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Abstract: The ability to control quanta shown by quantum pumping has been intensively studied,
aiming to further develop nano fabrication. In accordance with the fast progress of the experimental
techniques, the focus on quantum pumping extends to include the quicker transport. For this purpose,
it is necessary to remove the “adiabatic” or “slow” condition, which has been the central concept of
quantum pumping since its first proposal for a closed system. In this article, we review the studies
which go beyond the conventional adiabatic approximation for open quantum systems to transfer
energy quanta and electron spins with using the full counting statistics. We also discuss the recent
developments of the nonadiabatic treatments of quantum pumping.

Keywords: nonadiabaticity; quantum heat pumping; spin pumping; relaxation

1. Introduction

According to the rapid development of experimental techniques, the downsizing of devices has
been accelerated to extend possibilities to control single-electron current [1], spin-polarized current [2,3]
and even thermal transport [4]. The trend is based on the aim to construct electronics with low energy
consumption, quantum information processing, as well as quantum metrology [1,5].

Quantum pumping phenomena have attracted intensive attention, since they show the
controllability of quantum transfer to extend the possibility of nano fabrications. The first proposal
of quantum pumping was given by Thouless to transport electrons between two environments [6,7].
Its essential point is to adiabatically or slowly modulate the potential, which is described with the
superposition of two standing waves in an out-of phase way [6–8]. Since the work of Thouless,
the “adiabatic” change or “slow” modulation of parameters has played a central role in theoretical
treatments of quantum pumping phenomena. However, the fast development of experimental
techniques after the first experimental study on electron pumping with a quantum dot [9] requires
us to investigate conditions on transferring quanta quicker and more precisely. In the present review,
we classify the meaning of “quick” or “slow” in quantum pumping and show a standardized theoretical
treatment—called full counting statistics (FCS)—to attain the purpose.

The physical situations referred to by the same term “adiabaticity” are roughly divided into three
categories: (1) slow change in potential to allow the application of the adiabatic approximations to
wave functions associated with transported particles [6,7]; (2) slow and small change of parameter(s)
such as the chemical potential and voltage to allow a linear expansion of the scattering matrix [10–17]
or Green functions [18–26] associated with transported electron charge or spin; and (3) slow change of
parameters compared with the relaxation time of the relevant system with using FCS [27–32]. Different
from the former two treatments, the third succeeds in including explicitly the finite relaxation time in
adiabaticity. Because isolating any quantum system from its surroundings is impossible, considering
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relaxation phenomena is indispensable in implementing quantum pumping systems. With further
developments of experimental techniques in mind, removing the adiabatic condition in this third
instance is necessary. Before going further, let us provide a quick review of the conventional studies on
pumping phenomena from the view point of the above summarized classifications of the adiabaticity.

Sinitsyn and Nemenman treated the classical two-state stochastic system [27] using FCS
to represent the pumped quantity with a geometrical phase, first expounded in Reference [33].
The relationship between finite relaxation time and adiabaticity in the context of open quantum systems
was first discussed by Ren, Hänggi, and Li [28] by extending the FCS approach in Reference [27].
Considering a two-level system coupled to two environments, they found that the pumping of
energy quanta occurs under out-of-phase conditions and sufficiently slow (adiabatic) temperature
modulations of the environments even if the bias is averaged out during a period. The power of the FCS
approach can be found in the further application to electron charge pumping through single or double
quantum dot(s) coupled to two leads [29–31]. They found that the sufficiently slow and out-of-phase
modulations of the chemical potential can induce electron charge pumping, which is represented by a
geometrical formula. In these instances, the condition for a sufficiently slow (adiabatic) environmental
modulation means that the relevant two-level system approaches steady state sufficiently quickly.

In many varieties of quantum pumping phenomena, the generation of spin polarized electron
current (spin current) by periodic parameter modulation has attracted a great deal of attention because
of its promising applications in spintronics. Referred to as spin pumping, much effort has been made
to develop its protocols. Conventionally, the protocols fall roughly into three classes: those using
(i) a precession of magnetization in a magnetic material attached to a normal metal [12,13,19–26,34–36];
(ii) a periodic modulation of parameters such as gate voltages and/or tunneling amplitudes in a
system consisting of quantum dots subjected to a magnetic field and normal metal leads [14,32,37–40];
and (iii) a periodic modulation of strength of magnetization in addition to parameters in a system
consisting of quantum dots attached to a magnetic lead and/or normal metal leads [34,35,41,42].
Among these protocols, those using precession of magnetization—protocol (i)—have attracted
intensive studies because it can generate pure spin current in a simple ferromagnet/normal metal
heterojunction [3]. So far, the protocol has been mostly studied in situations where the precession
of the magnetization is sufficiently slow, which is called adiabatic pumping. It was first proposed
by Tserkovnyak et al. [12,13] based on the scattering theory of adiabatic quantum pumping given by
Brouwer [11]. Its alternative formalisms based on Green’s function [19,20,22–26,36] have also been
proposed by several authors. In these studies, the adiabatic contribution to the spin current generation
has been obtained as a linear response to the precession, which corresponds to adiabaticity No. (2),
with an implicit assumption of an infinite relaxation time. There are a few studies addressing adiabatic
spin pumping with a finite relaxation time [34,35], where a slow modulation means smallness of the
precession frequency comparing with the tunneling rate.

In the present article, we intend to review our recent studies on the role of nonadiabaticity
with a finite relaxation time in quantum pumping of energy quanta and electron spins. For the
purpose, we rely on adiabaticity condition No. (3), where the adiabaticity means a slow modulation
of parameters compared to the relaxation time of the relevant system—defining the relaxation time
of the relevant system as τr, we find that the condition for a slow modulation requires τr to be much
shorter than the period of the temperature modulation, which is written equivalently in terms of
the modulation frequency Ω, τ−1

r � Ω. Thus, we consider the nonadiabatic regime up to τ−1
r & Ω

in the following. As a formulation of nonadiabatic pumping, we present our extension of the FCS
approach to quantum pumping toward the nonadiabatic regime. By applying the formulation to the
pumping phenomena of energy quanta and electron spin, we find the following features: For the
former, we demonstrate that nonadiabaticity yields a contribution to the pumped quantity in addition
to the terms such as dynamical and geometrical phase terms which were obtained under adiabatic
conditions. For the latter, surprisingly, we show that there are no contributions under the adiabatic
condition and nonadiabaticity is an essential feature.
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In the rest of the paper, we present in Section 2 our formulation describing the pumped quantity
based on FCS. We discuss quantum heat pumping in Section 3 and spin pumping in Section 4,
followed by a discussion and conclusion in Section 5.

