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Abstract: We study the minimally nonlinear irreversible heat engines in which the time-reversal
symmetry for the systems may be broken. The expressions for the power and the efficiency are
derived, in which the effects of the nonlinear terms due to dissipations are included. We show
that, as within the linear responses, the minimally nonlinear irreversible heat engines can enable
attainment of Carnot efficiency at positive power. We also find that the Curzon-Ahlborn limit imposed
on the efficiency at maximum power can be overcome if the time-reversal symmetry is broken.
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1. Introduction

Heat engines as energy converters provide a good platform for studying the nature of
thermodynamics, in addition to its relation with utilization of energy resources. Exploring the efficient
heat engines at large power is therefore an issue of significance in thermodynamics. The second law of
thermodynamics tells us that the efficiency of a heat engine working between two heat reservoirs of
constant temperatures Th and Tc (<Th) is bounded by the Carnot efficiency ηC = 1− Tc/Th. As the
Carnot engine needs infinite time for completing a cycle and produces null power, practically, a heat
engine needs to be sped up. Starting with Curzon and Ahlborn model [1], the issue of the efficiency at
maximum power and its possible universal bounds was intensively studied in the literature [2–27].
Another increasingly interesting topic is the attainable maximum efficiency at nonvanishing power for
the heat engines and it has attracted much attention recently [28–37].

In the seminal paper [28] the bounds on efficiency for a specific model of steady state heat
engine with broken time-reversal symmetry caused, for example, by an external magnetic field were
investigated. It was shown that, within the linear response regime, this time-reversal antisymmetry
can significantly boost the performance and, in principle, enable attainment of Carnot limit at
nonzero power. The performance of the steady state heat engine working in the linear response
regime, with broken time-reversal symmetry, raised issues that deserve to be addressed. For
instance, is there improvement of performance in cyclic heat engines induced by broken time-reversal
symmetry? Can heat engines beyond the linear response regime allow the Carnot limit at positive
power, with or without broken time-reversal symmetry? How to identify the relations between the
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power, efficiency, and unavoidable dissipations? The broken time-reversal symmetry was found to
boost the performance of cyclic heat engines in the linear responses [21,32]. The general relations
between the efficiency, power and dissipations were analyzed in the regimes of linear [19,38–42] and
nonlinear [43] responses. Although approaching Carnot efficiency at finite power is not accessible
under some specific conditions [38,41,44,45], it can be achieved in certain limits for the cyclic or steady
state heat engines [19,33,34,36,37,46]. It was found that systems [33,34,46] with phase transitions or a
singular transport law enable the realization of Carnot limit at nonzero power, even beyond linear
response regime. Recent theoretical studies on efficiency at maximum power and any deviation from
efficiency at maximum power of the nonlinear irreversible heat engine, with and without broken
time-reversal symmetry, have been present under the assumption of minimally nonlinear irreversible
thermodynamics (in which the restriction on Onsager coefficients due to the nonnegative entropy
production rate derived from the linear response, however, was still approximately borrowed from
nonlinear case) [18,26]. Nevertheless, a unified description of the performance at maximum efficiency
and maximum power for nonlinear irreversible heat engines, which are based on exact conditions
of Onsager coefficients imposed by the second law of thermodynamics and where the time-reversal
symmetry could be broken, is still lacking. Since an analytical analysis on Onsager coefficients in the
nonlinear thermodynamics [47] is complicated, the study of nonlinear irreversible heat devices without
any approximation must resort to numerical calculations (see, for example, [48–50]). Fortunately,
a minimally nonlinear assumption, first posed in Ref. [26], has been widely used and tested in various
nonlinear irreversible heat devices [17,18,43,51,52]. For this reason, we proposed a unified analytical
approach for minimally nonlinear irreversible heat engines with broken time-reversal symmetry,
with special analysis on the attainment of Carnot efficiency at nonvanishing power.

