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Abstract: Topic modeling is a popular approach for clustering text documents. However, current
tools have a number of unsolved problems such as instability and a lack of criteria for selecting the
values of model parameters. In this work, we propose a method to solve partially the problems
of optimizing model parameters, simultaneously accounting for semantic stability. Our method is
inspired by the concepts from statistical physics and is based on Sharma—-Mittal entropy. We test
our approach on two models: probabilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet
Allocation (LDA) with Gibbs sampling, and on two datasets in different languages. We compare
our approach against a number of standard metrics, each of which is able to account for just one
of the parameters of our interest. We demonstrate that Sharma—-Mittal entropy is a convenient
tool for selecting both the number of topics and the values of hyper-parameters, simultaneously
controlling for semantic stability, which none of the existing metrics can do. Furthermore, we show
that concepts from statistical physics can be used to contribute to theory construction for machine
learning, a rapidly-developing sphere that currently lacks a consistent theoretical ground.

Keywords: Sharma—-Mittal entropy; topic modeling; optimal number of topics; stability

1. Introduction

The Internet and, particularly, social networks generate a huge amount of data of different types
(such as images, texts, or table data). A large amount of collected data becomes comparable to physical
mesoscopic systems. Correspondingly, it becomes possible to use machine learning methods based on
methods of statistical physics to analyze such data. Topic Modeling (TM) is a popular machine learning
approach to soft clustering of textual or visual data, the purpose of which is to define the set of hidden
distributions in texts or images and to sort the data according to these distributions. To date, a relatively
large number of probabilistic topic models with different methods of determining hidden distributions
have been developed, and several metrics for measuring the quality of topic modeling results have
been formulated and investigated. The lion’s share of the research on TM has focused on the use of
probabilistic models [1] such as variants of Latent Dirichlet Allocation (LDA) and probabilistic Latent
Semantic Analysis (pLSA); therefore, we study and provide numerical experiments for these models.
Non-probabilistic algorithms, such as Non-negative Matrix Factorization (NMF), can also be applied
to the task of TM [2,3]; however, NMF approaches are less popular due to their inability to produce
generative models. Other problems of NMF models were described in [4,5]. At the same time, despite
broad usage of probabilistic topic models in different fields of machine learning [6-9], they, too, possess
a set of problems limiting their usage for big data analysis.

A fundamental problem of probabilistic TM is finding the number of components in the mixture
of distributions since the parameter determining this number has to be set explicitly [10-12]. A similar
problem arises for the NMF approach since factorization rank has to be chosen [4]. A well-known
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exception is the Hierarchical Dirichlet Process model (HDP) [13] positioned by the authors as able
to select the number of topics automatically. However, this class of models possesses a set of hidden
parameters, which, according to the authors themselves, can influence the results of determining
hidden distributions and the optimal number of topics correspondingly. The second unsolved
problem in probabilistic TM is a certain level of semantic instability resulting from the ambiguity
in retrieving the multidimensional density of the mixture of distributions. This ambiguity means
that different runs of the algorithm on the same source data lead to different solutions. Solutions
may differ both in terms of word and text composition of the resulting topics, which is usually
incompatible with reliability requirements set by TM end users. The problems that have non-unique or
non-stable solutions are termed ill-posed [14]. Let us mention that NMF is also an ill-posed problem [4]
since factorization is not unique. A general approach to avoiding multiple solutions is given by
Tikhonov regularization [14]. The essence of regularization is to redefine prior information that allows
for narrowing the set of solutions. Regularization is implemented by introducing restrictions on hidden
distributions [15], by modifying the sampling procedure [16], by using a combination of conjugate
functions [10], or by incorporating different types of regularization procedures into the algorithm [15,17].
However, introduction of the regularization procedure, although it may contribute to higher stability,
may also lead to the problem of determining regularization coefficients of probabilistic topic models
since these parameters are, again, to be set by a user explicitly. All this leads users of machine learning
methods to an understandable mistrust towards the obtained results [9,12].