2. General Formalism

We formulate a model of quantum pumping under periodic modulation of a parameter applying
the FCS based on two-point projective measurements [43,44]. Let us consider a system consisting of a
relevant system (S) and an environment (E) described by the Hamiltonian

H = H0 + HSE, (1)

where H0 ≡ HS + HE and HSE is the system–environment interaction. The FCS provides the statistical
average of the net amount of a physical quantity, such as energy and particle number, exchanged
between the system and the environment during a certain time interval. It is based on a joint probability
of outcomes of two successive projective measurements of an observable of the environment Q
corresponding to the exchanged quantity. The measurement scheme is—at t = ti, we perform a
projective measurement of Q to obtain a measurement outcome qti ; for ti ≤ t ≤ ti+1, the system
undergoes a unitary time evolution through an interaction between the system and the environment;
and at t = ti+1, we perform a second projective measurement of Q to obtain another outcome qti+1 .
The joint probability for the measurement scheme is given by

P[qti+1 , qti ] ≡ Tr[Pqti+1
U(ti+1, ti)Pqti

W(ti)Pqti
U†(ti+1, ti)Pqti+1

], (2)

where Tr denotes the trace taken over the total system, Pqt ≡ |qt〉〈qt| the projective measurement of Q
at t, U(t, ti) the unitary time evolution operator for the total system, and W(ti) the initial condition
of the total system (see Note [45]). The net amount of exchanged quantity during the time interval
δt ≡ ti+1− ti is then given by ∆qi ≡ qti+1 − qti , where its sign is chosen to be positive when the physical
quantity is transferred from the system to the environment. The statistics of ∆qi is contained in its
probability distribution function

P(∆qi) ≡ ∑
qti+1 ,qti

δ(∆qi − (qti+1 − qti ))P[qti+1 , qti ], (3)

The moments of ∆qi are provided by the moment generating function,

Z(λ) ≡
∫ ∞

−∞
P(∆qi)eiλ∆qi d∆qi. (4)

where λ is the counting field associated with Q, for example, the mean value is computed from

〈∆qi〉 =
∂Z(λ)
∂(iλ)

∣∣∣∣
λ=0

. (5)

Our next task is to describe the time evolution of Z(λ). Using the Definition (3) and introducing
the modified evolution operator Uλ(t, ti) ≡ eiλQU(t, ti)e−iλQ, the moment generating function Z(λ) is
expressed as

Z(λ) = Tr[W(λ)(ti+1)], (6)

with
W(λ)(t) ≡ Uλ/2(t, ti)W̄(ti)U†

−λ/2(t, ti), (7)

where W̄(ti) ≡ ∑qti
Pqti

W(ti)Pqti
is the diagonal part of W(ti). For λ = 0, W(λ=0)(t) reduces to the

usual reduced density matrix of the total system. By taking the time derivative of W(λ)(t), we obtain a
modified Liouville–von Neumann equation



Entropy 2019, 21, 842 4 of 21

i
∂

∂t
W(λ)(t) = L(λ)W(λ)(t), (8)

with a modified Liouvillian L(λ)W(λ)(t) ≡ h̄−1[H, W(λ)(t)]λ, where [A, B]λ ≡ A(λ)B − BA(−λ),
and A(λ) ≡ eiλQ/2 Ae−iλQ/2. In Appendix B, we explain the connection between the formalism
of the FCS based on two-point measurements and the formalism by Sinitsyn and Nemenman in
Reference [27].

By introducing a projection operator P : W(λ)(t) 7→ TrE[W(λ)(t)]⊗ ρE, where TrE is the partial
trace taken over the environment and ρE is a fixed state of the environment, the equation of motion for
the reduced operator of the relevant system ρ(λ)(t) ≡ TrE[W(λ)(t)] can be cast into the form of a time
convolutionless (TCL)-type quantum master equation [46–53].

Assuming that the initial state is factorized between system and environment as W(ti) = ρ(ti)⊗ ρE

and the fixed state of the environment ρE is the Gibbs state with an inverse temperature β, the TCL
master equation including the counting field is expressed as

∂

∂t
ρ(λ)(t) = ξ(λ)(t)ρ(λ)(t). (9)

The super-operator ξ(λ)(t) is expanded as a sum of “ordered cumulants” of the interaction
Hamiltonian HSE up to infinite order. Taking leading terms up to second-order, we have

ξ(λ)(t)ρ(λ)(t) = − i
h̄
[HS, ρ(λ)(t)]− 1

h̄2

∫ t

0
dτTrE[HSE, [HSE(−τ), ρ(λ)(t)⊗ ρ

eq
E ]λ]λ. (10)

Note that the time dependence of the memory kernel reflects the finiteness of the correlation time
of the dot–lead interaction, which allows us to describe the non-Markovian dynamics.

To work with the super-operator, it is convenient to introduce its supermatrix representation,
where we represent the density matrix ρ(λ) in vector form and the super-operator ξ(λ) in matrix form.
In this representation, the formal solution of the master equation Equation (9) is expressed as

|ρ(λ)(t)〉〉 = T+ exp
[ ∫ t

ti

Ξ(λ)(s)ds
]
|ρ(λ)(ti)〉〉, (11)

where |ρ(λ)(t)〉〉 represents the vector form of ρ(λ)(t), T+ exp the time-ordered exponential, and Ξ(λ)(t)
the supermatrix form of ξ(λ)(s). With the representation, the moment generating function Equation (6)
is rewritten as Z(λ) = TrS[ρ

(λ)(ti+1)] = 〈〈1|ρ(λ)(ti+1)〉〉, where TrS is the partial trace taken over the
relevant system and 〈〈1| the vector representation of the partial trace TrS. Using the formal solution
Equation (11), we recast the expression of the mean value into the form

〈∆qi〉 =
∫ ti+1

ti

J(s)ds (12)

with the inertial flow of the quantity,

J(t) ≡ 〈〈1|
[

∂Ξ(λ)(t)
∂(iλ)

]
λ=0
|ρ(λ=0)(t)〉〉. (13)

To formulate quantum pumping based on the above framework, we need to accumulate transfers
of the physical quantity under a cyclic modulation of system and/or environmental parameters during
a period T . For this purpose, we consider a step-like change of the parameters; specifically, dividing
the period T into N intervals, ti ≤ t ≤ ti+1 (i = 1, 2, · · · , N) with t1 = 0 and tN+1 = T , fixing a value
of the parameters during each interval, and changing the value at each ti discretely. With the total
density matrix factorized at each ti, the mean value as well as the inertial flow of the quantity for each
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interval are given by Equations (12) and (13), respectively. The time integration of J(t) over one period
T provides the accumulated value of the quantity over one cycle

〈∆q〉 ≡
∫ T

0
J(t)dt =

N

∑
i=1
〈∆qi〉, (14)

where 〈∆qi〉 is the mean value of the net transferred quantity in the ith interval.

3. Pumping of Energy Quanta

3.1. Model

Let us consider the energy transfer via a two-level system between two environmental systems
(L and R) consisting of an infinite number of bosons [28,54–56]. With the definition of the lower (higher)
level of the two-level system as |0〉 (|1〉), respectively, the Hamiltonian of the model is written as

HS = ∑
m=0,1

εm|m〉〈m|, HE = ∑
k,ν

h̄ωk,νb†
k,νbk,ν,

HSE = ∑
ν

Xν(|0〉〈1|+ |1〉〈0|), (ν = L, R), (15)

where Xν = ∑k h̄gk,ν(b†
k,ν + bk,ν), with b†

k,ν and bk,ν the creation and annihilation boson operators of the
kth mode of the νth environment. The model scheme is shown in Figure 1A.

