
entropy

Article

Quantum Adiabatic Pumping in Rashba-
Dresselhaus-Aharonov-Bohm Interferometer

Yasuhiro Tokura 1,2

1 Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba,
Ibaraki 305-8571, Japan; tokura.yasuhiro.ft@u.tsukuba.ac.jp

2 Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1,
Tennodai Tsukuba, Ibaraki 305-8571, Japan

Received: 2 July 2019; Accepted: 8 August 2019; Published: 24 August 2019
����������
�������

Abstract: We investigate the quantum adiabatic pumping effect in an interferometer attached
to two one-dimensional leads. The interferometer is subjected to an Aharonov-Bohm flux and
Rashba-Dresselhaus spin-orbit interaction. Using Brouwer’s formula and rigorous scattering
eigenstates, we obtained the general closed formula for the pumping Berry curvatures depending on
spin for general interferometers when the external control parameters only modulate the scattering
eigenstates and corresponding eigenvalues. In this situation, pumping effect is absent in the
combination of the control parameters of Aharonov-Bohm flux and spin-orbit interaction strength.
We have shown that finite pumping is possible by modulating both Rashba and Dresselhaus
interaction strengths and explicitly demonstrated the spin-pumping effect in a diamond-shaped
interferometer made of four sites.

Keywords: spin pump; spin-orbit interaction; quantum adiabatic pump; interferometer;
geometric phase

1. Introduction

Coherent transport in mesoscopic systems is of fundamental interest since it allows realization of
various phenomena observed in quantum optics in a solid-state system. Furthermore, the electron
spin degree of freedom adds an intriguing knob for the manipulation and observation of the
transport phenomena. Spin-orbit interaction (SOI) effect [1] is one of the key ingredients in
narrow-gap semiconductor devices, whose strength can be controlled by external gates [2], in principle,
without changing the electron density. Introducing the effect of SOI to the electron interferometer
structure is quite attractive since it enables perfect spin filtering effect [3–5]. Moreover, transient
behavior in such an interferometer has been investigated [6].

In addition to passive functional devices such as filters, the active functions, for example,
spin-pumping or spin manipulation effect by dynamically modulating the gate voltages [7–9], magnetic
field [10–13], or magnetization of the ferromagnets [14–17], has been investigated. In particular,
quantum adiabatic pumping (QAP) phenomena [18,19], which stems from geometrical properties of
the dynamics, is an active field of research [20–25]. In the non-interacting limit, QAP is related to
the scattering matrix of the coherent transport. We have investigated the QAP effect by adiabatically
modulating the Aharonov-Bohm (AB) phase [26] of the interferometer as well as the local potential in
the interferometer. However, it seems no studies have been made of the adiabatic spin-pumping with
purely geometric means such as Aharonov-Casher phase or AB phase. The fundamental question here
is whether QAP is possible by only modulating the electron geometric phase.

In this work, we studied spin-QAP in Rashba-Dresselhaus-Aharonov-Bohm interferometer
introduced in [3] using Brouwer’s formula [19] and derived an explicit formula of the Berry curvature
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for each spin component. Using the obtained result, we clarified the condition of finite spin-pumping.
In Section 2, we introduce a simple two-terminal setup and the expressions of the scattering amplitudes.
Section 3 explains the details of the eigenstates of the scattering problem. Then, with these states,
the formula of the QAP is derived in Section 4. It is shown that the modulation of the AB phase cannot
induce QAP. Section 5 explains the properties of the diamond-shape interferometer, and is applied to
study QAP assuming Rashba SOI and Dresselhaus SOI strengths as control parameters in Section 6.
Finally, discussions follow in Section 7 and Appendices are included for the detailed derivations of the
formula used in the main text.

We consider a standard setup of scattering problem of spin 1/2 electrons as shown in Figure 1.
A coherent scattering region (interferometer) is attached at the site u = 0 with the one-dimensional
left lead made of sites u = −1,−2, . . . and is attached at the site u = 1 with the one-dimensional
right lead made of sites u = 2, 3, . . .. The assumption of one-dimensional leads is not essential
as far as the interferometer is coupled to the leads via single mode scattering channels. However,
the one-dimensional tight-binding formalism benefits from its simplicity. Although the analysis is
standard, the obtained rigorous scattering amplitudes and corresponding scattering eigenstates are
essential to clarify the condition and to quantify the quantum adiabatic spin-pumping, as will be
shown in the later sections. We introduce the spinor ket vector at site u,

|ψ(u)〉 ≡
(

cu↑
cu↓

)
, (1)

where the two amplitudes cuσ for spin σ =↑, ↓ satisfy normalization condition
∣∣cu↑

∣∣2 + ∣∣cu↓
∣∣2 = 1.

The total Hamiltonian in the tight-binding approximation is given in general

ĤTB ≡ ∑
u

εu |ψ(u)〉 〈ψ(u)|+ ∑
uv

Ŵuv |ψ(v)〉 〈ψ(u)| , (2)

where the site index u and v run the entire system. The real parameter εu is spin-degenerate site
energy and Ŵuv is a 2 × 2 hopping matrix satisfying Ŵ†

uv = Ŵvu. We assume that the hopping
matrix Ŵuv is only non-diagonal in the scattering region between u = 0 and u = 1. We neglect the
electron-electron interaction.

Figure 1. Schematics of the model of a scattering (shaded) region connected with two semi-infinite
one-dimensional leads.

2. Model System

In the leads u ≤ −1, u ≥ 2, we set εu = 0 and Ŵuv = −jI, where I is the two-dimensional unit
matrix and the real hopping parameter j is only nonzero for nearest-neighbor pair of u, v. With a
standard treatment on the tight-binding Hamiltonian, we obtain the eigen-energy εk ≡ −2j cos(ka)
and its corresponding eigen-function, |ψ(u)〉 ∝ eikau |χ〉, where k is a real wave-number parameter,
a (> 0) is the lattice constant and |χ〉 is a certain state vector.

The system of interferometer is represented between u = 0 and u = 1 sites and we choose
ε0 = y0 and ε1 = y1 and Ŵ01 ≡ Ŵ and Ŵ10 = Ŵ†. The microscopic derivations of y0, y1 and Ŵ for a
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diamond-shaped interferometer are demonstrated in Section 5. Then the Schrödinger equations at
sites u = 0, 1 read

y0 |ψ(0)〉+ Ŵ |ψ(1)〉 − j |ψ(−1)〉 = ε |ψ(0)〉 , (3)

y1 |ψ(1)〉+ Ŵ† |ψ(0)〉 − j |ψ(2)〉 = ε |ψ(1)〉 . (4)

The reflection and transmission amplitude matrices for the electron flux with an energy ε = εk
injected from the left lead is

r̂ = −I+ iηkX1

[
IY− ŴŴ†

]−1
, (5)

t̂ = iηkŴ†
[
IY− ŴŴ†

]−1
, (6)

where Y ≡ X0X1 with complex parameters Xu ≡ εk − yu + jeika (u = 0, 1) and we introduced a
parameter of energy dimension ηk ≡ 2j sin(ka). The reflection and transmission amplitude matrices
for the electron flux injected from the right lead is

r̂′ = −I+ iηkX0

[
IY− Ŵ†Ŵ

]−1
, (7)

t̂′ = iηkŴ
[
IY− Ŵ†Ŵ

]−1
. (8)

The details of the derivation of these formulae are given in Appendix A. In the next section,
the obtained scattering amplitude matrices are diagonalized and the formulae of the scattering
amplitude eigenvalues are given. Then in Section 4, the Berry curvatures for two spin eigenstates,
Equations (34) and (35), is given, which allow calculation of QAP spin per cycle.