The above problems naturally affect the quality of TM. Currently, the main methods for
determining the quality of topic models are Gibbs-Shannon entropy [18,19], Kullback-Leibler
divergence [20], log-likelihood [21], the Jaccard index [22,23], semantic coherence [17],
and relevance [24]. However, first, each of these metrics measures only one of the aspects of TM
performance. It is known that the distribution of words, at least in European languages, satisfies the
so-called Zipf law (a power-law distribution), which is characteristic of complex systems, i.e., of systems
with non-Markov processes [25,26]. It is known that the most effective way to investigate the behavior
of complex systems is application of mathematical formalism borrowed from the theory of non-additive
systems [26]. The goal of our research is thus to propose a metric that would be able to both measure
different aspects of TM performance at the same time and would be more adequate for textual complex
systems. For this, we adapt the mathematical formalism of non-extensive statistical physics, namely
Sharma-Mittal entropy, and apply it for the analysis of the results of machine learning methods.
We show that our metric combines the functionality of several existing metrics and is embedded in a
more theoretically-grounded approach.

Before passing to our research, we briefly discuss the basics of TM and introduce notations.
The key idea of TM is based on an assumption that any large document collection contains a set of
topics or semantic clusters, while each word and each text of such a collection belongs to each topic
with a certain probability. This gives TM an important ability to co-cluster both words by topics
and topics by documents simultaneously. Topics are defined as hidden distributions of both words
and texts that are to be restored from the observed co-occurrences of words in texts. Mathematically,
topic models are based on the following propositions [27]:

1. Let D be a collection of textual documents with D documents and W be a set (dictionary) of all
unique words with W elements. Each document d € Disa sequence of terms wy, ..., wy from
dictionary W.

2. Itis assumed that there is a finite number of topics, T, and each entry of a word w in document
d is associated with some topic t € T. A topic is understood as a set of words that often (in the
statistical sense) appear together in a large number of documents.

3. A collection of documents is considered a random and independent sample of triples (w;; d;; t;),
i = 1,..,n, from the discrete distribution p(w;d;t) on a finite probability space W x D x T.
Words w and documents d are observable variables, and topic t is a latent (hidden) variable.
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4. It is assumed that the order of words in documents is unimportant for topic identification
(the “bag of words” model). The order of documents in the collection is also not important.

In TM, it is also assumed that the probability p(w|d) of the occurrence of term w in document d can
be expressed as a product of probabilities p(w|t) and p(t|d), where p(w|t) is the probability of word w
under topic t and p(t|d) is the probability of topic t in document d. According to the formula of total
probability and the hypothesis of conditional independence, one obtains the following expression [27]:
p(wld) = Xcr p(w|t)p(t|d) = Lyct Pwtbra. Thus, constructing a topic model means finding the set
of latent topics T, i.e., the set of one-dimensional conditional distributions p(w|t) = ¢yt for each
topic ¢, which constitute matrix ® (distribution of words by topics), and the set of one-dimensional
distributions p(t|d) = 0, for each document d, which form matrix © (distribution of documents by
topics), based on the observable variables 4 and w.

One can distinguish three types of models in the literature that allow solving this problem:
(1) models based on likelihood maximization; (2) models based on Monte Carlo methods;
and (3) models of the hierarchical Dirichlet process. A description of these models and their
limitations can be found in Appendix A. In the process of TM, for algorithms based on the
Expectation-Maximization (E-M) algorithm (first type) and the Gibbs sampling algorithm (second
type), transition to a strongly non-equilibrium state occurs. The initial distributions of words and
documents in matrices ® and © for Gibbs sampling methods are flat; however, in E-M models,
the initial distribution is determined by a random number generator. For both types of algorithm,
the initial distribution corresponds to the maximum entropy of the topic model. Regardless of the
algorithm type and the procedure of initialization, redistribution of words and documents by topics
proceeds so that a significant portion of words (about 95% of all unique words) acquires probabilities
close to zero and only about 3-5% receive probabilities above a threshold 1/W [28]. Numerical
experiments demonstrate that the number of words with high probabilities depends on the number of
topics and values of model parameters, which allows constructing a theoretical approach for analyzing
such dependency using the perspective of statistical physics [29].

