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Abstract: We explore the dissipative dynamics of two coupled qubits placed inside a coherent
cavity-field under dipole-dipole interplay and 2-photon transitions. The generated non-classical
correlations (NCCs) beyond entanglement are investigated via two measures based on the
Hilbert-Schmidt norm. It is found that the robustness of the generated NCCs can be greatly enhanced
by performing the intrinsic dissipation rate, dipole-dipole interplay rate, initial coherence intensity
and the degree of the coherent state superpositions. The results show that the intrinsic decoherence
stabilize the stationarity of the non-classical correlations while the dipole interplay rate boost them.
The non-classical correlations can be frozen at their stationary correlations by increasing the intrinsic
dissipation rate. Also NCCs, can be enhanced by increasing the initial coherent intensity.
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1. Introduction

Non-classical correlations (NCCs) are a physical phenomenon and fundamental concept in
quantum theory, they identify the quantum aspects of bipartite as well as multipartite systems.
NCC has a critical role in setting the boundary between classical and quantum systems. It represents
an important physical resource for quantum communication and processing [1].

In principle, NCCs could be generated in a multipartite system. Numerous investigation
demonstrate NCCs in several physical systems ranging from atoms and photons to solide-state
materials [2–5]. There are several types of NCCs beyond QE, such as quantum discord [6–8],
geometric quantum discord (GQD) [9], measurement-induced disturbance [10], measurement-induced
nonlocality (MIN) [11] and quantum steering [12–15], which are different forms of quantum
nonlocality [16–18]. Its found that steering effects are strongly related to QE [13]. These types of
NCCs can be applied in various branches of quantum engineering, quantum cryptography and
quantum information [1,2,17].

It was proven that the QD occurs for some separable mixed quantum states. It is more
general than the QE [6,7,9,19]. QD is defined via the discrepancy between total quantum
mutual information and the classical correlation. The QD computation for a general quantum
non X-matrix is very difficult, therefore other types of NCCs are introduced via dual measures
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such as: geometric quantum discord (GQD) and measurement-induced nonlocality (MIN) [20–24].
GQD depends on the minimization of the discrepancy between given quantum states and classical
states set by different norms as: Hilbert-Schmidt norm [9], Schatten one-norm [25] and Bures norm [26].
While MIN quantifies non-classical correlations beyond the non-local correlations. It represents an
aspect of the Hilbert-Schmidt norm minimization [9]. Recently a huge efforts were dedicated to the
investigations of NCCs in quantum systems [27–34].

Such phenomena of NCCs without QE has been used to accelerate solving some computational
scheme in nounitary quantum computation model [35] and has been confirmed by experiments [36].
In a few words, QE is just a special form of NCCs.

In open quantum systems, the useful quantum correlations between the parts of a dissipative
system are destroyed. There are several approaches to study the dissipations in open quantum
systems [37–39]. They are responsible for the transition between the quantum and classical states.
Decoherence decrease the NCCs which may induce failure of the algorithms and various protocols of
the quantum processing The intrinsic dissipation was introduced in different models [40,41] and was
described by a modified or non-unitary Schrodinger equation.

Various nonclassical properties may emerge from the superpositions of coherent states due to
the quantum interference between the coherent components [42,43]. These states were experimentally
observed in cavity QED [44] and ion-trap systems [45,46].

The NCC dynamics in intrinsic dissipative models have been broadly studied only for the vacuum
or number cavity-field [47–49] and for two qubits in X states. As far as we know, the effects of the
intrinsic dissipation rate and dipole-dipole interplay have not been yet investigated for a two-qubit
system prepared in a non-X state inside a cavity.

Such studies are potentially important for the control of the quantum correlations in coupled
qubits describing for example several atoms. It opens the door as a substantial ingredients of growing
number of applications in quantum technologies. Thus it is of great interest to find relationships
between entanglement and different measures of nonclassical correlations. Despite the complexity of
the suggested model, we introduce: (i) an analytical description under intrinsic decoherence for two
coupled qubits placed inside a cavity where the cavity field is initially in a superposition of coherent
states. (ii) we investigate the robustness of the generated NCCs. Furthermore, we investigate the
2-photon transitions and the intrinsic dissipation rate effects on the NCCs. The geometric quantum
discord (GQD), the measurement-induced nonlocality and the concurrence are used as quantifiers.

In Section 2, we present the physical model. In Section 3, the definition of the correlation
quantifiers are discussed. In Section 4, we analyze the results of the correlation quantifiers. We end-up
by a conclusion.