We consider the energy transfer from out-of-phase temperature modulations of the two
environments, corresponding to the bias averaged out during a period T [28]. To discuss the
nonadiabaticity for this model, we study energy (boson) transfers under cyclic and piecewise
modulations of the environmental temperatures TL and TR dividing T into N intervals, ti ≤ t ≤ ti+1
(i = 1, · · · , N) with t1 = 0 and tN+1 = T . We need to discretize the temperature modulation because
conventional treatments describing relaxation phenomena require the environmental temperature to
remain constant. By changing the number of intervals of the temperature modulation, we compared
each time interval with the relaxation time of the relevant two-level system and thus we are able to
discuss nonadiabaticity explicitly, for example, from the scale between τ−1

r and Ω. In taking the limit
N → ∞, we reveal energy transfer features under a continuous modulation. In Figure 1B, we plot the
time dependence of the temperature modulations used in this study calculated for a typical number of
discrete time intervals N = 20.

Environment
L

Environment
R|0i

<latexit sha1_base64="bv2yp4WORCOLMEoMVlkTCmqnOWM="></latexit>

|1i
<latexit sha1_base64="V8oTjpDFBmKEqlkWmlUOR5ye3sE="></latexit>

(A) (B)
TL(t)

<latexit sha1_base64="r9+d9aWy1sc2xA9XFvH06ChbsFs="></latexit>

TR(t)
<latexit sha1_base64="Xi/Zr8NwjJ1vgSpbiLnkKOpG9e0="></latexit>

t
<latexit sha1_base64="qoS9cCB0e52YdJafXHCA/XP5OXg="></latexit>

anharmonic junction

Figure 1. (A) Model scheme: a two-level system as an anharmonic junction interacts with two
environments (L and R). (B) Temperature modulations, TL(t) = 200 + 100 cos(ωt + π/4), and TR(t) =
200 + 100 sin(ωt + π/4), discretized with N = 20.

3.2. FCS Formalism Applied to Pumping of Energy Quanta

We apply the general formalism of the FCS in the former section to this model focusing on weak
system–environment coupling and considering long time (Born-Markovian) limits by taking t→ ∞ in
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the upper bound of the integral in Equation (10). In this limit, the super-operator ξ(λ)(t) becomes time
independent during each interval. We find that the mean value of the transferred quantity between
the relevant two-level system and the νth environment in the ith time interval, 〈∆qν

i 〉 is written as

〈∆qν
i 〉 = h̄ω0{Aν

i

∫ ti+1

ti

dt′ρ00(t′)− Bν
i δt}, (16)

with ω0 = (ε1 − ε0)/h̄, ρ00(t) = 〈0|ρ(λ=0)(t)|0〉, and δt = ti+1 − ti. Aν
i and Bν

i in Equation (16)
are coefficients defined as Aν

i = −(kν
d,i + kν

u,i) and Bν
i = −kν

u,i with rate constants kν
u,i and kν

d,i,
which govern the time evolution of ρ00(t) during ti−1 ≤ t < ti. Their explicit expressions are
kν

d,i = Γνnν,i and kν
u,i = Γν(1 + nν,i), where nν,i = 1/(exp[h̄βν

i ω0]− 1) is the Bose–Einstein distribution
for the inverse temperature βν

i of the νth environment during the ith interval and Γν denotes the
feature of the system–environment coupling as Γν = 2πhν(ω0) with the coupling spectral density
hν(ω) ≡ ∑k g2

k,νδ(ω−ωk,ν) = λω exp[−ω/ωc], where λ is the coupling strength and ωc is the cutoff
frequency. To obtain 〈∆qν

i 〉, we need ρ00(t), the time evolution for which is

ρ̇00(t) = −Kd,iρ00(t) + Ku,iρ11(t)

with Kd,i = ∑ν kν
d,i and Ku,i = ∑ν kν

u,i. The differential equation for ρ00(t) is solved to give

ρ00(t) = ρs,i + eΛit(ρ00(ti−1)− ρs,i), (17)

where we denote ρs,i = −Ku,i/Λi with Λi = −(Kd,i + Ku,i). Using Equations (12), we find that the
total transferred energy during the period is calculated to be

〈∆qν〉 =
N+1

∑
i=1
〈∆qν

i 〉 = h̄ω0(Gν
1 + Gν

2 + Gν
3 ), (18)

where

Gν
1 =

N+1

∑
i=1

(Aν
i ρs,i − Bν

i )δt, (19)

Gν
2 =

N

∑
i=1

Aν
i+1

Λi+1
(ρs,i+1 − ρs,i), (20)

Gν
3 =

N+1

∑
i=1

φν
0,i +

N

∑
i=2

(ρs,i−1 − ρs,i)ψ
ν
i + (ρs,n−1 − ρs,n)

Aν
n

Λn
eΛnδt, (21)

with

φν
0,i = (ρ00(0)− ρs,1) f ν(1, i), (22)

ψν
i =

Aν
i

Λi
eΛiδt +

N

∑
m=i

f ν(i, m + 1), (23)

f ν(p, q) =
Aν

q

Λq
e∑

q−1
κ=p Λκδt(eΛqδt − 1). (24)

In the next subsection, we show the physical meanings of these obtained terms.

3.3. Adiabatic and Nonadiabatic Contributions

Taking the Riemann sum on Gν
1 and Gν

2 by setting N → ∞ and δt→ 0, we find that they reduce to
the dynamical and geometrical phases, respectively. For instance, we obtain the energy transfer with
the environment R with setting ν = R as [56]
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GR
1 =

∫ T
0

dt′
ΓLΓR(nL(t′)− nR(t′))

K
, (25)

with K ≡ ∑ν=L,R Γν(1 + 2nν(t′)), and

GR
2 =

∫ ∫
dTLdTR

{2ΓLΓR(ΓL + ΓR)

K3
dnR
dTR

dnL
dTL

}
, (26)

which coincide with the ones in Reference [28] and imply that the sum of Gν
1 and Gν

2 corresponds to
the adiabatic contribution.

Considering this point, we find that the nonadiabatic contribution is described with a new extra
term in 〈∆qν〉 added to the adiabatic contribution in the form,

〈∆qν〉 = Gν
ad + Gν

nad, (27)

with Gν
ad = Gν

1 + Gν
2 and Gν

nad = Gν
3 . This is consistent with the expression of Gν

3 , which shows that,
when ρ00(0) = ρs,1 and the absolute value of Λiδt is sufficiently large, we can neglect Gν

3 . The former
condition corresponds to the adiabatic approximation in Reference [28], where the population of the
relevant system instantaneously approaches the steady state for the temperature setting at an initial
time. The term Gν

3 shows that the nonadiabatic contribution to the transferred quantity explicitly
depends on the initial condition of the relevant system, ρ00(0). Moreover, expanding Equation (13)
about δt up to the first order, we find that the nonadiabatic effect described in Gν

3 shows a correction to
both Gν

1 and Gν
2 . In the following, we present a numerical evaluation of the formulas obtained.