In the present paper, we investigate the questions of whether the maximum efficiency can
approach the Carnot limit at positive power and whether the Curzon–Ahlborn limit for the efficiency
at maximum power can be exceeded in the nonlinear response regime. We propose a minimally
nonlinear irreversible heat engine [26], in which the nonlinear regime is included [26,51], and study
its efficiency and power for the case of broken time-reversal symmetry. We show that the maximum
efficiency can reach the Carnot value at nonzero power and the Curzon–Ahlborn limit on the efficiency
at maximum power is overcome in the time-reversal antisymmetry.

2. Minimally Nonlinear Irreversible Heat Engine with Broken Time-Reversal Symmetry

The heat engine model under consideration, which may be cyclic or steady state and where
broken time-reversal symmetry may be induced, for instance, by interaction with an external magnetic
field B. The working substance is in contact with a hot reservoir and a cold one of temperatures Th
and Tc (<Th). In order to describe the minimally nonlinear irreversible heat engines in which only a
second-order nonlinear term is added in the linear Onsager relations to describe the nonlinear case,
we adopt the extended Onsager relations [26,51] with inclusion of external field B,

J1(B) = L11(B)X1 + L12(B)X2, (1)

J2(B) = L21(B)X1 + L22(B)X2 − γh J2
1 (B), (2)

where the nonlinear term γh J2
1 denotes heat dissipation into the hot reservoir and γh (≥0) indicates the

dissipation strength. The linear response is recovered by setting γh = 0 in Equation (2) and it indicates
X1 → 0 and X2 → 0. However, the nonlinear response described by Equations (1) and (2) is not
restricted to small values of X1 and X2. Noteworthy, the time-reversal symmetry will be broken due to
the external field B, thereby leading to the Onsager coefficients L12(B) 6= L21(B) for the heat engines
under consideration, though the Onsager–Casimir relation L12(B) = L21(−B) is satisfied. For sake of
convenience, the following formula will include the external field but without explicitly writing B.

In the heat engine, the heat flux Q̇h is extracted from the hot heat reservoir at the temperature
Th, and there must be a certain heat current Q̇c injected to the cold heat reservoir of temperature Tc,
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with corresponding production of power output P = Q̇h − Q̇c. Throughout the paper the dot means
the quantity per unit time for steady-state heat engines or the quantity divided by the cycle time
duration for cyclic machines. Since the entropy production of a steady-state or a cyclic heat engine
merely contributed from the two heat reservoirs, and its rate thus reads

σ̇ = −
(

Q̇h
Th
− Q̇c

Tc

)
= − P

Tc
+ Q̇h

(
1
Tc
− 1

Th

)
. (3)

Without loss of generality, the power output P can be expressed as P = Fẋ, where F is an external
force and x is its corresponding thermodynamically conjugate variable. As the entropy production
rate can be expressed in terms of the thermodynamic fluxes J and forces X: σ̇ = JX, from Equation (3)
we have

σ̇ = J1X1 + J2X2 (4)

through defining the thermodynamic fluxes J1 ≡ ẋ and J2 ≡ Q̇h, with conjugate affinities X1 = F/Tc

and X2 = 1/Tc − 1/Th. The power output can thus be expressed as

P = −J1X1Tc. (5)

Based on Equations (1) and (2), we can rewrite J2 as

J2 =
L21

L11
J1 + L22

(
1− L12L21

L11L22

)
X2 − γh J2

1 . (6)

Let J3 ≡ Q̇c, we have J3 = Q̇h − P = J1X1Tc + J2, which takes the form of

J3 =
L21 − L12X2Tc

L11
J1 + L22

(
1− L12L21

L11L22

)
X2 − γc J2

1 , (7)

where γc = Th/L11 − γh has been used. Here γc represents the strength of the heat dissipation along
the cold heat-transfer process and γc becomes γc = Th/L11 in the linear response. We emphasize that
the nonlinear term γh J2

1 in Equation (6) becomes vanishing either in the quasistatic limit or in the
linear response. Unlike in the linear irreversible thermodynamics where the temperature gradient
Th − Tc must be smaller than the temperatures Th and Tc of the reservoirs, the nonlinear irreversible
thermodynamics as a direct expansion by including nonlinear terms γh,c J2

1 takes into account the
irreversibility induced by finite operation time and finite temperature difference. That is, the nonlinear
term γJ2

1 is inevitable, existing either in the finite-time operation or in the finite temperature difference,
and it therefore indicates a higher degree of nonequilibrium compared to the linear response.