3. Diagonalization of Hopping Operator ŴŴ†

In this section, we diagonalize the product of hopping operators Ŵ and Ŵ† appearing in the
scattering amplitude matrices derived in the previous section. Then we obtain the scattering eigenstates
through an interferometer. This is an extension of the discussion in Reference [3]. We consider an
interferometer in x-y plane made of two one-dimensional arms, b and c, represented by real coupling
parameters γb, γc and 2× 2 unitary matrices, Ûb and Ûc, showing propagation from the site 0 to 1 via
the arms b and c, respectively. We assume following general expressions characterizing the effect of
AB phase and Rashba or Dresselhaus SOI:

Ûb = e−iφ1 (Iδ + iτ · σ̂) , (9)

Ûc = eiφ2
(
Iδ′ + iτ′ · σ̂

)
, (10)

where σ̂ is the vector of Pauli spin matrices. φ ≡ φ1 + φ2 = 2π(HS)/Φ0 is the AB phase with the
magnetic field H in the z direction, the area of the interferometer S, and a magnetic flux quantum Φ0.
Unitarity condition requires the real parameters, δ, δ′ and real three-dimensional vectors τ, τ′ to obey
δ2 + |τ|2 = δ′2 + |τ′|2 = 1. The hopping matrix Ŵ is given by

Ŵ = γbÛb + γcÛc. (11)

As shown in Appendix B, the matrix factor appearing in the scattering amplitudes for the electron
flux injected from the left lead, Equation (5), is

ŴŴ† ≡ AI+ B · σ̂, (12)
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where

A = γ2
b + γ2

c + 2γbγc cos φ cos ω, (13)

B = 2γbγc sin φ sin ω n̂. (14)

The real parameter ω is determined from cos ω ≡ δδ′ + τ · τ′ and the unit vector n̂ is defined by

n̂ =
1√

1− τ2
z
(−τy, τx, δ). (15)

We then introduce two normalized eigenstates of the operator n̂ · σ̂, |n̂〉 and |−n̂〉 such that

n̂ · σ̂ |n̂〉 = |n̂〉 , (16)

n̂ · σ̂ |−n̂〉 = − |−n̂〉 . (17)

Clearly, these are also the eigenstates of the operator ŴŴ† such that

ŴŴ† |±n̂〉 = λ± |±n̂〉 , (18)

with the eigenvalues

λ± = γ2
b + γ2

c + 2γbγc cos(φ∓ω). (19)

These eigenvalues are positive since λ± = 〈±n̂| ŴŴ† |±n̂〉 =
∣∣∣∣Ŵ† |±n̂〉

∣∣∣∣2 ≥ 0.
To study the scattering eigenstates for the electron flux injected from the right, Equation (7),

we evaluate Ŵ†Ŵ with similar procedure as above,

Ŵ†Ŵ ≡ AI+ B′ · σ̂, (20)

where

B′ = 2γbγc sin φ sin ω n̂′, (21)

and corresponding unit vector

n̂′ =
1√

1− τ2
z
(τy,−τx, δ). (22)

Then we introduce two normalized eigenstates of the operator n̂′ · σ̂, |±n̂′〉, which obey

Ŵ†Ŵ |±n̂′〉 = λ± |±n̂′〉 , (23)

with the same eigenvalues as Equation (18).
The elements of the scattering matrix are now explicitly evaluated with the obtained scattering

eigenstates. As detailed in Appendix B, we can show that the transmission amplitude matrices are

t̂ = t+ |n̂′〉 〈n̂|+ t− |−n̂′〉 〈−n̂| , (24)

t̂′ = t+ |n̂〉 〈n̂′|+ t− |−n̂〉 〈−n̂′| , (25)

where we defined two transmission amplitudes,

t± ≡ iηk
√

λ±
Y− λ±

. (26)
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Similarly, the reflection amplitude matrices are given by

r̂ = r+ |n̂〉 〈n̂|+ r− |−n̂〉 〈−n̂| , (27)

r̂′ = r′+ |n̂′〉 〈n̂′|+ r′− |−n̂′〉 〈−n̂′| , (28)

where the reflection amplitudes are

r± ≡ −1 +
iηkX1

Y− λ±
, (29)

r′± ≡ −1 +
iηkX0

Y− λ±
. (30)

The unitarity condition of the scattering amplitude matrices, t̂† t̂ + r̂† r̂ = 1, is confirmed in
Appendix C. The unitarity condition t̂

′† t̂′ + r̂
′† r̂′ = 1 can also be checked.

4. Quantum Adiabatic Pump

For a non-interacting system, the response (particle transfer) to the slow modulation of the
system’s controlling parameters is well described by Brouwer’s formula [19], which is expressed by
the elements of the scattering matrix. The particles induced in the left lead in one cycle of the adiabatic
modulation of two control parameters g1 and g2 is

n = ∑
σ

nσ, (31)

nσ = −
∫

S
dg1dg2Πσ(g1, g2), (32)

where S is the area in the two-dimensional control parameter space whose edge corresponds to the
trajectory of the cycle. The Berry curvature Πσ(g1, g2) for spin σ is

Πσ(g1, g2) =
1
π
= 〈σ|

{
∂r̂

∂g2

∂r̂†

∂g1
+

∂t̂′

∂g2

∂t̂′
†

∂g1

}
|σ〉 , (33)

where r̂ and t̂′ are given in Equations (27) and (25) and |σ〉 is the spinor vector of spin σ.
If we choose the AB phase φ and parameters of the interferometers, for example, X0 or X1, but not

the SOI strengths, we can show that the Berry curvature is finite in general as studied in Reference [26].
In the following, however, we focus on the situation that the control parameters are the AB phase φ

and Rashba or Dresselhaus SOI strength that modulate the eigenvalue λ± as well as the scattering
eigenstates |±n̂〉 , |±n̂′〉. To calculate the Berry curvature, we need to evaluate the derivatives of the
scattering amplitude matrices, r̂ and t̂′. Then, as shown in Appendix D, after some manipulations, we
have the Berry curvatures for spin components parallel to ±n̂,

