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Abstract: In this paper, the Gaussian wiretap feedback channel is revisited, and some new results
on its secrecy capacity are obtained. To be specific, first, we show that the Schalkwijk–Kailath (SK)
feedback scheme, which achieves the secrecy capacity of the degraded Gaussian wiretap feedback
channel, also achieves the secrecy capacity of the non-degraded Gaussian wiretap feedback channel.
Second, applying the existing secret key-based feedback schemes to Gaussian wiretap feedback
channels, we derive some new lower bounds on the secrecy capacities of these models. Finally,
we compare the performances of the above feedback schemes in the degraded and non-degraded
Gaussian wiretap feedback channels and show which feedback scheme performs better for these
channel models.

Keywords: Gaussian wiretap channel; noiseless feedback; Schalkwijk–Kailath scheme; secrecy
capacity

1. Introduction

In recent years, mobile wireless communication has been widely used and has become an essential
part in people’s daily life. Due to the broadcast nature of wireless communications, the private
information in people’s wireless mobile devices (such as bank card information, energy pricing
messages, e-health data, and password messages) is more vulnerable to eavesdropping. Physical
layer security (PLS), realizing secure communication over wireless channels by information-theoretic
approaches, is shown to be an effective way to prevent information eavesdropping. The research
on PLS in communication systems started from Wyner’s outstanding work on the degraded wiretap
channel (DWTC) [1], where a transmitter broadcasts its message M over N channel uses to a legitimate
receiver and an eavesdropper via a degraded broadcast channel, and the perfect secrecy is guaranteed
if the information leakage rate 1

N I(M; ZN), where ZN denotes the received output at the eavesdropper,
vanishes as the transmitted codeword length N tends to infinity (Here note that the perfect secrecy
defined in [1] is in fact weak secrecy. Another definition of the perfect secrecy is strong secrecy, which
is defined as the information leakage I(M; ZN) at the wiretapper vanishes as N tends to infinity.).The
secrecy capacity, defined as the channel capacity under the weak secrecy constraint, was established
in [1]. Subsequently, the work in [2] generalized the DWTC [1] by considering a general broadcast
channel and the transmission of a common message, which is allowed to be decoded by both the
legitimate receiver and the eavesdropper. The capacity results of [1] and [2] indicated that for the
wiretap channel (WTC) and its extended model, the positive secrecy rates are guaranteed only if the
legitimate receiver’s channel is less noisy than the wiretapper’s channel. Thus, it is natural to ask the
following two questions:

• (1) How can a positive secrecy rate be achieved if the eavesdropper’s channel is less noisy than
the legitimate receiver’s channel?
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• (2) If the eavesdropper’s channel is noisier than the legitimate receiver’s channel, can the secrecy
rate be further enhanced beyond the secrecy capacity?

The schemes that exploit artificial noise-aided cooperative jamming [3–5] and channel feedback
address the above two questions. However, in some circumstances, such as Internet of Things
(IoT) systems, artificial noise-aided cooperative jamming may not be suitable since the IoT devices
have significant energy constraints [6,7], and hence, channel feedback is of particular interest in
such circumstances.

The role of channel feedback in PLS of communication systems was first studied in [8], where
the pioneering work [1] was re-visited by considering the case that the legitimate receiver can send
its received channel outputs back to the transmitter via a noiseless feedback channel, which is not
known by the eavesdropper. Since the transmitter also knows the legitimate receiver’s channel output
via the noiseless feedback channel, the work in [8] showed that generating the secret key from the
legitimate receiver’s channel output and using it to encrypt the transmitted message help to increase
the secrecy capacity of the WTC. Furthermore, the work in [8] showed that such a secret key-based
feedback scheme achieves the secrecy capacity of the DWTC with noiseless feedback, which implies
that it is an optimal feedback scheme for the DWTC. Here, note that in [8], the feedback channel only
transmits the legitimate receiver’s channel output, and what happens if the channel can transmit
anything as the legitimate receiver wishes? The work in [9] investigated this case and pointed out that
directly transmitting pure random bits instead of the legitimate receiver’s channel output over the
noiseless feedback channel may perform even better. [9] further showed that transmitting pure random
bits performs better than transmitting the legitimate receiver’s channel output if the rate of the pure
random bits is larger than that of the secret key generated from the legitimate receiver’s channel output,
and vice versa. Later, the work in [10] extended the WTC with rate-limited feedback [9] to a broadcast
case, where one secret message is sent to two legitimate receivers via a general broadcast wiretap
channel, and two legitimate receivers independently send their secret keys to the transmitter via two
noiseless feedback channels. Encrypting the transmitted message for its intended legitimate receiver
by the corresponding secret key and using time-sharing between these two encrypted messages, the
work in [10] derived an achievable secrecy rate for this extended model and showed that these secret
keys help to increase the achievable secrecy rate (lower bound on the secrecy capacity) of the same
model without feedback [11]. Other related works on the feedback channels with secrecy constraints
include [12–16], where the channel state was introduced into various feedback channel models in the
presence of an eavesdropper.