With consideration of Equations (1), (4) and (6), we find that the Onsager coefficients must be
constrained by

L11 ≥ 0, L22 ≥ 0, L11L22 − L11L22αηC − (L12 + L21)
2/4 + L12L21αηC ≥ 0, (8)

due to the nonnegativity of the entropy production rate (σ̇ ≥ 0). Here and hereafter we define
α ≡ 1/(1+ γc/γh) and take α rather than γc/γh as the dissipation ratio for simplicity. The asymmetric
dissipation limits γc/γh → ∞ and γc/γh → 0 correspond to α = 0 and α = 1, respectively.
The symmetrical dissipation case when γh = γc leads to α = 1/2. When the entropy production rate
tends to be zero (σ̇ = 0), we have L11L22 − L11L22αηC − (L12 + L21)

2/4 + L12L21αηC = 0.

3. Maximum Efficiency

As the efficiency η takes the form of

η =
P
J2

=
−J1X1Tc

L21X1 + L22X2 − γh(L11X1 + L12X2)2 . (9)
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The derivation of η with respect to X1 gives rise to the expression of the maximum efficiency,

ηmax = ηC
y + 2− 2

√
y + 1− αηCyx

4αηC + y/x
, (10)

at the thermodynamic force

X1 =
L11X2(L22 − L2

12X2γh)−
√

L11(L11L22 − L12L21)X2
2(L22 − L2

12X2γh)

L11(−L21 + L11L12X2γh)
, (11)

where we have introduced two parameters x = L12/L21, and y = L12L21/(L11L22 − L12L21).
Since no restriction is imposed on the attainable values of the asymmetry parameter x, the

relation (8) yields {
g(x) ≤ y ≤ 0 (x ≤ 0), (12a)

0 ≤ y ≤ g(x) (x > 0), (12b)

where we have defined

g(x) ≡ 4(1− αηC)x
(x− 1)2 . (13)

It reduces to g(x) = 4x/(x− 1)2 obtained in the linear response regime [28], if the dissipation
vanishes γh → 0 as well as α → 0. We stress that direct use of g(x) = 4x/(x − 1)2 as done in
Ref. [18] would yield nonphysical, negative entropy production rate for the nonlinear case with α 6= 0.
The effects of nonvanishing dissipation (α 6= 0) on the bound function g(x) are of significance for any x,
as shown in Figure 1. For a given asymmetry parameter x, the maximum value ηM of Equation (10) is
achieved if y = g(x). Considering Equations (12) and (13), we can obtain the maximum efficiency ηM

via simple algebra as follows: when αηC ≤ 1/2,

ηM =

 ηC
x2(1− αηC)

(x− 2)xαηC + 1
( 1

2αηC−1 ≤ x ≤ 1), (14a)

ηC (x ≤ 1
2αηC−1 and x ≥ 1), (14b)

and when 1/2 < αηC ≤ 1,

ηM =

 ηC
x2(1− αηC)

(x− 2)xαηC + 1
(x ≥ 1

2αηC−1 and x ≤ 1), (15a)

ηC (1 ≤ x ≤ 1
2αηC−1 ). (15b)

If, in particular, α→ 0 as the dissipation vanishes γh → 0, Equations (14b) and (14a) simplify to

ηM =

{
ηCx2 (

∣∣x∣∣ ≤ 1), (16a)

ηC (
∣∣x∣∣ ≥ 1), (16b)

which were obtained within the framework of linear irreversible thermodynamics [28,38]. Besides ηC,
the function depends on ηM both x and α if the dissipation exists with α 6= 0. For α ≤ (2ηC)

−1,
the Carnot efficiency can be approached when x ≥ 1 and when x ≤ (2αηC − 1)−1; whereas for
(2ηC)

−1 < α ≤ η−1
C , the range in which the Carnot limit is reached becomes 1 ≤ x ≤ (2αηC − 1)−1.