Πn̂(g1, g2) =
(
|r+ − r−|2 − |t+|2 + |t−|2

)
Cg1,g2 , (34)

and

Π−n̂(g1, g2) =
(
− |r+ − r−|2 − |t+|2 + |t−|2

)
Cg1,g2 . (35)

where the factor at the end is independent of spin and is defined as

Cg1,g2 =
1

4πnz

1
1− τ2

z

[ ∂τy

∂g1

∂τx

∂g2
−

∂τy

∂g2

∂τx

∂g1

+
τz

1− τ2
z

{
τx

(
∂τy

∂g1

∂τz

∂g2
−

∂τy

∂g2

∂τz

∂g1

)
+ τy

(
∂τx

∂g2

∂τz

∂g1
− ∂τx

∂g1

∂τz

∂g2

)}]
. (36)
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This is one of the main results of this work.
The vector τ is independent of φ, but only depends on the SOI strength. Therefore, when one

chose the AB phase, g1 ≡ φ, as one of the control parameters, Cφ,g2 is identically zero as is evident
from Equation (36). Hence we do not expect QAP by modulating the AB phase and SOI strength. It is
also obvious that if we chose γb or γc as one of the control parameters and the other by SOI strength,
Cγb,c ,g2 is zero since τ is independent of γb and γc and no pumping is expected.

Even for a fixed AB phase, there is still some freedom to choose two control parameters related to
the SOI strength since we have two types of SOI interaction mechanisms, Rashba and Dresselhaus SOI.
In the next section, we study Rashba-Dresselhaus interferometer in a simple diamond-shape structure
made of four sites and choose the strengths of two types of SOI as control parameters.

5. Diamond Interferometer

We consider an electron transport in two-dimensional system on [001] surface with setting x and
y axis along the (100) and (010) crystal directions, respectively. The Hamiltonian for the SOI is

ĤR =
h̄
m

kR( p̂yσ̂x − p̂xσ̂y), (37)

ĤD =
h̄
m

kD( p̂xσ̂x − p̂yσ̂y), (38)

where kR and kD are Rashba and Dresselhaus parameters, respectively. p̂µ (µ = x, y) are the momentum
and m is the electron effective mass.

The interferometer made of four sites is configured as in Figure 2 which is attached to the leads
at site u = 0 and u = 1 as discussed in Reference [3]. Other two sites constituting the interferometer
are u = b and u = c, connected with bonds of length L. We also define the opening angle 2β and the
relative angle ν of the diagonal line to x axis. The Hamiltonian reads

ĤIF ≡ ∑
u

εu |ψ(u)〉 〈ψ(u)| −∑
uv

Ũuv |ψ(v)〉 〈ψ(u)| , (39)

for u, v = 0, c, d, 1 where εu is the site energy and Ũuv ≡ JuvÛuv, Juv is a hopping energy and Ûuv

is a 2× 2 unitary matrix representing the effect of SOI and AB phase. Total Hamiltonian is Ĥ =

ĤIF + ĤL + ĤR. In the Appendix E, we explain how this problem is reduced to the Schrödinger
equations, Equations (3) and (4).

The coordinates of the four sites are r0 = (0, 0), rb = (L cos(ν + β), L sin(ν + β)), r1 =

(2L cos(β) cos(ν), 2L cos(β) sin(ν)), and rc = (L cos(ν − β), L sin(ν − β)). We define αR ≡ kRL,

αD ≡ kDL and ζ ≡
√

α2
R + α2

D and introduce another angle θ, such that αR = ζ cos θ, and αD = ζ sin θ.

The unitary matrix for the hopping from site at (0, 0) to site at (ux, uy) is Û(0,0),(ux ,uy) = exp [iK · σ̂]
with K ≡ αR(uy,−ux, 0) + αD(ux,−uy, 0) [27]. Therefore, for the hopping from site 0 to b,

K0b · σ̂ = ζ sin(ξ1)σ̂x − ζ cos(ξ2)σ̂y ≡ ζσ̂1, (40)

with ξ1 ≡ β + ν + θ and ξ2 ≡ β + ν− θ. Similarly, for the hopping from site c to 0,

Kc0 · σ̂ = ζ sin(ξ4)σ̂x + ζ cos(ξ3)σ̂y ≡ ζσ̂2, (41)

with ξ3 ≡ β− ν + θ and ξ4 ≡ β− ν− θ. We introduce factors F1 ≡
√

1 + sin(2ν + 2β) sin(2θ) and
F2 ≡

√
1 + sin(2ν− 2β) sin(2θ) such that σ̂2

1 = IF2
1 and σ̂2

2 = IF2
2 . Then, for n = 1, 2,

eiζσ̂n ≡ Icn + isnσ̂n, (42)
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where we defined

cn ≡ cos(Fnζ), sn ≡
1
Fn

sin(Fnζ). (43)

Noting that Û0b = eiζσ̂1 , Ûb1 = e−
iφ
2 −iζσ̂2 , Û0c = e−iζσ̂2 and Ûc1 = e

iφ
2 +iζσ̂1 ,

Ûb ≡ Û0bÛb1

= e−
iφ
2 {Ic1c2 − ic1s2σ̂2 + ic2s1σ̂1 + s1s2σ̂1σ̂2}

= e−
iφ
2 (Iδ + iτ · σ̂) , (44)

where

δ ≡ c1c2 − s1s2(sin(2ν) sin(2θ) + cos(2β)),

τx ≡ −c1s2 sin ξ4 + c2s1 sin ξ1,

τy ≡ −c1s2 cos ξ3 − c2s1 cos ξ2,

τz ≡ s1s2 sin(2β) cos(2θ). (45)

Similarly,

Ûc ≡ Û0cÛc1

= e
iφ
2 {Ic2c1 − is2c1σ̂2 + ic2s1σ̂1 + s2s1σ̂2σ̂1}

= e
iφ
2
(
Iδ′ + iτ′ · σ̂

)
, (46)

with δ′ = δ and τ′ = (τx, τy,−τz). The angle ω is determined by cos ω = δδ′ + τ · τ′ = δ2 + τ2
x + τ2

y −
τ2

z = 1− 2τ2
z .

Figure 2. Schematics of the interferometer made of four sites, 0, b, c, and 1 separated by a length L.
The opening angle 2β and relative angle ν from x axis determine the geometric structure.

6. QAP in the Diamond Interferometer

We examine the quantum adiabatic spin-pumping by choosing two SOI strengths g1 = αR and
g2 = αD as control parameters. First we examine the basic property of the function CαR,αD defined in
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Equation (36) and then evaluate the scattering amplitudes. Using these results, we calculate the Berry
curvatures for two spin directions.