Here, note that the feedback schemes mentioned above mainly focus on generating secret keys
from the feedback. Recently, exploiting other usages of feedback has attracted considerable attention.
To be specific, the work in [17] showed that for feedback communication systems, a better use of the
channel output feedback is to produce not only a secret key, but also a helping message from it, and
such a helping message improves the legitimate receiver’s decoding performance. Later, the works
in [18] and [19] further applied the scheme of [17] to the state-dependent WTC with and without the
action encoder, respectively. Moreover, the work in [20] found that the classical Schalkwijk–Kailath (SK)
scheme [21] achieving the capacity of the Gaussian channel with feedback also achieved the secrecy
capacity of the Gaussian wiretap channel with feedback. Furthermore, the work in [22] investigated
the finite-order autoregressive moving average (ARMA) Gaussian wiretap channel with noiseless
feedback. A variation of the SK scheme was proposed to achieve the secrecy capacity, which equals
the capacity of the same model without the secrecy constraint.

In this paper, we revisit the Gaussian wiretap feedback channel [20] (see Figure 1), and would
like to answer the following questions:

• (1) In [20], the secrecy capacity of the degraded Gaussian wiretap feedback channel was derived,
and it equaled the capacity of the same model without the secrecy constraint. Does this still hold
for the non-degraded Gaussian wiretap feedback channel (see Figure 2), i.e., does the secrecy
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capacity of the non-degraded Gaussian wiretap feedback channel equal the capacity of the same
model without the secrecy constraint?

• (2) For the already existing feedback schemes such as the secret key based feedback scheme [8],
the improved secret key-based feedback scheme [17], and the SK feedback scheme [20,21], which
one performs the best for the Gaussian wiretap feedback channel?

Figure 1. The degraded Gaussian wiretap feedback channel.

Figure 2. The non-degraded Gaussian wiretap feedback channel.

The main contribution of this paper is as follows:

• (1) We derive the secrecy capacity of the non-degraded Gaussian wiretap feedback channel and
show that it also equals the capacity of the same model without the secrecy constraint.

• (2) In [8], it was shown that the secret key-based feedback scheme was optimal for the discrete
memoryless DWTC. However, this is not true for the degraded Gaussian wiretap feedback
channel, i.e., in this paper, we show that the secret key-based feedback scheme only achieves a
lower bound on the secrecy capacity of the degraded Gaussian wiretap feedback channel. Hence,
for the degraded Gaussian wiretap feedback channel, the SK feedback scheme performs the best.
In addition, in this paper, we show that for the non-degraded Gaussian wiretap feedback channel,
the improved secret key-based feedback scheme performs as well as the SK scheme, and both of
them perform better than the secret key-based feedback scheme.

This paper is organized as follows. Section 2 shows the capacity result on the non-degraded
Gaussian wiretap feedback channel and its proof. Section 3 shows the performances of the secret
key-based feedback scheme, the improved secret key-based feedback scheme, and the SK feedback
scheme in the Gaussian wiretap feedback channel. Final conclusions are presented in Section 4.