The rest of the paper proceeds as follows. Section 2.1 reviews the standard metrics, which are
used in the field of machine learning, relationships between these metrics and their differences.
Section 2.2 describes our concept and basic assertions of our new method. Section 2.3 is devoted to the
adaptation of Renyi entropy for the analysis of TM results. Sections 2.4 and 2.5 represent adaptation
of Sharma-Mittal entropy for the analysis of TM results leading to a new quality metric in the field
of TM. The relations of this new metric to the standard ones are also presented throughout Section 2.
Section 3 shows numerical results of the application of our new metric to the analysis of TM outputs.
We demonstrate the results of simulations run on two datasets by using two TM algorithms, namely
probabilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet Allocation (LDA) with Gibbs
sampling. In Section 3, we also demonstrate the application of several standard metrics to TM results
and compare them with our new metric. Section 4 summarizes the functionality of our two-parametric
entropy approach and proposes directions for future research. Appendix A contains a short discussion
of topic models and a detailed description of the models that were used in numerical experiments.
Appendix B contains numerical results on another metric, which is called “semantic coherence”, to the
outputs of TM and demonstrates difficulties when using this metric for tuning model parameters.

2. Materials and Methods

2.1. Methods for Analyzing the Results of Topic Modeling

The results of TM depend on the parameters of models, such as “number of topics”,
hyper-parameters of Dirichlet distributions, or regularization coefficients, since these parameters
are included explicitly in the mathematical formulation of the model. In the literature on TM, the most
frequently-used metrics for analyzing topic models are the following.
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1. Shannon entropy and relative entropy. Shannon entropy is defined according
to the following equation [19,30,31]: H = —Y' p(x;)log(p(x;)), where p(x;),
i = 1,..,n are distribution probabilities of a discrete random value with possible values

{x1,..,xn}. Relative entropy is defined as follows [32]: Dkr(p|q) = X p(x;)log( Z&’;) =
—Yip(xi)log(q(x;)) + Xip(xi)log(p(x;)), ie, Dkr(plg) is the difference of cross-entropy
H(p,q) = —Yip(x;)log(q(x;)) and Shannon entropy. Relative entropy is also known as
Kullback-Leibler (KL) divergence. In the field of statistical physics, it was demonstrated
that KL divergence is closely related to free energy. In the work [33], it was shown that in
the framework of Boltzmann-Gibbs statistics, KL divergence can be expressed as follows:
Dki(p|p) = q(F(p) — F(p)), where p is the probability distribution of the system residing in the
non-equilibrium state, f is the probability distribution of the system residing in the equilibrium
state, g = 1/T, T is the temperature of the system, and F is the free energy. Hence, KL divergence
is nothing but the difference between the free energies of off-equilibrium and equilibrium.
The difference between free energies is a key characteristic of the entropy approach [29], which is
to be discussed further below in Sections 2.2 and 2.3. The variant of KL divergence used in TM is
also discussed in Paragraph 3 of this section.

2. Log-likelihood and perplexity: One of the most-used metrics in TM is the log-likelihood,
which can be expressed through matrices ® and @ in the following way [21,34]: In(P(D|®,®)) =
2521 EZY:l Nw lrl(ZfT:1 $wibrq), where ng, is the frequency of word w in document d. A better
model will yield higher probabilities of documents, on average [21]. In addition, we would like
to mention that the procedure of log-likelihood maximization is a special case of minimizing
Kullback-Leibler divergence [35]. Another widely-used metric in machine learning, and in
TM, particularly, is called perplexity. This metric is related to likelihood and is expressed as:
perplexity = exp(—In(P(D|®,®))/ Y1 n4), where n, is the number of words in document
d. Perplexity behaves as a monotone decreasing function [36]. The score of perplexity is
the lower the better. In general, perplexity can be expressed in terms of cross-entropy as
follows: perplexity = 2°M°PY or perplexity = e®M°PY [37], where “entropy” is cross-entropy.
The application of perplexity for selecting values of model parameters was discussed in many
papers [10,17,21,34,38,39]. In a number of works, it was demonstrated that perplexity behaves
as a monotonously-decreasing function of the number of iterations, which is why perplexity
has been proposed as a convenient metric for determining the optimal number of iterations in
TM [11]. In addition, the authors of [12] used perplexity for searching the optimal number of topics.
However, the use of perplexity and log-likelihood has some limitations, which were demonstrated
in [40]. The authors showed that perplexity depends on the size of vocabulary of the collection
for which TM is implemented. The dependence of the perplexity value on the type of topic
model and the size of the vocabulary was also demonstrated in [41]. Hence, comparison of topic
models for different datasets and in different languages by means of perplexity is complicated.
Many numerical experiments described in the literature demonstrate monotone behavior of
perplexity as a function of the number of topics. Unlike the task of determining the number of
iterations, the task of finding the number of topics is sensitive to this feature, and fulfillment of the
latter task appears to be complicated by it. In addition, calculation of perplexity and log-likelihood
is extremely time consuming, especially for large text collections.