6.1. Spin-Independent Function CαR,αD

The function CαR,αD has symmetries, Cα1,α2 = Cα2,α1 , as well as Cα1,α2 = C−α1,α2 , Cα1,α2 = Cα1,−α2 .
Moreover, it also obeys the relation CαR,αD |ν = − CαR,αD | π2 −ν. Therefore, the angle ν = π/4 is rather
special. At this angle, CαR,αD is identically zero and hence no pumping. One can check this since
F1 = F2 and hence c1 = c2 and s1 = s2, then

τx = c1s1(sin ξ1 − sin ξ4) = 2c1s1 cos β sin(θ +
π

4
), (47)

τy = −c1s1(cos ξ3 + cos ξ2) = −2c1s1 cos β cos(θ − π

4
). (48)

Therefore, the relation τx = −τy holds for any β and θ and CαR,αD = 0.
Because of its symmetric property, we focus on the function CαR,αD in the range 0 ≤ αR, αD ≤ π.

As an example, we chose β = π/5 and the results for ν = π/2 and ν = 3π/8 are shown in Figure 3.
The result for ν = π/4 is uniformly zero as noted above and that for ν = π/8 is similar to that for
ν = 3π/8 with reversing the sign of the function. There are areas where the absolute value of CαR,αD is
enhanced near (αR, αD) = (π

2 , 0), (0, π
2 ), which can be understood from Equation (36) since |τz| is very

close to one. If we choose β = π/4, the scattering states “flips” at π/2 when αR is increased from zero
to π with αD = 0 [3]. Then the behavior of CαR,αD=0 becomes quite singular, which may need further
investigation (not being discussed here).

Figure 3. Contour plot of the function CαR,αD depending on the Rashba, αR, and Dresselhaus, αD,
SOI strength parameters. We chose the geometric angles β = π/5 and ν = π/2 (left) and ν =

3π/8 (right).

6.2. Spin-Dependent Prefactors

In this section, we examine the scattering amplitudes, t± and r± and the prefactors of the Berry
curvatures in Equations (34) and (35). We define these factors as dn̂ = |r+ − r−|2 − |t+|2 + |t−|2 and
d−n̂ = − |r+ − r−|2 − |t+|2 + |t−|2. To be compatible with the analysis in the previous subsection,
we focus on the geometry such that β = π/5 and ν = π/2. For simplicity, we chose symmetric setup

of the interferometer, where J0b = Jb1 = J0c = Jc1 = j and ε0 = ε1 = εb = εc. Then, γb = γc =
j2

εk−ε0
.

Moreover, in the following calculation we chose εk = −j. First, we show the result of d−n̂ for
ε0 = 0.9j in Figure 4 with choosing the AB phase φ = π/3. This function is negatively enhanced near
(αR, αD) = (π/2, 0) and (0, π/2). In contrast, the factor dn̂ is much smaller as shown in the linear
plot for αD = 0. If one chose AB phase φ = 5π/3, d−n̂ is suppressed and alternatively dn̂ is enhanced
near (αR, αD) = (π/2, 0) and (0, π/2) (with changing sign of the data in the left Figure 4). The AB
phase φ and site energy ε0 dependence of d±n̂ are shown in the left and right of Figure 5, respectively.
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Therefore, a large contrast of the QAP in two spin directions can be obtained by choosing φ = π/3
and ε0 = 0.9j.

Figure 4. (Left) Contour plot of the function d−n̂ for ε0 = 0.9j and φ = π/3. (Right) Line plot of the
functions d±n̂ as a function of αR with αD = 0.

Figure 5. (Left) AB phase dependence of the function d±n̂ for ε0 = 0.9j and αR = π/2, αD = 0.
(Right) Site energy dependence of the function d±n̂ for f = π/3 and αR = π/2, αD = 0.

6.3. Berry Curvatures

Finally, we calculate the Berry curvature, Π−n̂(αR, αD) for the spin in the state |−n̂〉 as shown in
the left of Figure 6. Obviously, the Berry curvature becomes large at around (αR, αD) = (π

2 , 0), (0, π
2 ).

The other spin state is not much pumped as shown in the right of Figure 6.

Figure 6. (Left) Contour plot of the Berry curvature for |−n̂〉 with β = π/5 and ν = π/2. We set
φ = π/3, εk = −j, J0b = Jb1 = J0c = Jc1 = j and ε0 = ε1 = εb = εc = 0.9j. (Right) Berry curvatures
for two spin directions with αD = 0.1 with the same parameter with the left panel.
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7. Discussion

We have derived a general expression of the Berry curvature for an interferometer connected to
one-dimensional leads. In this study, we restricted the control parameters in QAP formalism only to
modulate the scattering eigenstates and corresponding eigenvalues through the change of the unitary
operators for each arm. Then the AB phase, which, despite modifying the scattering eigenvalues, λ±,
does not affect the scattering eigenstates and is shown not to function as a control parameter in QAP.
In a clear contrast, it has been shown [26] that in combination with the potential modulation, affecting
the electron-hopping amplitudes or site energies, QAP by AB phase is possible.

In the current analysis, the control parameters are assumed to purely modulate the phase of
the electrons. In real experiments, unintended modulation of hopping amplitudes, Juv, or the site
energies, εb or εc by the gate voltages may induce additional effects. We demonstrated that by using
the two types of the SOI as the two control parameters, spin-QAP is possible. However, in the
experiments, independent control of the Rashba SOI and Dresselhaus SOI will be a complicated task.
Fortunately, as shown in Figure 6, the area of large Berry curvature is well isolated and the tiny change
of Dresselhaus SOI may be sufficient to observe QAP. It would be interesting if other types of SOI
interaction [5] could be another control parameter of the QAP.
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Abbreviations

The following abbreviations are used in this manuscript:
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Appendix A. Scattering Matrix

In this Appendix, we argue the scattering problem through the interferometer. First, we inject an
electron flux with an energy ε = εk from the left lead. The wavefunction for u ≤ 0 is

|ψ(u)〉 = eikua |χin〉+ e−ikua |χr〉 , (A1)

and the wavefunction for u ≥ 1 is

|ψ(u)〉 = eik(u−1)a |χt〉 , (A2)

where |χin〉 is the injected wavefunction and |χr〉 , |χt〉 are the (un-normalized) wavefunctions of
reflection and transmission. In particular, at sites u = 0,−1,

|ψ(0)〉 = |χin〉+ |χr〉 , |ψ(−1)〉 = e−ika |χin〉+ eika |χr〉 , (A3)

and at sites u = 1, 2,

|ψ(1)〉 = |χt〉 , |ψ(2)〉 = eika |χt〉 . (A4)

By putting these into Equations (3) and (4), we have

(εk − y0) {|χin〉+ |χr〉} = Ŵ |χt〉 − j
{

e−ika |χin〉+ eika |χr〉
}

, (A5)

(εk − y1) |χt〉 = Ŵ† {|χin〉+ |χr〉} − jeika |χt〉 . (A6)
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Then from Equation (A6),

|χt〉 =
1

εk − y1 + jeika Ŵ† {|χin〉+ |χr〉} , (A7)

and putting this into Equation (A5), we have

(εk − y0 + je−ika) |χin〉+ (εk − y0 + jeika) |χr〉 = Ŵ
1

εk − y1 + jeika Ŵ† {|χin〉+ |χr〉} . (A8)

Defining complex parameters Xu ≡ εk− yu + jeika (u = 0, 1) and noting εk− y0 + je−ika = X0− iηk,
we solve this equation

|χr〉 = −
[
IX0X1 − ŴŴ†

]−1 [
IX0X1 − ŴŴ† − IiηkX1

]
|χin〉 .