2. The Non-Degraded Gaussian Wiretap Feedback Channel

In the remainder of this paper, random variables (RVs), their realizations, and alphabets are
denoted by uppercase letters, lowercase letters, and calligraphic letters, respectively. Random vectors
and their realizations are written in a similar way. For example, Y denotes an RV, and y denotes
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the value of a realization in the alphabet Y . Similarly, YN denotes a random vector (Y1, ..., YN), and
yN = (y1, ..., yN) denotes the value of a realization in YN (the Nth Cartesian power of Y). Moreover,
for simplicity, the probability Pr{X = x} is denoted by P(x), and in the remainder of this paper, the
base of the log function is taken to be two.

For the non-degraded Gaussian wiretap feedback channel (see Figure 2), the transmitted message
M is uniformly drawn from the set M = {1, 2, ..., |M|}. The channel input and outputs at time
i ∈ {1, 2, ..., N} satisfy:

Yi = giXi + ηi, Zi = ge,iXi + ηe,i, (1)

where Xi is the channel input subject to an average power constraint P, Yi and Zi are channel outputs
respectively at the legitimate receiver and the eavesdropper, gi = g and ge,i = ge are the gains
of the legitimate receiver’s channel and the eavesdropper’s channel, respectively, and ηi and ηe,i
are independent Gaussian noises and are i.i.d. across the time index i. Moreover, ηi ∼ N (0, σ2),
ηe,i ∼ N (0, σ2

e ) and the noises ηi, ηe,i are independent of the transmitted message M, and the ith

channel input Xi is a stochastic function of the message M and the channel output feedback Yi−1.
The legitimate receiver produces M̂ = ψ(YN), where ψ is the legitimate receiver’s decoding

function, and the decoding error probability is denoted by:

Pe =
1
|M| ∑

m∈M
Pr{ψ(yN) 6= m|m sent}. (2)

Let:
∆ =

1
N

H(M|ZN) (3)

be the eavesdropper’s equivocation rate of the message M. Given a non-negative number R, if for any
ε > 0, there exists a pair of encoder and decoder such that:

log |M|
N

≥ R− ε, ∆ ≥ R− ε, Pe ≤ ε, (4)

R is achievable under the weak secrecy constraint. The secrecy capacity Cs− f is the supremum over all
achievable weak secrecy rates, and it will be given in the following Theorem 1.

Theorem 1. The secrecy capacity Cs− f of the non-degraded Gaussian wiretap feedback channel is given by:

Cs− f =
1
2

log
(

1 +
g2P
σ2

)
. (5)

Remark 1. Here, note that in the model of Figure 2, the eavesdropper’s channel may be less noisy than the
legitimate receiver’s. Theorem 1 indicates that even if the eavesdropper’s channel is less noisy than the legitimate
receiver’s, the perfect secrecy can still be achieved without loss of the transmission rate, i.e., the secrecy capacity
equals the legitimate receiver’s channel capacity.

Proof. First, remember that the capacity of the legitimate receiver’s channel is 1
2 log(1 + g2P

σ2 ), and it is
obtained by substituting (1) into max I(X; Y) and using the fact that the maximum is achieved if X is
Gaussian distributed with zero mean and variance P. Then, the converse of Theorem 1 follows from the
fact that feedback does not increase the capacity of the legitimate receiver’s channel and Cs− f cannot

exceed the capacity of the legitimate receiver’s channel with feedback, i.e., Cs− f ≤ 1
2 log(1 + g2P

σ2 ).
Now, it remains to show the achievability of Cs− f ; see the following.

From (1), we know that the input and output of the legitimate receiver’s channel satisfy:

Yi = gXi + ηi. (6)
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Notice that (6) can be re-written as:

Y
′
i = Xi + η

′
i , (7)

where Y
′
i = Yi

g and η
′
i =

ηi
g . Now, the legitimate receiver’s channel is equivalent to a new Gaussian

channel with input Xi, output Y
′
i , and channel noise η

′
i ∼ N (0, σ

′2 = σ2

g2 ). Then, we describe the SK
scheme for this equivalent channel as follows.