3.4. Numerical Evaluation of the Nonadiabatic Spin Pumping

3.4.1. Population Dynamics

Figure 2 presents the transient time evolution of ρ00(t) during the first period of modulation
by changing the time interval δt while keeping the number of divisions N constant at N = 40.
We set parameters as λ = 0.01, ωc = 3ω0, and h̄ω0 = 25 meV which shows the relaxation time
τ̄r ≡ ω0τr ≈ 5. (The value of h̄ω0 is chosen to be the same as the typical value for a molecular
junction in Reference [28].) Setting the initial condition of the two-level system with the effective
inverse temperature as β̄s = h̄ω0

kBTs
= β̄(0)(≈1.07) corresponding to the stationary state for the

initial temperature setting, we plot the time dependence of the population in the lower state, ρ00(t).
The population ρ00(t) under the adiabatic approximation (Figure 2, red line) shows that the relevant
system quickly approaches the stationary state corresponding to the temperature setting in each time
interval. Setting the interval δt to be much larger than the relaxation time as in Figure 2A corresponding
to the lower modulation frequency Ω = 0.3 THz, we find that the relevant system mostly follows the
temperature modulation as the stationary state is approached, which shows the feature close to the
adiabatic approximation. With decreasing interval δt (Figure 2B,C), we find that the relevant system
does not follow the temperature modulation thus exhibiting nonadiabaticity.

(A) (B) (C)

Figure 2. Time dependence of the population in the lower state of the two-level system with changing
modulation frequency : (A) Ω = 0.3 THz, (B) Ω = 1 THz, and (C) Ω = 5 THz with s = 0.01, ωc = 3ω0,
h̄ω0 = 25 meV , and N = 40. The time variable is scaled with ω0 as t̄ = ω0t.
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3.4.2. Frequency Dependence

We show in Figure 3 the frequency dependence of the pumped quantity Îenergy = 1
T h̄ω0

(〈∆qR〉 −
〈∆qL〉). For comparison, we also exhibit the frequency dependence of the quantity under the adiabatic
approximation presented as a geometric phase in Reference [28]. We find that the nonadiabatic term
decreases the pumped quantity in the higher frequency region. We also find that the pumped quantity
depends on the initial condition of the two-level system. The feature shown in Figure 3 is universal for
different settings of these parameters. For example, when we increase τr by decreasing the coupling
strength with keeping the value of ω0, we find the similar feature of the frequency dependence ranging
up to ∼10 GHz which corresponds to the maximum driving frequency of electronic voltage due to the
limitation of experimental bandwidth at the present time. The parameter setting of λ in this study is
chosen to expect the further acceleration of the recent rapid development of Tera Hz technology in
a future.

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

Figure 3. (Color online) Frequency dependence of pumped quantity Ienergy with λ = 0.01, ωc = 3ω0,
and h̄ω0 = 25 meV with changing initial conditions of the two-level system β̄s values: (1) the black line
corresponds to β̄s = β̄(0)(≈1.07) which is the effective inverse temperature of the stationary state for
the initial temperature setting, (2) the blue dotted line to β̄s = 5; (3) the red dottdashed line represents
the frequency dependence of the net geometrical phase [28].

4. Spin Pumping

4.1. A Minimum Model of Spin Pumping

We consider a minimum model of spin pumping involving a quantum dot with dynamic
magnetization and an electron lead (Figure 4A). The magnetization of the dot M(t) rotates around the
z-axis with a period T . An electron in the quantum dot is spin polarized because of the s–d exchange
interaction with magnetization and is represented by the two-component creation and annihilation
operators d† = (d†

↑, d†
↓), and d, where ↑ and ↓ denote the direction of the electron’s spin magnetic

moment parallel and antiparallel, respectively, to the z-axis.
The Hamiltonian of the minimum model consists of three terms H(t) = Hd(t) + Hl + Ht. Hd(t),

describing the dot, is defined by

Hd(t) = d†[εd −M(t) · σ]d, (28)

where εd is the unpolarized energy of a dot electron, M(t) ≡ M(sin θ sin φ(t), sin θ sin φ(t), cos θ),
and σ = (σx, σy, σz) the vector of Pauli matrices. Introducing the eigenstates |j↑, j↓〉 (with j↑(↓) = 0 or 1)
of the number operator of the dot electron ∑σ d†

σdσ as a basis, the dot Hamiltonian is represented by
the matrix

Hd(t) =


|0, 0〉 |0, 1〉 |1, 0〉 |1, 1〉

0 0 0 0
0 εd + M cos θ −Me+iφ(t) sin θ 0
0 −Me−iφ(t) sin θ εd −M cos θ 0
0 0 0 2εd

. (29)
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Spin 
current

(1)

(2)

(3)

μ
ϵd + M

ϵd − M

z

θ

M(t)

Dot LeadCounting 
field

(A) (B)

Figure 4. (A) The minimum model consists of a ferromagnetic quantum dot attached to an electron
lead. The dot has a dynamic magnetization M(t) that rotates around the z-axis with a period T .
The number of transferred electrons with spin magnetic moment ↑ (↓) is captured by the counting field.
(B) Schematic of the spin current generation in the minimum model. The scheme can be summarized as
follows: (1) an electron with ↓-spin enters from the lead onto the dot subject to the dot–lead interaction;
(2) the spin of the electron is flipped by the precessing magnetization; (3) the electron with ↑-spin
moves back from the dot to the lead.

The electron lead is described by the term

Hl = ∑
σ=↑,↓

∑
k

εkc†
σ,kcσ,k, (30)

where cσ,k and c†
σ,k with σ =↑ or ↓ are annihilation and creation operators of a lead electron with energy

εk and spin-σ. The dot–lead interaction is assumed to be spin conserving with

Ht = ∑
σ

∑
k

h̄vk(d†
σcσ,k + c†

σ,kdσ), (31)

where h̄vk is the coupling strength, which we assume to be weak.
Intuitively, the generation of the spin current in the minimum model is summarized by the

following scheme (see Figure 4B): (1) an electron with ↓-spin moves from lead to dot under the
dot–lead interaction, (2) the spin of the electron is flipped by the precessing magnetization, and (3) an
electron with ↑-spin moves back from dot to lead. For spin-current generation, the essential conditions
required in setting parameter values are

εd −M < µ < εd + M and β−1 ≤ 2M, (32)

where β is the inverse temperature of the lead.

4.2. FCS Formalism of the Spin Pumping

In the following, we apply the FCS outlined in Section 2 to evaluate the number of transferred
electrons with spin σ from projective measurements of the electron number in the lead represented by
Nσ ≡ ∑k c†

σ,kcσ,k. By associating Hd(t), Hl, and Ht with HS, HE, and HSE, respectively, and defining
an outcome of the projective measurement at time t as nσ,t, we analyze the electron dynamics under
spin pumping.

