approach based on this synthesis originally dedicated for the circuit analysis can adopt DV-TC-M
directly. Assume the following set of ordinary differential equations derived from expression (6)

C1
d
dt vx =

vy−vx
R1

C2
d
dt vy =

vx−vy
R1

+ vw
R3

+ k2k3R5V2(V1 − vz)vx

C3
d
dt vz = k1vxvy −

vz
R4

C4
d
dt vw = − vx

R2
,

(13)

where kj is trans-conductance of j-th DV-TC-M multiplier and V1, V2 are external DC voltages.
This mathematical expression directly corresponds to a circuitry provided in Figure 23. Note that
only three DV-TC-M elements are required for design of this chaotic oscillator. By considering unified
values of the trans-conductances k1,2,3,4,5 = 1.3 mA/V2, the desired chaotic attractor can be observed if
the values of the remaining circuit components are C1 = 10 nF, C2 = 5.2 nF, C3 = C4 = 100 nF, R1 = 1 kΩ,
R2 = 600 Ω, R3 = 333 Ω, R4 = 4.9 kΩ, R5 = 50 kΩ, and external voltages V1 = 290 mV, V2 = 2 V. The time
constant of this circuit is τ = 100 µs, and can be changed by dividing the value of each capacitor by the
same number. However, the smallest allowed value of time constant for which the system generated an
undistorted shape of a strange attractor is 200 ns. This leads to the set of working capacitors C1 = 3.2 pF,
C2 = 1.7 pF, C3 = C4 = 32 pF, while resistors remain unchanged, and the nominal value equals 1 kΩ.
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The dynamical system (6) can be equivalently constructed using the network provided in Figure 24.
In this case, describing mathematical model:

C1
d
dt vx =

vy−vx
R1

C2
d
dt vy =

vx−vy
R1

+ K5
R9
(V3 − vz)

R8
R7

vx +
vw
R5

C3
d
dt vz = −

vz
R3

+ K1
R2

vxvy C4
d
dt vw = −K2

R4
vx,

(14)

where Kj = 0.1 is a non-changeable internal constant of j-th fourth-quadrant analog multiplier AD633.
Corresponding simulated strange attractor visualized as plane projections are provided by means of
Figure 25; numerical values of passive circuit components and the location of symmetrical supply
voltage ±15 V are included therein. The time constant of this circuit can be changed by boosting or
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lowering each capacitor by the same value. However, the smallest value that leads to an undistorted
shape of the strange attractor is about 100 pF.
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5. Experimental Verification. 

Individual chaotic oscillators based on DV-TC-M active element have been implemented using 
the universal breadboard visualized in Figure 26. True experimental results associated with a 
dynamical system (7) are provided by means of Figure 27 (different Monge projections of a chaotic 
state orbit) and Figure 28 (chaotic waveforms in different time scales).  

  
Figure 26. Fabricated printed circuit board (PCB) dedicated to experimental verification of 
DV-TC-M-based applications: fourth-order jerky function as a robust generator of the chaotic 
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Figure 25. Circuit simulation of hyperchaotic system based on the integrator block schematic. Upper
plot: vx vs. vy plane (blue), vx vs. vz plane (red). Lower plot: vw vs. vy plane (blue), vw vs. vz plane
(red).

5. Experimental Verification

Individual chaotic oscillators based on DV-TC-M active element have been implemented using the
universal breadboard visualized in Figure 26. True experimental results associated with a dynamical
system (7) are provided by means of Figure 27 (different Monge projections of a chaotic state orbit) and
Figure 28 (chaotic waveforms in different time scales).
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Figure 29 demonstrates a very good agreement between theoretical expectations and practical
measurements. Figure 30 provides the observed route to chaos scenario via period doubling bifurcation
scenario for fourth-order jerky dynamics. Figure 31 shows the family of limit cycles and the consequent
strange attractors associated with the fourth-order jerky system given in Figure 22 on the left schematic.
Figure 32 provides analogical results for a fifth-order jerky oscillator provided in Figure 22 on the right
schematic. Finally, the experimental confirmation of hyperchaos that evolves in the designed fully
analog oscillator is provided in Figure 33. Again, the shape of the measured strange attractor is closely
related to that numerically integrated; see Figure 16.
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6. Discussion

This paper brings detailed description of the integrated bipolar/CMOS design of a new active
element denoted-by-authors as DV-TC-M that is optimized from the viewpoint of circuit modeling
of the smooth vector fields. The major advantages can be summarized as follows: it comprises
cumulated mathematical operations, accurate polynomial transfer function, satisfactory dynamical
range, low long-term vulnerability of intrinsic parameters, high roll-off frequencies associated with
important transfer functions, and voltage-input and current-output (for both multipliers). The feasibility
of the proposed CMOS structure is demonstrated in several different design scenarios of a fully analog
chaotic oscillator. We can conclude perfect one-to-one correspondence between theoretical expectations
(i.e., analysis of mathematical model) and practical experiments (captured oscilloscope screenshots).
All circuitry realizations utilize the minimal number of passive elements and simultaneously save
several active devices if the final circuit is compared to a conventional synthesis method, such as
analog computing [66]. Since the design of lumped chaotic oscillators still represents an up-to-date
topic, this paper leaves place for future research.