The message M takes values in the setM = {1, 2, ..., 2NR}. Divide the overall interval [−0.5, 0.5]
into 2NR equally-spaced sub-intervals, and the center of each sub-interval is mapped to a message
value inM. Let θ be the center of the sub-interval with respect to (w.r.t.) the choosing message M.
At Time 1, the transmitter sends:

X1 = θα, (8)

where α =
√

P+σ
′2

σ
′2 =

√
g2P+σ2

σ2 . Upon receiving the output Y1 = hX1 + η1, the legitimate receiver

obtains Y
′
1 = Y1

g = X1 +
η1
g = X1 + η

′
1 and computes:

θ̂1 =
Y
′
1

α
= θ +

η
′
1

α
(9)

as an estimation of θ at Time 1. At time i (i ∈ {2, 3, ..., N}), the transmitter sends:

Xi = αi(θ − θ̂i−1) = −αi
∑i−1

j=1 αjη
′
j

∑i−1
j=1 α2

j

, (10)

where αi =
√

P
σ
′2 αi−1 =

√
g2P
σ2 αi−1 for i ∈ {2, 3, ..., N}. Upon receiving the output Yi = gXi + ηi, the

legitimate receiver obtains Y
′
i =

Yi
g = Xi +

ηi
g = Xi + η

′
i and computes:

θ̂i = θ +
∑i

j=1 αjη
′
j

∑i
j=1 α2

j

(11)

as an estimation of θ at time i. In [21], it was shown that the decoding error probability Pe (the
probability of θ̂N not belonging to the sub-interval of the choosing message M) of this proposed scheme

doubly-exponentially decays to zero for sufficiently large N and R ≤ 1
2 log(1 + P

σ
′2 ) =

1
2 log(1 + g2P

σ2 ).

Hence, letting R = 1
2 log(1 + g2P

σ2 ), for a given ε, log |M|
N ≥ 1

2 log(1 + g2P
σ2 )− ε and Pe ≤ ε are satisfied

by using the above proposed SK scheme. Then, it remains to show ∆ ≥ 1
2 log(1 + g2P

σ2 )− ε, and the
proof is given as follows.

∆ =
1
N

H(M|ZN)
(1)
=

1
N

H(M|geX1 + ηe,1, ..., geXN + ηe,N)

(2)
=

1
N

H(M|geθα + ηe,1, ge(
−α2η

′
1

α1
) + ηe,2, ..., ge(−αN

∑N−1
j=1 αjη

′
j

∑N−1
j=1 α2

j

) + ηe,N)

≥ 1
N

H(M|geθα + ηe,1, ge
−α2η

′
1

α1
+ ηe,2, ..., ge(−αN

∑N−1
j=1 αjη

′
j

∑N−1
j=1 α2

j

) + ηe,N , η
′
1, ..., η

′
N , ηe,2, ..., ηe,N)

=
1
N

H(θ|geθα + ηe,1, η
′
1, ..., η

′
N , ηe,2, ..., ηe,N)

(3)
=

1
N

H(θ|geθα + ηe,1)
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(4)
=

1
N
(H(θ) + h(ηe,1)− h(geθα + ηe,1))

(5)
=

1
N
(NR + h(ηe,1)− h(geθα + ηe,1))

(6)
=

1
N
(NR +

1
2

log(2πeσ2
e )− h(geθα + ηe,1))

(7)
≥ 1

N
(NR +

1
2

log(2πeσ2
e )−

1
2

log(2πe(α2g2
e Var(θ) + σ2

e )))

(8)
=

1
N
(NR +

1
2

log(2πeσ2
e )−

1
2

log(2πe(α2g2
e

1
12

+ σ2
e )))

= R− 1
2N

log(1 +
α2g2

e
12σ2

e
)

(9)
=

1
2

log(1 +
g2P
σ2 )− 1

2N
log(1 +

(g2P + σ2)g2
e

12σ2
e σ2 ), (12)

where (1) follows from (1), (2) follows from (8) and (10), (3) follows from the fact that
(η1, ..., ηN , ηe,2, ..., ηe,N) are independent of θ, geθα + ηe,1, and η

′
i = ηi

g , (4) follows from θ being

independent of ηe,1, (5) follows from the fact that M is uniformly distributed overM = {1, 2, ..., 2NR},
(6) follows from h(ηe,1) =

1
2 log(2πeσ2

e ), (7) follows from the fact that h(X) ≤ 1
2 log(2πeVar(X)), where

the equality holds if X is Gaussian distributed, (8) follows from the fact that the variance of θ is 1
12 while

N tends to infinity (see a similar argument in [20]), and (9) is from the definitions R = 1
2 log(1 + g2P

σ2 )

and α =
√

g2P+σ2

σ2 . Finally, choosing sufficiently large N, ∆ ≥ 1
2 log(1 + g2P

σ2 )− ε is proven. The proof
of Theorem 1 is complete.