2. Time Evolution of Qubits-Cavity Interaction

Our system is formed by two qubits interacting with a coherent cavity field where the 2-photon
transitions, dipole-dipole interplay and intrinsic dissipation are considered. The evolution equation of
this system is described by Milburn’s equation [40,41]

dρ(t)
dt

= −i[H, ρ(t)]− γ

2
[H, [H, ρ(t)]], (1)

where γ represents the intrinsic dissipation parameter. The Hamiltonian H of the total system, in the
rotating-wave approximation, can be written as

Ĥ = ωâ† â + ∑2
i=1{ω

2 σ̂z
i + λ(â2σ+

i + â†2σ−i )}
+J(σ+

1 σ−2 + σ−1 σ+
2 ),

(2)

where â(â†) presents the annihilation (creation) operator of the cavity field, ω denotes the qubit and
the cavity frequencies whereas λ denotes the coupling constant between the cavity and the qubits.
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The rasing and lowering operators of the i-th qubit are σ̂±i . J represents the dipole-dipole qubit
coupling constant.

Here, we assume that the interaction starts with the uncorrelated state as:

ρ(0) = ρAB(0)⊗ ρF(0), (3)

where the two qubits are initially uncorrelated in their excited states, that is: ρAB(0) = |1A1B〉〈1A1B|.
While the cavity-field is started initially in the superposition coherent state as

ρF(0) =
(|α〉+ κ| − α〉)(|α〉+ κ| − α〉)†

1 + κ2 + 2κe−2N , (4)

where the coherent state, |α〉, is given by

|α〉 = e−N/2
∞

∑
n=1

N
n
2

√
n!
|n〉, (5)

where, α its intensity coherence and N = |α|2 denotes the mean photon number. The values of the
parameter κ: κ = 0 and 1 are taken respectively for the coherent state and the even coherent state.

From the Equations (1) and (3), we get

ρ̂(t) = ∑
m,n=0

[1 + κ(−1)m][1 + κ(−1)n]

[1 + κ2 + 2κe−2N ]
√

m!n!
N

m+n
2 e−N

× {α11X̂11 + α13X̂13 + α14X̂14 + α31X̂31 + α41X̂41

+α33X̂33 + α43X̂43 + α34X̂34 + α44X̂44} (6)

where αmn = ζm1ζn1, and the coefficients ζij satisfy the condition of the eigenvalue-problem:
Ĥ|Ψn

m〉 = Em|Ψn
m〉, Em correspond to the eigenvalues. The density matrices dynamics of the dressed

states, X̂ij, are given by

X̂ij = Dmn(t)e−iλ(Em
i −En

j )t|Ψm
i 〉〈Ψn

j |, (7)

where Dmn(t) = e−γ(Em
i −En

j )
2t is intrinsic noise term. In the space states {|v1〉 = |1A1B, n〉, |v2〉 =

|1A0B, n + 2〉, |v3〉 = |0A1B, n + 2〉, |v4〉 = |0A0B, n + 4〉 }, the used eigenstates |Ψn
i 〉 of the

Hamiltonian (1) are given by:

|Ψn
m〉 =

4

∑
k=1

ζmk|vk〉, (m = 1, 2, 3, 4), (8)

and the corresponding eigenvalues are

En
1 = ω(n + 1) En

2 = ω(n + 1)− J,

En
3(4) = ω(n + 1) + 1

2 J ∓ 1
2

√
J2 + 8λ2(νn

1 + νn
2 ),

νn
1 = (n+2)!

n! , νn
2 = (n+4)!

(n+2)! .

(9)

3. NCC Quantifiers

To investigate the NCCs of the two qubits via different quantifiers, we need the time evolution for
their reduced density matrix, ρAB(t), by tracing the cavity-field degrees of freedom as:

ρAB(t) = trR{ρ(t)} =
∞

∑
k=0
〈k|ρ(t)|k〉. (10)
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Now, we can determine the time evolution of NCC quantifiers of GQD and MIN and compare
them with the concurrence entanglement.