Recently, the attention of mathematicians, physicians, and analog design engineers has been
attracted to so-called fractional-order (FO) dynamical system modeling. FO differential equations are
used to reach better accuracy in the description of some specific phenomena, and can be used in the
mathematical model of chaotic dynamics [67–70]. Since non-integer order derivation is bounded to
the accumulation element, DV-TC-M active elements can also be utilized to simplify construction of
the FO chaotic oscillators. Remember that FO two-terminal devices need to be approximated in a
wide frequency range, simply because the spectrum of chaotic signals is continuous and wideband.
For possible passive ladder structures and detailed design method, consult [71]. The contribution
of developed DV-TC-M to the synthesis of the FO circuit element itself (new structures, advantages,
parameters) is still uncovered.

In the end, a brief comparison between the proposed network solutions with chaotic oscillators
fully integrated on chip needs to be mentioned. Firstly, DV-TC-M is a real active element that
can be used in any concept of lumped chaotic oscillator or circuit model of any dynamical system.
On the other hand, the existence of external elements does not contribute positively to the accuracy of
modeling. Of course, chaotic circuits having only DV-TC-M devices composed by CMOS multiplier and
summation/subtraction unit can be considered fully integrated. Such configurations can be, at least in
some of its typical parameters, compared with other fully integrated chaotic systems. For example, [72]
presents an integrated generator of multidirection spiral attractors. The complexity of this circuit
is comparable with the hyperchaotic circuit presented in Figure 23. As expected, a fully integrated
oscillator occupies less chip area; only 0.177 mm2 is reported while three DV-TC-M devices alone will
occupy an area of 0.242 mm2. The authors of [72] announced an operational power consumption of
99.5 mW (simulation), and this is value is close to the measured power dissipation for the proposed
hyperchaotic circuit. The hyperchaotic oscillator implemented on a chip is the subject of [73]. The total
chip area occupied by this circuit is 0.69 mm × 0.84 mm, and this value is still less than the area
potentially required by our network topology. However, power consumption is significantly high; up
to 475 mW was reported. Interestingly, on-chip realization of a multigrid spiral attractor generator
is presented in [74]. The design process is nicely described though the oscillators are based on a
conventional electronically programmable second-generation current conveyors, and the vector field
is piecewise linear. The authors report excellent frequency responses, while the chip area needed is
a little bit larger, and static power consumption (for the simplest configuration of spirals) is about
3.7 mW. This value can be compared to the power dissipation of our generator of a single-scroll
attractor, that is, fourth-order jerky dynamics provided in Figure 22. Here, the measured value is
approximately four times greater. Another successful realization of multiscroll attractor generator can
be found in paper [75]. Of course, a list of the available publications dealing with integrated versions
of chaotic systems (the most often fabricated using CMOS technology) is by no means complete. A few
others can be found in [76,77], where complete simulations can be found, including a post-layout
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and process–voltage–temperature variations. However, these results cannot be directly compared
and discussed in the context of individual circuitry realizations presented in this paper. Roughly
speaking, a fully integrated fashion of implementation of simple as well as complex chaotic oscillators
is preferred if portable systems are required for applications.

7. Conclusions

This paper introduces a novel active device dedicated not only for the realization of chaotic
electronic systems but for continuous time signal processing in general. The credibility of DV-TC-M is
demonstrated by experimental verification of three deterministic dynamical systems with complex
polynomial vector fields implemented transparently as the simple (much simpler than equivalent
structures composed by the conventional active elements) lumped chaotic oscillators. The captured
oscilloscope screenshots demonstrate excellent agreement with numerical results. The calculated
values of LLE imply potential applications for the designed chaotic circuits in radio frequency signal
processing functional blocks, such as masking, modulation, and cryptography.
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J.P.; circuit design, J.P.; computer simulation, J.P.; experimental verification, R.S.; paper preparation, J.P.
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Appendix A

This appendix contains images showing the layouts of individual designed integrated functional
blocks: bipolar trans-conductance mode multiplier is in Figure A1, CMOS trans-conductance mode
multiplier is provided in Figure A2, and voltage mode summation/subtraction cell is given in Figure A3.
Mentioned analog building blocks occupy the following chip areas: 340 µm × 203 µm = 0.07 mm2

(bipolar multiplier), 761 µm × 203 µm = 0.155 mm2 (CMOS multiplier) and 430 µm × 203 µm = 0.087
mm2 for voltage summation/subtraction cell. Bias power consumption is: 10 mW (bipolar multiplier),
8 mW (CMOS multiplier), and 9 mW (voltage summation/subtraction cell).
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