Then we have obtained the reflection amplitude matrix

r̂ ≡ −
[
IX0X1 − ŴŴ†

]−1 [
IX0X1 − ŴŴ† − IiηkX1

]
= −I+ iηkX1

[
IY− ŴŴ†

]−1
, (A9)

where we have introduced Y ≡ X0X1. Using this, transmitted state is calculated with Equation (A7),

|χt〉 =
1

X1
Ŵ† {|χin〉+ |χr〉}

=
1

X1
Ŵ†

[
I− I+ iηkX1

[
IY− ŴŴ†

]−1
]
|χin〉

= iηkŴ†
[
IY− ŴŴ†

]−1
|χin〉 ,

hence the transmission amplitude matrix is

t̂ = iηkŴ†
[
IY− ŴŴ†

]−1
. (A10)

We alternatively consider the situation that the electron is injected from the right lead.
The wavefunction for u ≥ 1 is

|ψ(n)〉 = e−ik(n−1)a |χ′in〉+ eik(n−1)a |χ′r〉 , (A11)

and the wavefunction for u ≤ 0 is

|ψ(n)〉 = e−ikna |χ′t〉 , (A12)

where |χ′in〉 is the incoming wavefunction and |χ′r〉 , |χ′t〉 are the (un-normalized) wavefunctions of
reflection and transmission. At sites u = 1, 2,

|ψ(1)〉 = |χ′in〉+ |χ′r〉 , |ψ(2)〉 = e−ika |χ′in〉+ eika |χ′r〉 , (A13)

and at sites u = 0,−1,

|ψ(0)〉 = |χ′t〉 , |ψ(−1)〉 = eika |χ′t〉 . (A14)
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By putting these into Equations (3) and (4), we have

(εk − y0) |χ′t〉 = Ŵ
{
|χ′in〉+ |χ′r〉

}
− jeika |χ′t〉 , (A15)

(εk − y1)
{
|χ′in〉+ |χ′r〉

}
= Ŵ† |χ′t〉 − j

{
e−ika |χ′in〉+ eika |χ′r〉

}
. (A16)

From Equation (A15),

|χ′t〉 =
1

X0
Ŵ
{
|χ′in〉+ |χ′r〉

}
, (A17)

and putting this into Equation (A16),

(X1 − iηk) |χ′in〉+ X1 |χ′r〉 = Ŵ† 1
X0

Ŵ
{
|χ′in〉+ |χ′r〉

}
,

(A18)

which is solved as

|χ′r〉 =
[
IY− Ŵ†Ŵ

]−1 {
−
(
IY− Ŵ†Ŵ

)
+ iηkX0I

}
|χ′in〉

=

{
−I+ iηkX0

[
IY− Ŵ†Ŵ

]−1
}
|χ′in〉 ,

Therefore, the reflection amplitude matrix is

r̂′ = −I+ iηkX0

[
IY− Ŵ†Ŵ

]−1
. (A19)

Putting this into Equation (A17),

|χ′t〉 =
Ŵ
X0

{
I− I+ iηkX0

[
IY− Ŵ†Ŵ

]−1
}
|χ′in〉

= iηkŴ
[
IY− Ŵ†Ŵ

]−1
|χ′in〉 ,

and hence the transmission amplitude matrix is

t̂′ = iηkŴ
[
IY− Ŵ†Ŵ

]−1
. (A20)

Appendix B. Scattering Eigenstates

In this appendix, we show the details of the calculations of the scattering eigenstates discussed in
Section 3. First, we evaluate

ŴŴ† = (γbÛb + γcÛc)(γbÛ†
b + γcÛ†

c )

= (γ2
b + γ2

c )I+ γbγc(û + û†), (A21)

with û ≡ ÛbÛ†
c representing the total development around the interferometer in the order 0→ b→

1→ c→ 0. We study following matrix

û = e−iφ (Iδ + iτ · σ̂)
(
Iδ′ − iτ′ · σ̂

)
= e−iφ

{
Iδδ′ − iδτ′ · σ̂ + iδ′τ · σ̂ + (τ · σ̂)(τ′ · σ̂)

}
= e−iφ

{
Iδδ′ + i(δ′τ − δτ′) · σ̂ + Iτ · τ′ + i(τ × τ′) · σ̂

}
.
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We introduce a unit vector defined by

n̂ ≡ N
{

δ′τ − δτ′ + τ × τ′
}
= (nx, ny, nz), (A22)

where N is a normalization constant. We define z-direction (in spin space) in parallel to δ′τ −
δτ′, namely

N
{

δ′τ − δτ′
}
≡ nz ẑ, (A23)

with a unit vector ẑ in z-direction. Since τ × τ′ is orthogonal to δ′τ − δτ′, we set

N
{

τ × τ′
}
≡ nx x̂ + nyŷ, (A24)

with unit vectors in x, y-directions. Solving Equation (A23) for τ′, we have

τ′ =
δ′

δ
τ − nz

δN ẑ, (A25)

and hence

τ × τ′ = − nz

δN (τ × ẑ) . (A26)

Using this, we obtain for τ = (τx, τy, τz),

nx = x̂ · N
{

τ × τ′
}
= −nz

δ
τy. (A27)

Similarly, we also have ny = nz
δ τx. Normalization condition requires

1 =
(
−nz

δ
τy

)2
+
(nz

δ
τx

)2
+ n2

z =
1− τ2

z
δ2 n2

z , (A28)

hence we determine

nz =
δ√

1− τ2
z

, (A29)

and

n̂ =
1√

1− τ2
z
(−τy, τx, δ). (A30)

Therefore,

û = e−iφ
{
I
(
δδ′ + τ · τ′

)
+ i

1
N n̂ · σ̂

}
≡ e−iφ {I cos ω + i sin ωn̂ · σ̂} , (A31)

where the real parameter ω is determined from cos ω ≡ δδ′ + τ · τ′. The unitarity condition of û can
be checked by noting

1
N 2 =

∣∣δ′τ − δτ′ + τ × τ′
∣∣2

=
∣∣δ′τ − δτ′

∣∣2 + (τ × τ′) · (τ × τ′)