In order to explicitly examine the influence of the relaxation process on the spin current generation,
we discretize the rotation of M(t): divide the period T into N intervals, ti ≤ t ≤ ti+1 (i = 1, · · ·, N)

with t1 = 0 and tN+1 = T ; fix the direction of M(t) during each interval; and change φ at each ti
discretely with substitution φi = φi−1 + δφ with φ0 = 0, φN = 2π and δφ ≡ 2π/N (see Note [57]).
The net number of electrons with spin-σ during the ith interval can be evaluated from the difference in
outcomes ∆nσ,i = nσ,ti+1 − nσ,ti .
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By introducing counting fields λ↑ and λ↓ corresponding to observables N↑ and N↓, respectively,
we can evaluate the mean value of transferred electrons,

〈∆n↑(↓),i〉 =
∫ ti+1

ti

J↑(↓)(t), (33)

with an inertial flow of electrons

J↑(↓)(t) ≡ 〈〈1|
[

∂Ξ(λ↑(↓))(t)
∂(iλ↑(↓))

]
λ↑(↓)=0

|ρ(λ↑(↓)=0)(t)〉〉. (34)

The inertial flow of electrons provides an instantaneous spin current,

Jspin(t) ≡ J↑(t)− J↓(t), (35)

and its time integration over one period provides a temporal average of the spin current,

Ispin ≡
1
T
∫ T

0
Jspin(t)dt. (36)

To discuss the role of nonadiabaticity in spin pumping, we focus the Born-Markovian (long-time)
limit by taking the limit t → ∞ of the supermatrix Ξ(λ)(t) in each interval. In this limit, the matrix
elements of Ξ(λ) are time-independent during each interval and determined by the direction of M in
each interval.

4.3. Absence of Adiabatic Contribution

Let us first show absence of the adiabatic contribution to the spin pumping in the minimum model.
In previous studies, the adiabatic regime of the spin pumping in the minimum model has been studied
based on the linear expansion of the Green function in the rotation frequency of M(t) [23,24], which we
referred to as the adiabaticity No. (2). The purpose of the present subsection is to re-examine the
adiabatic contribution of the spin pumping from the view point of the adiabaticity No. (3), where we
consider a sufficiently slow rotation of M(t) comparing to the relaxation time, that is, Ω � τ−1

r
following the procedure by Sinitsyn and Nemenman in Reference [27].

Following the procedure, the adiabatic regime is assessed by dividing the cycle of modulation
into time intervals δt(≡ T /N) and assuming a quick approach of the system to its steady state in
each interval. In the steady state of the minimum model, we can expect that the quantum dot is
occupied by a single electron whose spin is aligned toward the direction of M(t), and, because of
the rotational symmetry of the model, the steady state populations of the quantum dot are invariant
under the rotation of M(t) around the z-axis. It indicates that no electron transfer occurs in the
adiabatic regime. As a result, we can expect absence of the adiabatic contribution to the spin current
generation. We provide an analytical proof of the intuitive observation in Appendix C (see also the
original argument in Section 4 in Reference [58]).

As a result, we need to include the nonadiabatic effect to obtain a finite spin current. It is in
marked contrast to the previous example of the energy pumping, where the adiabatic contribution to
the energy pumping Gν

ad is finite.

4.4. Numerical Evaluation of the Nonadiabatic Spin Pumping

We now turn to examine nonadiabaticity in spin pumping. For this purpose, we evaluate
numerically the instantaneous spin current Jspin(t) and its temporal average Ispin.

To describe the dot–lead coupling, we use the Ohmic spectral density with an exponential cutoff
v(ω) ≡ ∑k v2

kδ(ω − ωk) = λω exp[−ω/ωc], where λ is the coupling strength and ωc is the cutoff
frequency. For the numerical calculation, we chose 2M, the energy difference between the spin-↑ and
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-↓ states in the dot, as an energy unit. We distinguish parameters normalized by their units using an
overbar (see Note [59]). Specific values of the normalized parameters are given in the figure captions.
As we are focusing on the spin transfer driven by the rotating magnetization, the dot is set in a steady
state Equation (A25) at t̄ = 0 to exclude any transient spin transfer caused by the dot–lead contact.

4.4.1. Electron Transfer Dynamics

Let us first examine electron transfer dynamics under the cyclic rotation of the magnetization to
show the generation of the spin current in the nonadiabatic regime. For this purpose, we numerically
evaluate the time evolution of the populations ρjj′(t) = 〈j, j′|ρ(0)(t)|j, j′〉 (ρ00: empty state, ρ10:
half-filled state with spin-↑, ρ01: half-filled state with spin-↓, and ρ11: completely filled state) and
corresponding instantaneous electron and spin currents, J↑(↓)(t) and Jspin(t). In Figure 5A,B, we present
the time evolution of populations and instantaneous currents for one cycle of the step-like rotation
with division number N = 5 and time interval δt = 20. The change in angle at each subsequent ti is
δφ = 2π/5, that is φi = φi−1 + 2π/5 with φ0 = 0.

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! #! $! %! &! '! (! )! *! +! #!!

!"#"$

!"#""%

"

"#""%

"#"$

"#"$%

"#"&

" $" &" '" (" %" )" *" +" ," $""

ρ00
ρ10ρ01ρ11

t̄

t̄

Jspin
J↑
J↓

(A)

(B)

Po
pu

la
tio

n
In

sta
nt

an
eo

us
 c

ur
re

nt

Figure 5. (A) Time evolution of the populations in the dot under the step-like precession of the
magnetization with δt̄ = 20 and N = 5. The populations deviate from their steady-state values
just after a sudden change of the angle φ, but then they approach new steady state-values for each
φi. The figure shows the steady-state values of the populations to be invariant. This is because of
the rotational symmetry of the system about the z-axis. (B) The instantaneous electron and spin
currents J↑(t) (red line), J↓(t) (blue line) and Jspin(t) (black line) corresponding to the population
dynamics in panel (A). The time dependences of the instantaneous currents indicate that electrons
starts moving between dot and lead just after the sudden change of φ, and J↑ and J↓ have opposing
directions. The latter trend show that the instantaneous electron currents are balanced as a result of
charge conservation in the lead. In contrast, the instantaneous spin current Jspin always takes positive
values indicating constant spin current generation. The parameters are set to ε̄d = 10, µ̄ = 10, β̄ = 100,
λ = 0.01, ω̄c = 4, θ = 5π/6, and δφ = 2π/5, which satisfies the condition (32).