The ratio ηM/ηC for different values of α is drawn in Figure 2, where ηC = 0.7 for α 6= 0 is adopted.
Let us consider two special cases: (1) when α = 1 and thus αηC = 0.7, the Carnot limit is reached
during the range of 1 ≤ x ≤ 2.5, and ηM = ηC{3x2/[1 + 0.7(x− 2)x]} when x ≥ 2.5 or x ≤ 1; (2) when
α = 1/2 and αηC = 0.35, the Carnot limit is obtained in the region of x ≤ −3.33 and x ≥ 1. The former
and latter cases are indicted by the black solid line and the red dashed one, respectively, in Figure 2
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where the linear irreversible case (α = 0) is represented by the blue dot-dashed line. Since the Carnot
efficiency is obtained under the condition y = g(x), we find that det(L) = (L12 − L21)

2/[4(1− αηC)],
and the entropy production rate σ̇ = 0. The Carnot limit and L12 6= L21 yields det(L) > 0, showing that
the Carnot efficiency could be realized only in the non-tight coupling case.

-10 -5 -1 0 1 5 10

-1

0

1

2

3

4
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Figure 1. The function g(x) as a function of the asymmetry parameter x, with dissipation parameter
α = 1 (black solid line), α = 1/2 (red dashed line), and α = 0 (blue dot-dashed line). The vertical
asymptote of g(x) at x = 1 is indicated by green dotted line (when α 6= 0, ηC = 0.7 is adopted).
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Figure 2. (Color online) Ratio ηM/ηC as a function of the asymmetry parameter x. The dissipation
ratios are α = 1 (black solid line), α = 1/2 (red dashed line), and α = 0 (blue dot-dahsed line)
(when α 6= 0, ηC = 0.7 is adopted).

We find from Equations (5) and (11) that the power at maximum efficiency reads

Pmη = ηCX2L2
21

∣∣ (x− 1) [(1− 2αηC) x + 1]
∣∣ (∣∣x− 1

∣∣− ∣∣ (1− 2αηC) x + 1
∣∣)2

16L11 (1− αηC)
2 (1− αηCx)2 , (17)

which is always positive and simplifies for 0 ≤ αηC ≤ 1/2 and 1/2 < αηC ≤ 1 to

Pmη =


ηCx2X2L2

21
(1− x)[(1− 2αηC)x + 1]

4L11(1− αηCx)2 ( 1
2αηC−1 ≤ x ≤ 1), (18a)

ηCX2L2
21
(x− 1)[(1− 2αηC)x + 1]

4L11(1− αηC)2 (x ≤ 1
2αηC−1 and x ≥ 1), (18b)



Entropy 2019, 21, 717 6 of 11

and

Pmη =


ηCx2X2L2

21
(1− x)[(1− 2αηC)x + 1]

4L11(1− αηCx)2 (x ≥ 1
2αηC−1 and x ≤ 1), (19a)

ηCX2L2
21
(x− 1)[(1− 2αηC)x + 1]

4L11(1− αηC)2 (1 ≤ x ≤ 1
2αηC−1 ), (19b)

respectively. From Equations (14b), (15b), (18b), and (19b), we see that for 0 ≤ αηC ≤ 1/2 the Carnot
efficiency is attained at positive power in the range of x ≥ 1 and x ≤ (1− 2αηC)

−1, and that for
1/2 ≤ αηC ≤ 1 the Carnot limit can also be reached with nonzero power if 1 ≤ x ≤ (2αηC − 1)−1.
The special case of the linear response regime when α = 0 results into the fact that the Carnot efficiency
is achieved only when

∣∣x∣∣ ≥ 1, as expected. We emphasize here that the nonzero power at the Carnot
efficiency is found by using y = g(x), which implies vanishing entropy production rate (σ̇ = 0).