Remark 2. From the above proof of Theorem 1 (especially the inequality below Step (2) of (12)), we see that even
if the eavesdropper obtains his/her own channel noises of all time indexes except Time 1 and knows the legitimate
receiver’s channel noises of all time indexes, the weak secrecy can still be guaranteed with the transmission rate

R = 1
2 log

(
1 + g2P

σ2

)
, and the intuition behind this fact is given as follows. The transmitter transmits the

original message M only at the first transmission (see (8) and (10)), and then, the transmissions after the first
one combine only channel noises in the previous transmissions. Since the information leakage occurs only in the
first transmission, the information leakage rate 1

N I(M; ZN) vanishes as the codeword length N tends to infinity.
The equivocation analysis (see (12)) of the proof of Theorem 1 also indicates that if the eavesdropper knows

the legitimate receiver’s channel noises of all time indexes, i.e., η
′
1,...,η

′
N , he/she also obtains the channel feedback

from Time 2–N (i.e., Y2,...,YN) due to the reason that for i ∈ {2, 3, ..., N}, Xi is only a combination of the
channel noises in the previous transmissions (see (10)) and Yi = gXi + gη

′
i . Then, we can conclude that even if

the channel output feedback Y2,...,YN is obtained by the eavesdropper, the weak secrecy can still be guaranteed.
However, we should note that if the eavesdropper knows Y1 and η

′
1, he/she also obtains the transmitted message

since Y1 = gX1 + gη
′
1 and X1 = θα, which implies that the weak secrecy cannot be guaranteed for this case.

3. Comparison of the Already Existing Feedback Schemes for the Gaussian Wiretap
Feedback Channel

In this section, we compare the performances of the secret key-based feedback scheme [8], the
improved secret key-based feedback scheme [17], and the SK feedback scheme [21] in the Gaussian
wiretap feedback channel.

3.1. Comparison of the Feedback Schemes for the Degraded Gaussian Wiretap Feedback Channel

For the degraded Gaussian wiretap feedback channel (see Figure 1), at time i (i ∈ {1, 2, ..., N}),
the channel input and outputs are given by:

Yi = Xi + ηi, Zi = Xi + ηi + ηe,i, (13)
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where Xi is the channel input with power constraint P, Yi and Zi are channel outputs respectively at
the legitimate receiver and the eavesdropper, and ηi ∼ N (0, σ2) and ηe,i ∼ N (0, σ2

e ) are independent
channel noises and are i.i.d. across the time index i. The channel encoder, decoder, and the achievable
secrecy rate are defined the same as in Section 2. The following Theorem 2 [20] determines the secrecy
capacity Cd

s− f of the degraded Gaussian wiretap feedback channel; see the following.

Theorem 2. The secrecy capacity Cd
s− f of the degraded Gaussian wiretap feedback channel is given by:

Cd
s− f =

1
2

log(1 +
P
σ2 ). (14)

Remark 3. Here, note that Cd
s− f is achieved by using the SK feedback scheme. Theorem 2 indicates that for the

degraded Gaussian wiretap feedback channel, the perfect secrecy can be achieved without loss of the transmission
rate, i.e., the secrecy capacity equals the capacity of the legitimate receiver’s channel.

Proof. See [20].

In [8], it has been shown that the secrecy capacity C∗s of the discrete memoryless degraded wiretap
feedback channel can be achieved by using the secret key-based feedback scheme (here, note that for
the degraded wiretap feedback channel, the work in [17] showed that the improved secret key-based
feedback scheme reduces to the original secret key-based feedback scheme [8]), and it is given by:

C∗s = max
P(x)

min{I(X; Y), H(Y|Z)}, (15)

where X → Y → Z. However, we should note that the capacity formula in (15) is only an achievable
secrecy rate for the degraded Gaussian wiretap feedback channel, and this is because the converse
of H(Y|Z) in (15) does not hold for the Gaussian case. To be specific, first, note that the term H(Y|Z)
in (15) follows from:

R− ε ≤ 1
N

H(M|ZN)

=
1
N
(H(M|ZN)− H(M|YN , ZN) + H(M|YN , ZN))

≤ 1
N
(I(M; YN |ZN) + δ(ε))

(a)
≤ 1

N
(H(YN |ZN) + δ(ε))

≤ 1
N
(

N

∑
i=1

H(Yi|Zi) + δ(ε))

(b)
= H(YJ |ZJ , J) +

1
N

δ(ε)

(c)
≤ H(Y|Z) + 1

N
δ(ε), (16)

and letting ε → 0, where (a) follows from I(M; YN |ZN) ≤ H(YN |ZN), (b) follows from J being
uniformly distributed over {1, 2, ..., N} and it being independent of YN and ZN , and (c) follows from
the definitions Y , YJ and Z , ZJ . Next, from (16), we can check that for the Gaussian case, Step (a)
of (16) does not hold due to the fact that the differential conditional entropy h(YN |ZN , M) may be
a negative number. Finally, substituting X ∼ N (0, P) and (13) into (15), a lower bound R∗s− f on the

secrecy capacity Cd
s− f is obtained, and it is given by the following Corollary 1.
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Corollary 1. A lower bound R∗s− f on the secrecy capacity Cd
s− f of the degraded Gaussian wiretap feedback

channel is given by:

R∗s− f = min
{

1
2

log
(

1 +
P
σ2

)
,

1
2

log
(

2πeσ2
e (P + σ2)

P + σ2 + σ2
e

)}
. (17)

Comparing R∗s− f in Corollary 1 with Cd
s− f in Theorem 2, we can conclude that for the degraded

Gaussian wiretap feedback channel, the secret key-based feedback scheme performs no better than
the SK scheme. The following Figure 3 shows the gap between the lower bound R∗s− f and the secrecy

capacity Cd
s− f for σ2 = 3, σ2

e = 10, and P taking values in [0, 1800]. It is easy to see that the gap is
increasing while the power P is increasing.

Figure 3. The capacity results on the degraded Gaussian wiretap feedback channel for σ2 = 3, σ2
e = 10,

and P taking values in [0, 1800]. SK, Schalkwijk–Kailath.

3.2. Comparison of the Feedback Schemes for the Non-Degraded Gaussian Wiretap Feedback Channel

In Section 2, we showed that the secrecy capacity of the non-degraded Gaussian wiretap feedback
channel equals the legitimate receiver’s channel capacity. For comparison, in this subsection, we
calculate the lower bounds constructed by the secret key-based feedback scheme [8] and the improved
secret key-based feedback scheme [17]; see the following.

First, note that in [8], it has been shown that for the discrete memoryless non-degraded wiretap
feedback channel, a lower bound R∗∗s− f on the secrecy capacity, which is constructed by the secret
key-based feedback scheme, is given by:

R∗∗s− f = max
P(x)

min{[I(X; Y)− I(X; Z)]+ + H(Y|X, Z), I(X; Y)}, (18)

where Y → X → Z and [x]+ = max{0, x}. The intuition behind (18) is given as follows. The feedback
channel output is used to generate a secret key shared between the legitimate parties, and this key is
completely unknown by the wiretapper. Moreover, the transmitted message M is divided into two
parts M1 and M2, where M1 is encoded the same as the message in [1], and M2 is encrypted by the
secret key generated from the feedback. Then, the total secrecy rate also consists of two parts: one
equals I(X; Y)− I(X; Z), which is the same as the secrecy capacity of the wiretap channel [1], and
the other equals H(Y|X, Z), which is the rate of the secret key. In addition, note that the total secrecy
rate cannot exceed the channel capacity I(X; Y) of the legitimate parties, and hence, the lower bound
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in (18) is obtained. Then, substituting X ∼ N (0, P) and (1) into (18), a lower bound Rnon∗
s− f on the

secrecy capacity Cs− f is obtained, and it is given by the following Corollary 2.