In Figure 5A, we find that initially the populations deviate from their steady-state values by
changing φ at ti, but then they approach new steady-state values for each φi with the populations
remaining unchanged from their initial values because the steady-state populations are independent
of φ (see the analytic expression of the steady state, Equation (A25)). In the figure, the time evolution
of the components ρ01 and ρ10 (blue and red lines) exhibit oscillations caused by transitions between
states |0, 1〉 and |1, 0〉 in consequence of the applied magnetization M (Larmor precession). Its period
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is given by the inverse of the Larmor frequency TL ≡ h/2M = tu. The other two components ρ00

and ρ11 also exhibit transient behavior after changing φ but they do not exhibit a Larmor precession
because the magnetization contributes transitions including neither |0, 0〉 nor |1, 1〉 (see Equation (29)).

In Figure 5B, the colored lines representing Jσ show that spin-↑ electrons (red line) and spin-↓
electrons (blue line) are moving in opposite directions; the former move from dot to lead, whereas
the latter move from lead to dot. These trends show that the instantaneous electron currents J↑ and J↓
are balanced as a result of charge conservation in the lead. In contrast, the instantaneous spin current
(black line) always takes positive values, Jspin > 0, indicating the generation of positive spin current
into the lead without an associated charge current, which we call pure spin current.

4.4.2. Frequency Dependence

We next consider the dependence of the spin current on the frequency of precession Ω = 2π/T .
Here we change the period of precession T = Nδt by varying the time interval δt while the number of
divisions remains fixed to N = 20. All other parameters and initial conditions are set as before.

In Figure 6, we plot the dependence of the averaged spin current Ispin against the normalized
frequency Ω̄ ≡ Ω/ωu.

The frequency dependence of Ispin features two characteristic regimes: a low-frequency regime,
where Ispin depends linearly on Ω (Ω̄ . 0.0025) and a high-frequency regime, where Ispin exhibits
oscillations with respect to Ω. These characteristics are explained by comparing the time interval δt̄
and the relaxation time τ̄r of the population of dot electrons (τ̄r ≈ 5 in the present case; see Figure 5A).
For lower frequencies, for which δt̄� τ̄r, the numerator of the time integral of Jspin(t) in Equation (36)
becomes constant because the instantaneous spin current has already vanished at a certain t̄ . δt̄
(see Figure 5A), which results in the linear dependence of Ispin on Ω̄. As Ω̄ becomes larger and the
time interval satisfies δt̄ . τ̄r, the angle φ changes during the relaxation process. In this situation,
the electron dynamics exhibits two extreme features; when δt̄ is an integer multiple of the period of the
Larmor precession h/2M, we have resonance enhancement of the transition between half-filled states
|0, 1〉 and |1, 0〉 by the sudden change of φ to exhibit a maximum of Ispin, whereas it is anti-resonantly
suppressed to exhibit a minimum when δt̄ is a half-integer multiple of the period [58].
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Figure 6. Frequency dependence of the temporal average of spin current Ispin. The division number
of the step-like precession is now set to N = 20. With fixed δφ = π/10, the frequency is changed by
changing δt. The frequency dependence exhibits two characteristic features: the spin current depends
linearly on Ω̄ for Ω̄ . 0.0025, whereas it exhibits oscillation with respect to Ω̄ for Ω̄ & 0.0025. The other
parameters are the same as in Figure 5.
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Calculating the spin current for different values of θ, we find that the spin polarization of the spin
current exhibits a dependence on θ in that for 0 < θ < π/2 the spin polarization is antiparallel to the
z-axis, whereas for π/2 < θ < π the spin polarization is parallel to the z-axis. For θ = 0, π/2, π,
the spin current vanishes because the spin flip in the quantum dot does not occur for θ = 0, π or the
two half-filled states in the dot |1, 0〉 and |0, 1〉 degenerate for θ = π/4 (see Equation (29)).

Finally, we note that the averaged spin current Ispin diverges with respect to Ω̄. The divergence is
caused by the accumulation of a nonzero impetus of current Jspin(t) just after the sudden change of
φ (see Figure 5). In Reference [60], we showed that the nonzero impetus of Jspin(t) is an unphysical
effect caused by the Born-Markovian approximation, and the divergence is eliminated by taking into
account the non-Markovian effect by keeping the upper bound of the time integration in (10) finite.

5. Discussion and Conclusions

In this paper, we reviewed studies which go beyond the conventional adiabatic approximation
for open quantum systems to transfer energy quanta and electron spins with using the full counting
statistics, which could provide conditions to show quicker transport. We considered a setup consisting
of a two-level system representing an anharmonic junction or a quantum dot and its environment(s)
representing a canonical or grand canonical ensemble of the energy quanta and the electron to be
transferred. We needed to take into account relaxation phenomena in discussing the transfer. In this
case, the adiabatic approximation corresponded to the situation where the relevant system such as the
two-level system approaches its stationary state faster than the period of modulation, that is, τ−1

r � Ω
with τr the relaxation time of the two-level system and Ω the modulation frequency. Because the
relaxation time is finite, the condition for which the adiabatic approximation is valid corresponds to
the much longer period of the modulation than τr. This means that we can analyze systematic features
including adiabatic as well as nonadiabatic features by changing the ratio of the modulation period
and τr. To clarify the relationship between modulation period and τr, we discretized the external
modulation thereby permitting a systematic analysis of the ratio by changing each interval while
retaining the validity of the Born–Markov approximation. For energy quanta pumping, we showed
that the nonadiabatic effect contributes a new term to the formula for the pumped quantity under the
adiabatic approximation. For spin pumping, we showed that adiabaticity made no contribution but
nonadiabaticity is essential. Comparing these features, we showed that the adiabatic contribution can
vanish when the stationary state does not depend on the external modulation as for spin pumping.
This means that we need to pay attention to the feature of the stationary state in using the adiabatic
approximation in describing relaxation phenomena. (We would draw the reader’s attention to the
differences in the meaning of nonadiabaticity which has been used in the electron charge pumping by
modulation of single gate voltage [61,62].)

With the same setup, the role of nonadiabaticity in pumping phenomena involving energy
quanta was discussed more extensively under continuous modulation [63] where the relaxation of the
two-level system is treated within the Born–Markovian approximation. In recent work of the present
authors on the role of the non-Markovian effect on spin pumping phenomena [60], we found that a
nonzero impetus of the dynamics of the pumped quantity under the Born–Markovian approximation
shows an unphysical effect, especially for higher modulation frequencies or for the short time regimes.
Because the instantaneous impetus contributes strongly under continuous modulation, including the
non-Markovian effect would also be necessary in pumping phenomena of energy quanta, especially
in evaluating the feature under continuous modulation. This situation remains an open problem.
In addition, we described in this work the relaxation process with ordered cumulants of up to second
order in the system–environment interaction. An extension to higher orders of cumulants is necessary if
we are to discuss relaxation phenomena under strong system–environment interactions. The inclusion
of cumulants up to infinite order within the Markovian approximation has been discussed for spin
pumping phenomena within the linear response regime using the Green functions [19]. To discuss the
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non-Markovian effect, it would be necessary to include higher-order cumulants, a topic that remains
for a future study.