4. Efficiency at Maximum Power

We now turn to the maximum power output Pmax and its corresponding efficiency ηmp. It follows,
using Equation (5) and setting ∂P/∂X1 = 0, that the power output achieves its maximum value,

Pmax =
ηCL2

12
4L11

X2 (20)

at
X1 = − L12

2L11
X2. (21)

Substituting Equation (21) into Equation (9), we find that the efficiency at maximum power is

ηmp =
ηC
2

2xy
4 + y(2− xαηC)

, (22)

whose upper bound η∗mp is obtained when and only when y = g(x). By substitution of Equation (12)
into Equation (22) we then arrive at

η∗mp = ηC
1− αηC

(αηC − x−1)2 − αηC + 1
. (23)

To see how the time-broken asymmetry induced by the external field influences the performance
on the heat engine, in Figure 3 we plot dimensionless maximum power output (η∗mp/ηC) versus
dissipation ratio (α) for different values of asymmetry parameter α, with x = 1 (black solid line),
x = −4 (red dashed line), and x = 4 (blue dot-dashed line). Figure 3 shows that the efficiency
at maximum power η∗mp (as a function of α) depends sensitively on the asymmetry parameter x.
When x = −4, the optimal efficiency η∗mp monotonically decreases with increasing dissipation ratio
α. For x = 4, the curve of η∗mp versus α is of parabolic shape and its maximum value η∗mp = ηC is
located at α = 1/(4ηC). In the absence of the external magnetic field or in the symmetric case (x = 1),
the optimal efficiency η∗mp is a monotonically increasing function of the dissipation ratio α. We note
that, for x = 1/(αηC) or

∣∣x∣∣ → ∞, η∗mp = ηC, so the Carnot efficiency ηC and the maximum power
Pmax can be attained simultaneously. It is therefore indicated that the limit imposed on the efficiency
at maximum power for systems with time-reversal symmetry is overcome in the systems without
this symmetry. If nonlinear term vanishes (γh → 0 and α → 0), the efficiency at maximum power
η∗mp = ηCx2/(1+ x2) in the linear situation is recovered and η∗mp → ηC as

∣∣x∣∣→ ∞. Figure 4 shows that
the efficiency at maximum power η∗mp (for given α) expressed by Equation (23). Insight can be gained
into the condition of attainment of the Carnot efficiency by seeing first from Figure 4 that for α = 1
and ηC = 0.7 efficiency at maximum power η∗mp = ηC can be achieved at the point x = 1/0.7 ' 1.428
(or

∣∣x| → ∞ which is not shown in the figure). Second, from Figure 4, we note that for x < 0 the
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efficiency η∗mp increases more slowly to approach the Carnot limit in the minimally nonlinear response
regime than in the linear response case.
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0.8

1.0

 

 

Figure 3. (Color online) Ratio η∗mp/ηC as a function of the dissipation ratio α, with asymmetric
parameters x = 1 (black solid line), x = −4 (red dashed line) and x = 4 (blue dot-dashed line)
(ηC = 0.7 is adopted).
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Figure 4. (Color online) Ratio η∗mp/ηC as a function of the asymmetry parameter x, with dissipation
ratios α = 1 (black solid line), α = 1/2 (red dashed line) and α = 0 (blue dot-dashed line) (when α 6= 0,
ηC = 0.7 is adopted).

We emphasize that, for the time-reversal symmetry (x = 1), the efficiency at maximum
power (23) becomes

η∗mp =
ηC

2− αηC
, (24)

which is situated between ηC/2 ≤ η∗mp ≤ ηC/(2− ηC) as 0 ≤ α ≤ 1. The upper bounds and lower
bounds were obtained earlier in the low-dissipation Carnot heat engines [23] and the minimally
nonlinear irreversible heat engines [26,52] satisfying the tight-coupling condition at the asymmetrical
dissipation limits. In accordance with a linear response theory where α = 0, the linear coefficient of the
expansion of is expected to be η∗mp = ηC/2 [20]. In the dissipation symmetric limit α = 1/2, we find
that the maximum efficiency at maximum power is η∗mp = ηC/(2− ηC/2), and its expansion in terms of
ηC up to third order is η∗mp = ηC/2 + η2