ρAB, in the Bloch representation using Pauli spin matrices σi, can be expressed as:

ρAB = 1
4 [I4×4 + ∑i=1(xiσi ⊗ I2×2 + I2×2 ⊗ yiσi)

+∑ij=1 rijσi ⊗ σj],
(11)

where xi and yi are the local Bloch-vectors components,~x and~y respectively. While rij = tr{ρAB(σi ⊗
σj)} are the components of the matrix R = [rij] [10]. If ρij = 〈i|ρAB|j〉 = aij + ibij (i, j = 1− 4) are the
elements of ρAB, then the vector~x is

~x = (2a13 + 2a24, 2b31 + 2b42, 2ρ11 + 2ρ22 − 1)t, (12)

and

R = 2

 a23 + a14 b23 − b14 a13 − a24

b41 − b23 a23 − a14 b13 + b24

a12 − a34 b34 − b12 ρ11 + ρ44 − 1
2

 . (13)

(i) GQD:
GQD depends on the minimal Hilbert-Schmidt distance between the classical states and the given

states [10].
For a general matrix ρAB(t), GQD can be written as

G(t) =
1
4
(‖~x‖2 + ‖R‖2 − kmax), (14)

where kmax is the largest eigenvalue of the matrix K =~x~xt + RRt.
(ii) MIN:
The MIN is a type of NCCs based on the local von Neumann measurements from which one of

the quantum reduced states is left invariant [11]. For a general density matrix ρAB(t), the expression of
MIN is

M(t) =


1
2

(
trRRt − 1

‖x‖xtRRtx
)

, x 6= 0;

1
2 (trRRt − λmin), x = 0.

(15)

λmin represents the minimum eigenvalue of RRt.
(iii) Concurrence:
The above functions will be compared with the concurrence entanglement of ρAB(t), which is

defined as: C(t) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4 }, where the quantities λ1 > λ2 > λ3 > λ4 are
the square roots of the eigenvalues of the matrix: R = ρAB(σy ⊗ σy)ρAB∗(σy ⊗ σy).

4. Dynamics of the Correlation Quantifiers

By using Equation (10) in NCC functions (G(t), M(t) and C(t)), the robustness of the generated
NCCs between the two qubits is shown against the intrinsic dissipation rate. We assumed that the
two-qubit system is initially uncorrelated.

To explore the effect of the superposition parameter κ, we plot the time evolutions of GQD, MIN
and concurrence entanglement (see Figure 1a,b) with the initial coherence intensity N = 25 and the
intrinsic dissipation rate γ = 0.0. In Figures 1 and 2 we consider the coherent state κ = 0 and J/λ = 0.0,
we observe that the concurrence grows from zero to its maximal value generating maximal correlated
two-qubit states. After that it oscillates with a period nπ, (n = 0, 1, 2, ...), and the qubits at the end
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each period are completely disentangled. While at λt = (2n− 1)π
8 (n = 1, 2, 3, ...), C(t) qubits are

strongly entangled. Phenomena of sudden growth and death of the concurrence entanglement [50–52]
are repeated periodically.
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Figure 1. The functions G(t) (dashed curves), M(t) (dot-dashed curves), C(t) (solid curves) as a function
of the scaled time λt when N = 25, J/λ = 0.0 and γ = 0.0. For κ = 0 in (a) and even κ = 1 in (b).
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Figure 2. Cont.
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Figure 2. As Figure 1a, but with J/λ = 30.

On the other hand, the functions of GQD and MIN showing NCC beyond the concurrence
entanglement, they have also regular oscillations with a period nπ. We note that G(t), M(t) have
the same values, G(t) = M(t), except for small intervals around λt = nπ

2 (n = 0, 2, 3, ...). The case of
G(t) = M(t) means that the maximization and minimization of Neumann measurements are equal)
this type of correlation is known as “HSD-correlation”. During the smaller intervals of G(t) 6= M(t),
the two-qubit states have completely different behavior, we observe at the same time zero-GQD and
maximal MIN.

The effect of the superposition coherent parameter κ = 1 appears in Figure 1b, where the NCC
functions evolve faster than of the case κ = 1 and the period reduces to nπ

2 , i.e., the dynamical
behavior of NCCs depends on the parameter κ. This effect of the superposition parameter is clearly
observable on the amplitudes of NCC functions. QE is hastening the death and anabiosis due to the
the superposition coherent parameter κ = 1 (see Figure 1b).

In Figure 2a,b, the functions G(t), M(t) and C(t) show the dependence of NCCs on the
dipole-dipole interplay rate J/λ. Note that there is a significant increase in the number of oscillations
as well as the number of peaks. There is also an increase in the extreme values of NCC functions during
the interaction period between the qubits. It is clear that dipole-dipole interplay rate inhibits the loss of
generated NCCs. Under the influence of the dipole-dipole interaction, the intervals of HSD-correlation
appears and the phenomena of sudden growth and death of the entanglement disappears completely.