We can find recent extensions of the treatments with full counting statistics into the strong
system-environment coupling for heat transfer [64] and electron pumping [65]. The essential idea to go
beyond the weak coupling is to use the similarity (unitary) transformations: the polaron transformation
(the reaction coordinate mapping) is used in the former (latter) studies, respectively. As mentioned
in the general formalism of FCS, it should be noted that we need careful treatments on the joint
probability, Equation (2), when we use the similarity (unitary) transformations on the time evolution
operator. The transformation of the projective measurement is also necessary to recover the original
joint probability (See Reference [45]). It might be necessary to compare the dynamics of transported
quantity with and without the transformation of the projective measurement.

Since the treatment of FCS to discuss the nonadiabatic effects on quantum pumping is general,
we can apply it to many other cases: One of the most interesting issues is to study the non-adiabatic
treatment on the combined effect caused by multiple external parameters such as in References [66–68]
where adiabatic transport of charge and/or heat is discussed under time-dependent potential and two
reservoirs with biased potentials. We can find other issues to remove the adiabatic approximation in
spin pumping via a quantum dot between reservoirs with biased chemical potentials [69] and in the
quantum transport and/or quantum pumping under dynamical motion of quantum dot [70] based on
the recent developments of experimental techniques on microelectromechanical systems [71]. Further,
it would be interesting to discuss the non-adiabatic effect on ac-driven electron systems coupled to
multiple reservoirs at finite temperature whose adiabatic treatment is discussed in Reference [72].
We expect that these treatments could provide insights to find new applications, such as the design of
nanomachines and understanding of the quantum thermodynamics, as well as quicker transport.
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Appendix A. Derivation of Quantum Master Equation for FCS

When we consider the FCS [44], the density operator W(λ)(t) evolves in time in accordance with
the modified Liouville–von Neumann equation

Ẇ(λ)(t) = −iL(λ)W(λ)(t), (A1)

where L(λ) is the Liouville operator defined as L(λ)A = 1
h̄ [Hλ A− AH−λ] ≡ 1

h̄ [H, A]λ for arbitrary
operator A with Hλ = e(i/2)λHE He−(i/2)λHE = H0 + HSE,λ. With these relations, L is divided into

L(λ) = L(λ)0 + L′(λ) (A2)

where
L(λ)0 A =

1
h̄
[H0 A− AH0] , L′(λ)A =

1
h̄
[HSE,λ A− AHSE,−λ]. (A3)

We eliminate the variables of the environment using a projection operator P , which satisfies the
idempotent relation, P2 = P . We also introduce a complementary operator Q ≡ 1−P . Denoting the
relevant and irrelevant parts of the time evolution operator as [52]

x(t) ≡ Pe−iL(λ)t, y(t) ≡ Qe−iL(λ)t, (A4)
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with an initial time t0 = 0, we obtain

d
dt

x(t) = P(−iL(λ))x(t) + P(−iL(λ))y(t) , (A5)

and
d
dt

y(t) = Q(−iL(λ))x(t) +Q(−iL(λ))y(t) . (A6)

The formal solution of Equation (A6) is given by

y(t) =
∫ t

0
e−QiL(λ)(t−τ)Q(−iL(λ))x(τ)dτ + e−QiL(λ)tQ. (A7)

Using x(τ) = PeiL(λ)(t−τ)e−iL(λ)t = PeiL(λ)(t−τ)(x(t) + y(t)) and

θ(t) = 1−
∫ t

0
e−QiL(λ)τQ(−iL(λ))PeiL(λ)τdτ ≡ 1− σ(t), (A8)

we rewrite the formal solution of y(t) in the form

y(t) = θ(t)−1((1− θ(t))x(t) + e−QiL(λ)tQ). (A9)

By substituting Equation (A9) into Equation (A5), we obtain

d
dt

x(t) = P(−iL(λ))θ(t)−1x(t) + P(−iL(λ))θ(t)−1eQ(−iL(λ))tQ, (A10)

which holds for arbitrary projection operator and initial condition. Using the relation θ(t)−1 = ∑∞
n=0 σ(t)n,

the first term on the right-hand side of Equation (A10) is rewritten as

P(−iL(λ))θ(t)−1x(t) = P(−iL(λ))x(t) + P(−iL(λ))σ(t)x(t) + · · · . (A11)

To pick out the lower order of L′(λ), we use the relation

e−QiL(λ)tQ = e−iL(λ)0 tQT+exp[
∫ t

0
dt′eiL(λ)0 t′Q(−iL′(λ))Qe−iL(λ)0 t′ ], (A12)

and PL(λ)0 = L(λ)0 P , which gives

P(−iL(λ))θ(t)−1x(t) = P(−iL(λ))x(t) + P(−iL′(λ))
∫ t

0 e−iL(λ)
0 τQ(−iL′(λ))PeiL(λ)

0 τdτx(t) + · · ·
= P(−iL(λ))x(t) + P(−iL′(λ))

∫ t
0 Q(−iL′(λ)(−τ))Pdτx(t) + · · · ,

(A13)

where we have used the definition

L̂(λ)1 (t) = eiL(λ)0 tL′(λ)e−iL(λ)0 t. (A14)

When we multiply the initial condition W(λ)(0) by the right-hand side of Equation (A8), we obtain
the TCL equation for reduced density operator under FCS.

Let us consider a projection operator P = ρETrE where TrE refers to a trace operation over the
environment. When we multiply the initial condition of the density operator of the total system,
W(λ, 0) from the right by xS(t) in Equation (A2), we obtain

x(t)W(λ)(0) = ρETrEW(λ)(t) (A15)
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Defining TrEW(λ)(t) ≡ ρ(λ)(t), we obtain the TCL equation for the reduced density operator
under FCS,

d
dt

ρ(λ)(t) = TrE[(−iL)ρ(λ)(t)] + ζ(λ)(t)ρ(λ)(t) + ψ(λ)(t), (A16)

with

ζ(λ)(t) ≡
∞

∑
n=2

ξ
(λ)
n (t), (A17)

ψ(λ)(t) ≡ TrE[(−iL)θ(t)−1eQ(−iL)tQW(λ)(0)]. (A18)

Equation (9) with (10) is obtained by taking the lower term of ξ(λ)(t) up to second order in L′ and
replacing ξ

(λ)
2 (t) with ξ(λ)(t),

ξ(λ)(t)ρ(λ, t) =
∫ t

0
TrE[(−iL′)Q(−iL′(−τ))ρEρ(λ, t)]dτ. (A19)

with the factorized initial condition of the total system as W(λ)(0) = ρEρλ(0), which makes the third
term on the right-hand side of Equation (A16) vanish. With the assumption TrEHSE,λ = 0, we have

ξ(λ)(t)ρ(λ)(t)
= ( i

h̄ )
2TrE[HSE[HSE(−τ), ρEρ(λ)(t)]λ]λ],

= ( i
h̄ )

2TrE[HSE,λ HSE,λ(−τ)ρEρ(λ)(t)− HSE,λρEρ(λ)(t)HSE,−λ(−τ)

−HSE,λ(−τ)ρEρ(λ)(t)HSE,−λ + ρEρ(λ)(t)HSE,−λ(−τ)HSE,−λ],

(A20)

which coincides with Equation (110) in [44].