= δ2 + δ′2 − 2δδ′τ · τ′ + (1− δ2)(1− δ′2)− (τ · τ′)2

= 1− (δδ′ + τ · τ′)2 = 1− cos2 ω, (A32)
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where we used the relation (τ × τ′) · (τ × τ′) = |τ|2 |τ′|2 − (τ · τ′)2. Now, the operator û + û† is
calculated as

û + û† = 2 cos φ cos ωI+ 2 sin φ sin ωn̂ · σ̂, (A33)

hence

ŴŴ† = (γ2
b + γ2

c )I+ 2γbγc(cos φ cos ωI+ sin φ sin ωn̂ · σ̂)
≡ AI+ B · σ̂. (A34)

We defined

A = γ2
b + γ2

c + 2γbγc cos φ cos ω, (A35)

B = 2γbγc sin φ sin ωn̂. (A36)

Alternatively, we evaluate

Ŵ†Ŵ = (γbÛ†
b + γcÛ†

c )(γbÛb + γcÛc)

= (γ2
b + γ2

c )I+ γbγc(û′ + û′†), (A37)

where û′ ≡ Û†
c Ûb, which represents the total development around the interferometer in the order

1→ c→ 0→ b→ 1. With similar procedure done for û, we have

û′ = e−iφ
{
Iδδ′ + i(δ′τ − δτ′) · σ̂ + Iτ′ · τ + i(τ′ × τ) · σ̂

}
= e−iφ {I cos ω + i sin ωn̂′ · σ̂

}
, (A38)

where

n̂′ =
1√

1− τ2
z
(τy,−τx, δ), (A39)

and with the same ω as before. Now, by calculating the factor û′ + û′†, we obtain

Ŵ†Ŵ = (γ2
b + γ2

c )I+ 2γbγc(cos φ cos ωI+ sin φ sin ωn̂′ · σ̂)
≡ AI+ B′ · σ̂, (A40)

where

B′ = 2γbγc sin φ sin ωn̂′. (A41)

As shown in the main text, we introduce two sets of normalized eigenstates of the operators n̂ · σ̂
and n̂′ · σ̂, |±n̂〉 and |±n̂′〉, which obey

ŴŴ† |±n̂〉 = λ± |±n̂〉 ,

Ŵ†Ŵ |±n̂′〉 = λ± |±n̂′〉 , (A42)

with the same eigenvalues as Equation (19).
It can be shown that these two sets of eigenstates {|±n̂〉 , |±n̂′〉} are related with each other by

|±n̂′〉 =
1√
λ±

Ŵ† |±n̂〉 , (A43)
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with double-sign correspondence. This can be checked by the eigen-equation

Ŵ†Ŵ |±n̂′〉 =
1√
λ±

Ŵ†(ŴŴ†) |±n̂〉

=
1√
λ±

Ŵ†λ± |±n̂〉

= λ± |±n̂′〉 , (A44)

and the normalization condition

〈±n̂′| ± n̂′〉 =
1

λ±
〈±n̂|ŴŴ†| ± n̂〉

= 〈±n̂| ± n̂〉 = 1. (A45)

Similarly, we can also prove the relation

|±n̂〉 =
1√
λ±

Ŵ |±n̂′〉 . (A46)

We have the spectral decomposition of the matrices Ŵ† and Ŵ by

Ŵ† =
√

λ+ |n̂′〉 〈n̂|+
√

λ− |−n̂′〉 〈−n̂| , (A47)

Ŵ =
√

λ+ |n̂〉 〈n̂′|+
√

λ− |−n̂〉 〈−n̂′| , (A48)

where the second relation is obtained by taking Hermite conjugate of the first relation.
Now, let us turn to discuss the scattering wavefunctions using these eigenstates. For the left

incoming states, we choose |χin〉 = |±n̂〉, then the transmitted states are

|χt,±〉 = t̂ |±n̂〉

= iηkŴ†
[
IY− ŴŴ†

]−1
|±n̂〉

= iηkŴ† [IY− Iλ±]−1 |±n̂〉

=
iηk

Y− λ±
Ŵ† |±n̂〉

=
iηk

Y− λ±

√
λ± |±n̂′〉

= t± |±n̂′〉 , (A49)

where we used Equations (5) and (A47) and defined two transmission amplitudes,

t± ≡ iηk
√

λ±
Y− λ±

. (A50)

Using the orthogonality of the eigenstates, the transmission amplitude matrix t̂ is expressed as in
Equation (24). Similarly, the reflected states are

|χr,±〉 = r̂ |±n̂〉 = r± |±n̂〉 , (A51)

where the reflection amplitudes are

r± ≡ −1 +
iηkX1

Y− λ±
. (A52)
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The reflection amplitude matrix r̂ is diagonal and is given in Equation (27). Similarly, for the right
incoming states, the transmitted states are

|χ′t,±〉 = t̂′ |±n̂′〉 = t± |±n̂〉 , (A53)

and hence the transmission amplitude matrix t̂′ is given in Equation (25). The reflected states are

|χ′r,±〉 = r̂′ |±n̂′〉 = r′± |±n̂′〉 , (A54)

where we defined

r′± ≡ −1 +
iηkX0

Y− λ±
, (A55)

and hence the reflection amplitude matrix r̂′ is given in Equation (28).

Appendix C. Unitarity of the Scattering Matrix

The scattering matrix needs to satisfy the unitarity condition, such that

t̂† t̂ + r̂† r̂ = I. (A56)

Using the results of Equations (24) and (27),

t̂† t̂ + r̂† r̂ = |t+|2 |n̂〉 〈n̂|+ |t−|2 |−n̂〉 〈−n̂|+ |r+|2 |n̂〉 〈n̂|+ |r−|2 |−n̂〉 〈−n̂| .

Therefore, if |t±|2 + |r±|2 = 1, using the completeness relation of |±n̂〉, the unitarity is confirmed.
Let us check this:

|t±|2 + |r±|2 =

∣∣∣∣ iηk
√

λ±
Y− λ±

∣∣∣∣2 + ∣∣∣∣−1 +
iηkX1

Y− λ±

∣∣∣∣2
=

η2
k λ±

|Y− λ±|2
+ 1 +

iηkX∗1
Y∗ − λ±

− iηkX1

Y− λ±
+

η2
k |X1|2

|Y− λ±|2

= 1 + iηk
X∗1 (Y− λ±)− X1(Y∗ − λ±)

|Y− λ±|2
+

η2
k (λ± + |X1|2)
|Y− λ±|2

= 1 +
ηk

|Y− λ±|2
[
i {X∗1 (Y− λ±)− X1(Y∗ − λ±)}+ ηk(λ± + |X1|2)

]
.