In Figure 3a,b is shown the robustness of the generated GQD, MIN and QE, against the intrinsic
dissipation rate (γ = 0.01λ), when the cavity-field is started initially in two different cases of the
coherent-state superposition, κ = 0 in Figure 3a and κ = 0 in Figure 3b . In Figure 3a, when (J, γ) =

(0, 0.01)λ (see Figure 3a, we note that GQD, MIN and QE present the same behavior, but they have
different amplitudes. With γ = 0.01λ, the NCC oscillations are damped and their functions tending to
their stable correlation. As time progresses G(t) and C(t) stabilize to their stationary values, while the
MIN curve differs from G(t) with smaller peaks. Therefore, the collapses and revivals phenomena are
very sensitive for the intrinsic dissipation rate. In general, the stationary HSD-correlation of G(t) and
M(t) is always smaller than the stationary concurrence entanglement. We can deduce that the intrinsic
dissipation rate leads to the non vanishing stationary correlation of the two-qubit states, i.e., the NCCs
are protected by the non-zero intrinsic dissipation rate.
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Figure 3. As Figure 1a, but with (J, γ) = (0, 0.01)λ in (a) and (J, γ) = (30, 0.01)λ in (b).

In Figure 3b, the effects of both the intrinsic dissipation and the dipole-dipole interplay are
combined by taking (J, γ) = (30, 0.01)λ. We note that the collapses and revivals phenomena return to
appear in the presence of non-zero intrinsic dissipation rate. Therefore, the dipole-dipole interplay
rate leads to delay the stability of generated correlation in the dissipative two-qubit system.

In Figure 4a–c, the functions of MIN, GQD, and QE are plotted as a functions of the scaled time
λt and the intrinsic dissipation rate γ/λ ∈ [0, 05] with a smaller initial coherence intensity N = 4 and
superposition parameter κ = 1 without the effect of the dipole-dipole interplay. For γ > 0(0→ 0.05),
we observe when the effect of the intrinsic dissipation rate is taken in account: (i) For small N (N = 4),
the MIN, GQD, and QE have different irregular oscillations and amplitudes, and the phenomena of
sudden growth and sudden death of the concurrence entanglement appear at γ/λ = 0. (ii) After
particular values of (λt, γ/λ) the quantifiers of MIN, GQD, and QE present stability regions in which
all generated NCCs are time independent. (iii) The initial coherence intensity parameter and the
intrinsic dissipation rate play an important role in the generation of NCCs.
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Figure 4. The functions of G(t) in (a), M(t) in (b) and C(t) in (c) when γ/λ ∈ [0, 05] with smaller
coherent intensity N = 4, J/λ = 0.0 and κ = 1.

Figure 5a–c shows the effect of the dipole-dipole interplay rate J/λ ∈ [0, 15] on the Non-classical
correlations with intrinsic dissipation rate γ = 0.01, smaller coherent intensity N = 4, γ/λ = 0.01 and
κ = 1. At J/λ = 0, the MIN, GQD, and QE have damped oscillations with different amplitudes due to
the effect of the intrinsic dissipation. This dynamics of MIN, GQD, and QE can be changed drastically
by increasing the dipole-dipole interplay rate, where the fluctuations of the NCC functions increase
rapidly with a slight interference between their patterns.
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Figure 5. The quantifiers of G(t) in (a), M(t) in (b) and C(t) in (c) when J/λ ∈ [0, 15] with smaller
coherent intensity N = 4, γ/λ = 0.01 and κ = 1.

The minimum and maximums values of MIN, GQD, and QE are increased under the influence
of dipole-dipole interaction. It leads to increasing the irregular oscillations and disappearance of the
stationary correlations. We deduce that the dipole-dipole interplay rate enhances the GQD, MIN and
QE. Where the NCCs irregularity increases by increasing the dipole-dipole interplay rate.

5. Conclusions

We consider the model of two dipole coupled qubits placed inside a coherent cavity-field under
the intrinsic dissipation rate and 2-photon transitions. The analytical solutions are derived by using
the dressed states. The robustness of the generated non-classical correlations of the two qubits is
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investigated via different quantifiers against the intrinsic dissipation rate, dipole-dipole interplay,
coherent intensity and the superposition of coherent states. The non-classical correlations can be
enhanced by increasing the initial coherent intensity, and they can be frozen at their stationary
correlations for a specific range of the intrinsic dissipation rate. The dynamical behavior of the
nonclassical correlations depend on the system parameters. The enhancement of the dipole-dipole
interplay rate leads to the increase of the geometric quantum discord and the measurement-induced
non-locality as well as the entanglement. The above mentioned rate is also responsible for the inhibition
of the NCCs stationarity. These results offer practical applications in the field of quantum information
processing where the geometric quantum discord, the measurement-induced non-locality and the
entanglement are crucial resources.
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