C/8 + 3η3
C/32 +O(η4

C), which agrees well with the expansion
of the famous Curzon–Ahlborn efficiency, ηCA = 1 −

√
Tc/Th = ηC/2 + η2

C/8 + η3
C/16 + O(η4

C),
indicating that they have the same universality of ηC/2 + η2

C/8.
Figure 4 shows that, for x > 0, the efficiency at maximum power achieves Carnot efficiency

faster, due to lager fluctuations [37] in the nonlinear response regime than in the linear responses.
A two-terminal thermoelectric device with broken time-reversal symmetry can be exemplified in
our model, as sketched in Figure 5. An external magnetic filed (such as a probe [53]) in contact
with both the right and left reservoirs is introduced in order for the time-reversal symmetry to be
broken with L12 6= L21, but under the constraints that the average thermal and electrical currents
extracted from this external setup (ex) are zero via controlling the the temperature Tex and chemical
potential µex. The thermodynamic fluxes for such a thermoelectric device the electrochemical potential
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X1 = (µl − µr)/(eTr) and the temperature difference X2 = 1/Tr − 1/Tl , where e is the electronic
charge, Tl,r and µl,r denote the temperatures and chemical potentials in the left (l) and right (r)
electronic reservoirs. Specifically, at the time-reversal symmetry with x = 1, the nonlinear terms
(γJ2

1 ) indicating higher degree of nonequilibrium [26] enhance the performance of the heat engine via
improving the efficiency at maximum power compared to the linear response, which agrees well with
that found in thermoelectric engines [48–50]. We also stress that, since not the degree of nonequilibrium
but also the symmetry parameter x can affect the efficiency and power, for some values of x with x 6= 1,
ηmp(x 6= 1) can be smaller in the nonlinear response than in the linear responses(see Figure 4).

Figure 5. (Color online) The schematic diagram of the two-terminal thermoelectric model.

5. Conclusions

For systems with broken time-reversal symmetry, we have investigated the performance of
minimally nonlinear irreversible heat engines (based on these systems). For these nonlinear irreversible
heat engines, the maximum efficiency can tend to be the Carnot limit at nonzero power and efficiency
at maximum power can go beyond the Curzon–Ahlborn limit when the asymmetric parameter x
satisfies a certain condition. We pointed out that a two-terminal thermoelectric device with broken
time-reversal symmetry can be mapped onto the engine model discussed here. Our analytical results
provide a theoretical framework for understanding of minimally nonlinear heat engines, but should
also be helpful for studying the heat devices in which higher nonlinear terms due to dissipations
are involved.

Author Contributions: Conceptualization, J.W.; methodology, J.W.; validation, J.W., Q.L., W.L. and M.Z.; formal
analysis, J.W. and J.H.; investigation, J.W. and Q.L.; writing—original draft preparation, J.W.,Q.L.,W.L., M.Z. and
J.H.; writing—review and editing, J.W.

Funding: This work is supported by National Natural Science Foundation of China (Grants No. 11875034,
No. 11505091, No. 11265010, and No. 11365015), the Major Program of Jiangxi Provincial Natural Science
Foundation (No. 20161ACB21006), and the Open Project Program of State Key Laboratory of Theoretical Physics,
Institute of Theoretical Physics, Chinese Academy of Sciences (Grant No. Y5KF241CJ1).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Symbol Description
Th Temperature of the hot heat reservoir
Tc Temperature of the cold heat reservoir
Q̇h Heat current extracted from the hot reservoir
Q̇c Heat current injected into the cold reservoir
σ̇ Entropy production rate
Ji with i = 1, 2, 3 Thermodynamic fluxes
Xi with i = 1, 2 Thermodynamic forces
η Efficiency
ηC Carnot efficiency
ηM Maximum efficiency
η∗mp The upper bound of efficiency at maximum power
P Power output
Pmax Maximum power
Pmη Power at maximum efficiency
α Dissipation ratio
B External field
x Asymmetry parameter
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