The factor in the square bracket is

[•] = −i(X∗1 − X1)λ± + i(X0 |X1|2 − X∗0 |X1|2) + ηk(λ± + |X1|2)
= [−i(−iηk) + ηk] λ± + [i(iηk) + ηk] |X1|2 = 0,

hence |t±|2 + |r±|2 = 1 is confirmed.

Appendix D. Derivatives of the Scattering Amplitude Matrices

In this Appendix, we evaluate the Berry curvature, Equation (33), with two control parameters,
g1, g2, which only modify the scattering eigenvalues λ± and corresponding eigenvectors |±n̂〉 , |±n̂′〉.
We need to calculate the derivatives of the scattering amplitude matrices by a control parameter



Entropy 2019, 21, 828 17 of 22

(g = g1, g2), ∂r̂
∂g and ∂t̂′

∂g . Since scattering amplitude matrices are expressed with the eigenstates as
shown in Equations (24) and (27), we first evaluate the first order derivative of the basis states

∂

∂g

(
|n̂〉
|−n̂〉

)
=

(
ag bg

b̃g ãg

)(
|n̂〉
|−n̂〉

)
, (A57)

∂

∂g

(
|n̂′〉
|−n̂′〉

)
=

(
ag′ bg′

b̃g′ ãg′

)(
|n̂′〉
|−n̂′〉

)
. (A58)

Since the basis states are normalized,

∂

∂g
〈n̂|n̂〉 =

(
∂ 〈n̂|
∂g

)
|n̂〉+ 〈n̂| ∂ |n̂〉

∂g
= a∗g + ag = 0, (A59)

and ag should be pure imaginary. Similarly, ãg, ag′ and ãg′ are also pure imaginary. Using the
orthogonality condition, we have the relation

∂

∂g
〈n̂| − n̂〉 =

(
∂ 〈n̂|
∂g

)
|−n̂〉+ 〈n̂| ∂ |−n̂〉

∂g
= b∗g + b̃g = 0, (A60)

and b∗g′ + b̃g′ = 0.

To have the formula for ag, bg and b̃g, we consider a unit vector n̂ ≡ (nx, ny, nz) =

(sin Θ cos Φ, sin Θ sin Φ, cos Θ), with angles Θ and Φ. Since the operator n̂ · σ̂ in the matrix form,

n̂ · σ̂ =

(
cos Θ sin Θe−iΦ

sin ΘeiΦ − cos Θ

)
, (A61)

has two eigenvalues λ = ±1, the eigenvector in a form (c1, c2)
t satisfies for λ = 1, (cos Θ− 1)c1 +

(sin Θe−iΦ)c2 = 0 and normalization condition, and hence

|n〉 =

(
nx − iny√
2(1− nz)

,
√

1− nz√
2

)t

, (A62)

and for λ = −1, (cos Θ + 1)c1 + (sin Θe−iΦ)c2 = 0, hence

|−n〉 =

(
−nx + iny√

2(1 + nz)
,
√

1 + nz√
2

)t

. (A63)

Differentiation with g gives

∂

∂g
|n〉 =

 ∂nx
∂g − i ∂ny

∂g√
2(1− nz)

+
(nx − iny)

∂nz
∂g

2
√

2(1− nz)3/2
,−

∂nz
∂g

2
√

2
√

1− nz

t

, (A64)

and

∂

∂g
|−n〉 =

− ∂nx
∂g + i ∂ny

∂g√
2(1− nz)

+
(nx − iny)

∂nz
∂g

2
√

2(1 + nz)3/2
,

∂nz
∂g

2
√

2
√

1 + nz

t

. (A65)
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Therefore,

ag ≡ 〈n| ∂

∂g
|n〉 = i

2(1− nz)

{
ny

∂nx

∂g
− nx

∂ny

∂g

}
, (A66)

ãg ≡ 〈−n| ∂

∂g
| − n〉 = i

2(1 + nz)

{
ny

∂nx

∂g
− nx

∂ny

∂g

}
, (A67)

bg ≡ 〈−n| ∂

∂g
|n〉

= − 1
2
√

1− n2
z

{
iny

∂nx

∂g
− inx

∂ny

∂g
+

∂nz

∂g

}
, (A68)

b̃g ≡ 〈n| ∂

∂g
| − n〉 = −b∗g

=
1

2
√

1− n2
z

{
−iny

∂nx

∂g
+ inx

∂ny

∂g
+

∂nz

∂g

}
. (A69)

We also evaluate ag′ , ãg′ , bg′ and b̃g′ similarly. From Equations (A30) and (A39), we found that
following relations hold: ag′ = ag, ãg′ = ãg and bg′ = b∗g and b̃g′ = −bg.

Using these relations, we evaluate the derivatives of the scattering amplitudes:

∂r̂
∂g

=
∂r+
∂g
|n̂〉 〈n̂|+ r+

∂ |n̂〉
∂g
〈n̂|+ r+ |n̂〉

∂ 〈n̂|
∂g

+
∂r−
∂g
|−n̂〉 〈−n̂|+ r−

∂ |−n̂〉
∂g

〈−n̂|+ r− |−n̂〉 ∂ 〈−n̂|
∂g

≡ (|n̂〉 , |−n̂〉) r̂g

(
〈n̂|
〈−n̂|

)
, (A70)

with defining a matrix

r̂g =

(
∂r+
∂g (r+ − r−)b∗g

(r+ − r−)bg
∂r−
∂g

)
. (A71)

Similarly,

∂t̂′

∂g
=

∂t+
∂g
|n̂〉 〈n̂′|+ t+

∂ |n̂〉
∂g
〈n̂′|+ t+ |n̂〉

∂ 〈n̂′|
∂g

+
∂t−
∂g
|−n̂〉 〈−n̂′|+ t−

∂ |−n̂〉
∂g

〈−n̂′|+ t− |−n̂〉 ∂ 〈−n̂′|
∂g

≡ (|n̂〉 , |−n̂〉) t̂′g

(
〈n̂′|
〈−n̂′|

)
, (A72)

with defining a matrix

t̂′g =

(
∂t+
∂g t+bg − t−b∗g

t+bg − t−b∗g
∂t−
∂g

)
. (A73)

Obviously, it is convenient to take the scattering eigenstates |±n̂〉 to the spin axis |σ = ±1〉 in the
Berry curvatures, which is written as

Πn̂/−n̂(g1, g2) =
1
π
=
{(

r̂g2 r̂†
g1
+ t̂′g2

t̂′†g1

)
(1,1)/(2,2)

}
. (A74)
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Then the diagonal components of r̂g2 r̂†
g1

is

(
r̂g2 r̂†

g1

)
(1,1)

=
∂r+
∂g2

∂r∗+
∂g1

+ |r+ − r−|2 b∗g2
bg1 , (A75)(

r̂g2 r̂†
g1

)
(2,2)

=
∂r−
∂g2

∂r∗−
∂g1

+ |r+ − r−|2 bg2 b∗g1
, (A76)

and the diagonal components of t̂′g2
t̂′†g1

is

(
t̂′g2

t̂′†g1

)
(1,1)