3. Kullback-Leibler divergence: Another measure, that is frequently used in machine learning, is the
Kullback-Leibler divergence (KL) or relative entropy [32,42,43]. However, in the field of TM,
symmetric KL divergence is most commonly used. This measure was proposed by Steyvers

/
and Griffiths [20] for determining the number of stable topics: KL(i, j) = % Zg\le Pl logz(%) +
wj
/!
TyW e ’ logz(%), where ¢’ and ¢” correspond to topic-word distributions from two different
w1
runs; i and j are topics. Therefore, this metric measures dissimilarity between topics i and j. Let us
note that KL divergence is calculated for the same words in different topics; thus, the semantic
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component of topic models is taken into account. This metric can be represented as a matrix of
size T - T, where T is the number of topics in compared topic models. The minimum of KL(i, j)
characterizes the measure of similarity between topics i and j. If KL(i,j) ~ 0, then topics i
and j are semantically identical. An algorithm for searching for the number of stable topics for
different topic models was implemented [17] based on this measure. In this approach, pair-wise
comparison for all topics of one topic’s solution with all topics of another topic solution was done.
Hence, if the topic is stable from the semantic point of view, then it reproduces regularly for each
run of TM. In [16], it was shown that different types of regularization lead to different numbers
of stable topics for the same dataset. The disadvantage of this method is that this metric does
not allow comparing one topic solution with another as a whole, but one can only obtain a set of
pair-wise compared word distributions for separate topics. No generalization of this metric for
solution-level comparisons has been offered yet.

4.  The Jaccard index and entropy distance: Another widely-used metric in the field of machine
learning is the Jaccard index, also known as the Jaccard similarity coefficient, which is used
for comparing the similarity and diversity of sample sets. The Jaccard coefficient is defined
as the cardinality of the intersection of the sample sets divided by the cardinality of the union
of the sample sets [23]. Mathematically, it is expressed as follows. Assume that we have two
sets X and Y. Then, one can calculate the following values: a is the number of elements of X,
which are absent in Y; b is the number of elements of Y, which are absent in X; ¢ is the number
of common elements of X and Y. The Jaccard coefficient is | = -, where c = |XNY]|,
| XUY|=a+0b+c,|-|is the cardinality of a set. The Jaccard coefficient | = 1 if sets are totally
similar and | = 0 if sets are totally different. This coefficient is used in machine learning due to the
following reasons. Kullback-Leibler divergence characterizes similarity based on the probability
distribution. This means that two topics are similar if words’ distributions for them have similar
values. At the same time, the Jaccard coefficient demonstrates the number of identical words in
topics, i.e., it reflects another point of view of the similarity of topics. The combination of two
similarity measures allows for deeper analysis of TM results. In addition, the Jaccard distance
is often used, which is defined as [22]: J(X,Y) = 1 — ;77 This distance equals zero if sets
are identical. The Jaccard distance also plays an important role in computer science, especially,
in research on “regular language” [44,45] and is related to entropy distance as follows [22]:
Dy(X,Y) = 1-1(X,Y)/H(X,Y) = J(X,Y) = 1—], where Dy (X,Y) is entropy distance,
I(X,Y) is the mutual information of X and Y, and H(X, Y) is the joint entropy of X and Y. In the
standard set-theoretic interpretation of information theory, the mutual information corresponds
to the intersection of sets X and Y and the joint entropy to the union of X and Y, and hence,
the entropy distance corresponds to the Jaccard distance [22]. Correspondingly, if J(X;Y) = 0,
then Dy (X, Y) = 0 as well. The paper proposes to use the Jaccard coefficient as a parameter of
entropy, but not for TM tasks, while we incorporate it into our two-parametric entropy approach
to TM specifically.