Corollary 2. A lower bound Rnon∗
s− f on the secrecy capacity Cs− f of the non-degraded Gaussian wiretap feedback

channel is given by:

Rnon∗
s− f = min

{
1
2

log(1 +
g2P
σ2 ), [

1
2

log(1 +
g2P
σ2 )− 1

2
log(1 +

g2
e P
σ2

e
)]+ +

1
2

log(2πeσ2)

}
. (19)

Second, in [17], it has been shown that for the discrete memoryless non-degraded wiretap feedback
channel, a lower bound R∗∗∗s− f on the secrecy capacity, which is constructed by the improved secret
key-based feedback scheme, is given by:

R∗∗∗s− f = max
P(x)

min{[I(X; V, Y)− I(X; Z)]+ + H(Y|X, Z), I(X; Y)}, (20)

where the joint distribution is denoted by:

P(v, x, y, z) = P(v|x, y)P(y|x)P(z|x)P(x). (21)

Then, substituting X ∼ N (0, P), V = X +Y, and (1) into (20), a lower bound Rnon∗∗
s− f on the secrecy

capacity Cs− f is obtained, and it is given by the following Corollary 3.

Corollary 3. A lower bound Rnon∗∗
s− f on the secrecy capacity Cs− f of the non-degraded Gaussian wiretap feedback

channel is given by:

Rnon∗∗
s− f =

1
2

log(1 +
g2P
σ2 ). (22)

Proof. First, substituting X ∼ N (0, P), V = X + Y, and (1) into (20), we have:

Rnon∗∗
s− f = min{1

2
log(1 +

g2P
σ2 ), [

1
2

log(2πeP)− h(X|X, Y)− 1
2

log(1 +
g2

e P
σ2

e
)]+ +

1
2

log(2πeσ2)}.

(23)

Next, note that the conditional differential entropy term h(X|X, Y) in (23) equals −∞. Now,
substituting h(X|X, Y) = −∞ into (23), we can conclude that:

[
1
2

log(2πeP)− h(X|X, Y)− 1
2

log(1 +
g2

e P
σ2

e
)]+ +

1
2

log(2πeσ2) = ∞, (24)

and this leads to the fact that Rnon∗∗
s− f = 1

2 log(1 + g2P
σ2 ). The proof is complete.

From Corollary 3, we see that Rnon∗∗
s− f is exactly the same as the secrecy capacity given in

Theorem 1, which indicates that for the non-degraded Gaussian wiretap feedback channel, the
improved secret key-based feedback scheme performs as well as the SK feedback scheme, and both of
them achieve the secrecy capacity of this non-degraded model.

The following Figure 4 shows the comparison of the SK scheme, secret key-based scheme, and
the improved secret key-based scheme for g = 0.9, ge = 0.7, σ2 = 3, σ2

e = 10, and P taking values in
[0, 1800]. It is easy to see that the performance gap between the secret key-based scheme and other two
schemes is increasing while the transmitting power P is increasing.
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Figure 4. The capacity results on the non-degraded Gaussian wiretap feedback channel for g = 0.9,
ge = 0.7, σ2 = 3, σ2

e = 10, and P taking values in [0, 1800].

In addition, the following Figure 5 shows the comparison of the SK scheme, the secret key-based
scheme, and the improved secret key-based scheme for g = 0.9, ge = 0.7, σ2 = 3, σ2

e = 0.1, and P taking
values in [0, 1800]. Comparing Figure 5 with Figure 4, we can conclude that when the eavesdropper’s
channel noise variance is decreasing and the transmitting power P is increasing, the performance gap
between the secret key-based scheme and other two schemes is increasing.

Figure 5. The capacity results on the non-degraded Gaussian wiretap feedback channel for g = 0.9,
ge = 0.7, σ2 = 3, σ2

e = 0.1, and P taking values in [0, 1800].

4. Conclusions

In this paper, we determined the secrecy capacity of the non-degraded Gaussian wiretap feedback
channel and showed that it equals the channel capacity of the same model without the secrecy
constraint. Moreover, we compared the performances of the SK scheme, the secret key-based scheme,
and the improved secret key-based scheme in the Gaussian wiretap feedback channel and showed that
for the non-degraded case, the improved secret key-based scheme performs as well as the SK scheme,
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and both of them are better than the secret key-based scheme. Numerical results indicated that the
performance gap between the secret key-based scheme and other two schemes was increasing while the
eavesdropper’s channel noise variance was decreasing and the transmitting power P was increasing.
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