Appendix B. Connection between Two Formalisms of the FCS

We next explain the relationship between the two formalisms of the FCS provided by Esposito et al.
in Reference [44] and by Sinitsyn and Nemenman in Reference [27]. To establish the connection between
the two formalisms, we consider the number of quanta N as the observable to be measured to identify
the number of quantum transfers from S to E, as stipulated in Reference [27]. For a large class of open
quantum systems, the system–environment interaction is described by an interaction Hamiltonian of
the form HSE = V+ + V− ≡ A⊗ B† + A† ⊗ B, where B† and B are creation and annihilation operators
of a quanta in the environment, respectively, and A is either a Hermitian or non-Hermitian operator
acting on the relevant system. V+ ≡ A⊗ B† or V− = V†

+ describes transfer of a quanta from S to E or
from E to S. In this instance, the number operator of the quanta is given by N = B†B. The generalized
Liouvillian is expressed as L(λ) = L0 +L+eiλ/2 +L−e−iλ/2, where L0W(λ) ≡ h̄−1(H0W(λ)−W(λ)H0)

is the unperturbed Liouvillian, L+W(λ) ≡ h̄−1(V+W(λ) −W(λ)V†
+) and L−W(λ) ≡ h̄−1(V−W(λ) −

W(λ)V†
−) are Liouvillians describing the transfer of a quanta from S to E and from E to S, respectively.

Using the formal solution of Equation (8) with the given Liouvillian in Equation (6), we obtain a formal
expression for the moment generating function

Z(λ) =
∞

∑
n=−∞

Pneinλ, (A21)

with Pn the probability of having n net transitions from S to E, e.g.,

P1 = Tr
[( ∫ t

ti

dt1U0(t, t1)(−iL+)U0(t1, ti) +
∫ t

ti

dt3

∫ t3

ti

dt2

∫ t2

ti

dt1U0(t, t3)(−iL+)

×U0(t3, t2)(−iL−)U0(t2, t1)(−iL+)U0(t1, ti) · · ·
)

W̄(ti)

]
,

(A22)
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where U0(t1, t2) = exp[−iL0(t1 − t2)] is the unperturbed time evolution operator. The expression for
the moment generating function corresponds to Equation (9) in Reference [27].

Appendix C. An Analytical Proof of the Absence of Adiabatic Contribution to the Spin Pumping

Following the procedure by Sinitsyn and Nemenman in Reference [27], we divide the cycle
of precession into intervals δt, which correspond to the step-like changes of M. For the step-like
precession, the density matrix of the dot during ti ≤ t ≤ ti+1 is given by

|ρ(0)i (t)〉〉 = eΞ(0)
i (t−ti)

i−1

∏
j=1

eΞ(0)
j δt|ρ(0)1 (0)〉〉, (A23)

where we denote the density matrix and the generator in the ith interval as |ρ(0)i (t)〉〉 and Ξ(0)
i ,

respectively, and |ρ(0)1 (0)〉〉 is the initial condition in the first interval. Taking the spectral decomposition

of Ξ(0)
i and assuming a quick approach of the system to its steady state in each interval in

Equation (A23), as in Reference [27], the terms remaining in the decomposition are those that contain
the steady state |u0

0(ti)〉〉 satisfying Ξ(0)
i |u0

0(ti)〉〉 = 0. Evaluating the density matrix up to first order in
δt, we find the first-order term vanishes, implying the invariance of the steady state populations of the
dot under the step-like rotation of φ in our model (see Appendix D in Reference [58]). Thus, we find
that the density matrix at time t under the adiabatic limit can be approximated by the steady state as
|ρ(0)0 (t)〉〉 ≈ |u(0)

0 (ti)〉〉. For this steady state |u(0)
0 (ti)〉〉 given by Equation (A25), we also find that there

is no electron transfer between dot and lead; specifically, we find that

〈∆nσ,i〉 ≈
∫ ti+1

ti

dt′〈〈1|
[

∂Ξ(λσ)
i

∂(iλσ)

]
λσ=0
|u(0)

0 (ti)〉〉 = 0, (A24)

indicating that there is no net electron transfer in the interval and hence the generated spin current
represented by Equation (36) is totally absent in the adiabatic limit. We therefore need to include the
nonadiabatic effect to generate a finite spin current. The result is in marked contrast to the previous
example of the energy pumping, where the adiabatic contribution to the energy pumping Gν

ad is finite.

Appendix D. Steady State of the Minimum Model

The steady state |u(λσ=0)
0 (ti)〉〉, satisfying Ξ(λσ=0)

i |u(λσ=0)
0 (ti)〉〉 = 0 is analytically obtained using a

graphical method discussed in Reference [73]. In Appendix C of Reference [58], we provide a detailed
derivation of the steady state. For use in the present paper, here we simply present the result.

The dynamics of the populations described by the TCL master equation is closed for
the six components of the reduced density matrix, ρ00(t) ≡ 〈0, 0|ρ(λσ=0)(t)|0, 0〉, ρ01(t) ≡
〈0, 1|ρ(λσ=0)(t)|0, 1〉, ρ0110(t) ≡ 〈0, 1|ρ(λσ=0)(t)|1, 0〉, ρ1001(t) ≡ 〈1, 0|ρ(λσ=0)(t)|0, 1〉, ρ10(t) ≡
〈1, 0|ρ(λσ=0)(t)|1, 0〉, and ρ11(t) ≡ 〈1, 1|ρ(λσ=0)(t)|1, 1〉. By arranging these connected components
as |ρ(λσ=0)(t)〉〉 = [ρ00(t), ρ01(t), ρ0110(t), ρ1001(t), ρ10(t), ρ11(t)]t, where [· · · ]t denotes transposition,
an analytic expression of its steady state obtains,

|u(λσ=0)
0 (ti)〉〉 =



f−(ε↑) f−(ε↓)
cos2 θ

2 f+(ε↑) f−(ε↓) + sin2 θ
2 f−(ε↑) f+(ε↓)

e+iφi cos θ
2 sin θ

2 [ f+(ε↑) f−(ε↓)− f−(ε↑) f+(ε↓)]
e−iφi cos θ

2 sin θ
2 [ f+(ε↑) f−(ε↓)− f−(ε↑) f+(ε↓)]

sin2 θ
2 f+(ε↑) f−(ε↓) + cos2 θ

2 f−(ε↑) f+(ε↓)
f+(ε↑) f+(ε↓)


, (A25)
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where f+(εk) ≡ Trl[c†
σ,kcσ,kρ

eq
l ], f−(εk) ≡ Trl[cσ,kc†

σ,kρ
eq
l ], ε↑ ≡ εd −M and ε↓ ≡ εd + M. From the

expression, we find that the steady-state values of the populations ρ00, ρ01, ρ10 and ρ11 are independent
of angle φ. Thus, the steady state populations remain unchanged by changing φ.
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