=
∂t+
∂g2

∂t∗+
∂g1

+ (t+bg2 − t−b∗g2
)(t∗+b∗g1

− t∗−bg1), (A77)(
t̂′g2

t̂′†g1

)
(2,2)

=
∂t−
∂g2

∂t∗−
∂g1

+ (t+bg2 − t−b∗g2
)(t∗+b∗g1

− t∗−bg1). (A78)

As stated before, we restrict the type of control parameters, g, that only change the eigenvalues
λ± in the transmission amplitudes, r± and t± and corresponding eigenstates, and we take

∂r±
∂g

=
∂λ±
∂g

∂r±
∂λ±

,
∂t±
∂g

=
∂λ±
∂g

∂t±
∂λ±

. (A79)

Then the factors in the Berry curvature, Equations (A75) and (A77),

∂r±
∂g2

∂r∗±
∂g1

=
∂λ±
∂g2

∂λ±
∂g1

∣∣∣∣ ∂r±
∂λ±

∣∣∣∣2 , (A80)

∂t±
∂g2

∂t∗±
∂g1

=
∂λ±
∂g2

∂λ±
∂g1

∣∣∣∣ ∂t±
∂λ±

∣∣∣∣2 , (A81)

are real and are not contributing to the pumping.
Then, the Berry curvature for the spin |n̂〉 is

Πn̂(g1, g2) =
1
π
=
{
|r+ − r−|2 b∗g2

bg1 + (t+bg2 − t−b∗g2
)(t∗+b∗g1

− t∗−bg1)
}

=
1

2πi
(|r+ − r−|2 − |t+|2 + |t−|2)

(
b∗g2

bg1 − bg2 b∗g1

)
. (A82)

Using Equation (A68) and the relation

∂nz

∂g
= − 1

nz

(
nx

∂nx

∂g
+ ny

∂ny

∂g

)
, (A83)

derived from nz =
√

1− n2
x − n2

y, the factor in the last bracket of Equation (A82) is manipulated to

b∗g2
bg1 − bg2 b∗g1

=
i

2nz

(
∂nx

∂g2

∂ny

∂g1
− ∂nx

∂g1

∂ny

∂g2

)
≡ 2πiCg1,g2 . (A84)

From Equation (A30), the derivatives of the elements of n̂ by some control parameter g are
calculated as

∂nx

∂g
= − 1√

1− τ2
z

{
∂τy

∂g
+

τyτz

1− τ2
z

∂τz

∂g

}
, (A85)

∂ny

∂g
=

1√
1− τ2

z

{
∂τx

∂g
+

τxτz

1− τ2
z

∂τz

∂g

}
, (A86)
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therefore, the factor Cg1,g2 in Equation (A84) is obtained as Equation (36) and the Berry curvatures are
given as Equations (34) and (35).

Appendix E. Formulation of Diamond-Shape Interferometer

This section explains the foundation of the Schrödinger Equations (3) and (4). At the four sites in
the interferometer, the Schrödinger equation is

(ε− εu) |ψ(u)〉 = −∑
v

Ũuv |ψ(v)〉 . (A87)

Explicitly, at sites u = 0, 1, b, c:

(ε− ε0) |ψ(0)〉 = −
(
Ũ0b |ψ(b)〉+ Ũ0c |ψ(c)〉

)
− j |ψ(−1)〉 , (A88)

(ε− ε1) |ψ(1)〉 = −
(

Ũ†
b1 |ψ(b)〉+ Ũ†

c1 |ψ(c)〉
)
− j |ψ(2)〉 , (A89)

(ε− εb) |ψ(b)〉 = −
(

Ũ†
0b |ψ(0)〉+ Ũb1 |ψ(1)〉

)
, (A90)

(ε− εc) |ψ(c)〉 = −
(

Ũ†
0c |ψ(0)〉+ Ũc1 |ψ(1)〉

)
. (A91)

Using Equations (A90) and (A91),

|ψ(b)〉 = − 1
ε− εb

[
Ũ†

0b |ψ(0)〉+ Ũb1 |ψ(1)〉
]

, (A92)

|ψ(c)〉 = − 1
ε− εc

[
Ũ†

0c |ψ(0)〉+ Ũc1 |ψ(1)〉
]

. (A93)

By putting these into Equation (A88),

(ε− ε0) |ψ(0)〉 = −Ũ0b

(
− 1

ε− εb

) [
Ũ†

0b |ψ(0)〉+ Ũb1 |ψ(1)〉
]

−Ũ0c

(
− 1

ε− εc

) [
Ũ†

0c |ψ(0)〉+ Ũc1 |ψ(1)〉
]
− j |ψ(−1)〉

=

(
J0b Jb0
ε− εb

+
J0c Jc0

ε− εc

)
|ψ(0)〉+

[
Ũ0bŨb1
ε− εb

+
Ũ0cŨc1

ε− εc

]
|ψ(1)〉 − j |ψ(−1)〉 .

Then we define real variables

γuvw ≡ Juv Juw

ε− εv
, (A94)

and introducing a 2× 2 matrix

Ŵ ≡ Ũ0bŨb1
ε− εb

+
Ũ0cŨc1

ε− εc

= γ0b1Û0bÛb1 + γ0c1Û0cÛc1, (A95)

we obtain the relation equivalent to Equation (3)

(ε− y0) |ψ(0)〉 = Ŵ |ψ(1)〉 − j |ψ(−1)〉 , (A96)
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where we defined renormalized site energy at u = 0, y0 ≡ ε0 + γ0b0 + γ0c0. By putting Equation (A92)
in Equation (A89),

(ε− ε1) |ψ(1)〉 = Ũ†
b1

(
1

ε− εb

) [
Ũ†

0b |ψ(0)〉+ Ũb1 |ψ(1)〉
]

+Ũ†
c1

(
1

ε− εc

) [
Ũ†

0c |ψ(0)〉+ Ũc1 |ψ(1)〉
]
− j |ψ(2)〉

=

(
J1b Jb0
ε− εb

Û†
b1Û†

0b +
J1c Jc0

ε− εc
Û†

c1Û†
0c

)
|ψ(0)〉+

(
J1b Jb1
ε− εb

+
J1c Jc1

ε− εc

)
|ψ(1)〉 − j |ψ(2)〉 .

Hence, we have the equation equivalent to Equation (4)

(ε− y1) |ψ(1)〉 = Ŵ† |ψ(0)〉 − j |ψ(2)〉 , (A97)

where we introduced renormalized site energy at u = 1, y1 ≡ ε1 + γ1b1 + γ1c1. We defined γb ≡ γ0b1,
γc ≡ γ0c1 and Ûb ≡ Û0bÛb1, Ûc ≡ Û0cÛc1.
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