5. Semantic coherence: This metric was proposed to measure the interpretability of topics and
was demonstrated to correspond to human coherence judgments [17]. Topic coherence can be
calculated as follows [17]: C(t, W(t)) = ¥, ¥ ! log(%), where W(t) = (vl,...,0,)

is a list of M most probable words in topic ¢, D(v) is the number of documents containing

word v, and D(v,?’) is the number of documents where words v and v’ co-occur. The authors
of [17] proposed to consider the following values of M =5, ..., 20. To obtain a single coherence
score of a topic solution, one needs to aggregate obtained individual topic coherence values.

In the literature, one can find that aggregation can be implemented by means of the arithmetic

mean, median, geometric mean, harmonic mean, quadratic mean, minimum, and maximum [46].

Coherence can also be used for determining the optimal number of topics; however, in paper [47],

it was demonstrated that the coherence score monotonously decreases if the number of

topics increases.
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6. Relevance: This is a measure that allows users of TM to rank terms in the order of their usefulness
for topic interpretation [24]. This measure is similar to a measure proposed in [48], where a term’s
frequency is combined with the exclusivity of the word (exclusivity is the degree to which a word’s
occurrences are limited to only a few topics). The relevance of term w to topic t given a weight
parameter A (0 < A < 1) can be expressed as: r(w, k|A) = A -log(¢pwt) + (1 —A) log(%), where A
determines the weight given to ¢ relative to its lift and p,, is the empirical term probability,

D
which can be calculated as: py, = M
):d:1 ng

w appears in document d and 1, being total term-count in document d, namely, ny = Y, 4.
The authors of [24] proposed to take the default value of A = 0.6 according to their user study;
however, in general, it is not clear how to chose the optimal value of A for a particular dataset.
Furthermore, relevance is a topic-level measure that cannot be generalized for an entire solution,
which is why it is not used further in this research.

with ny,, being a count of how many times the term

2.2. Minimum Cross-Entropy Principles in Topic Modeling

As was shown above, TM parameter estimation and assessment of semantic stability are separate
processes based on several unrelated metrics. Therefore, it is necessary to develop a single approach
that would include a number of metrics and would allow solving simultaneously two problems,
namely optimization of both semantic stability and other parameters. Such an approach can be
developed on the basis of the cross-entropy minimum principle (minimum of KL divergence). In doing
so, this principle can be implemented in two ways: (1) by constructing an entropic metric and
searching for the minimum of this metric under variation of different topic model parameters,
where TM is conducted using standard algorithms; (2) by creating an algorithm of restoring hidden
distributions based on cross-entropy minimization. A version of the TM algorithm, close to the second
approach, was considered in [49], where symmetric KL divergence was added to the model based
on log-likelihood maximization. However, this model included regularization using only matrix
©, and one has to set explicitly the regularization coefficient (the parameter called 7). In our work,
we consider only the first approach, i.e., searching for optimal parameters of the topic model based
on the entropy metric, which takes into account the distribution of words by topics and the semantic
stability of topics under the condition of the variation of different model parameters. By the “optimal”
number of topics for a dataset, we mean the number of topics that corresponds to human judgment.
We propose a method for tuning topic models, which is based on the following assertions [29,50],
which create a linkage between TM and statistical physics and reformulate the problem of model
parameter optimization in terms of thermodynamics: (1) A collection of documents is considered
a mesoscopic information system: a statistical system where the elements are words and the documents
number in the millions. Correspondingly, the behavior of such a system can be studied by application
of models from statistical physics. (2) The total number of words and documents in the information
system under consideration is constant (i.e., the system volume is not changed). (3) A topic is a state
(an analogue of spin direction) that each word and document in the collection can take. Here, a word
and a document can belong to different topics (spin states) with different probabilities. (4) A solution
of topic modeling is a non-equilibrium state of the system. (5) Such information system is open and
exchanges energy with the environment via changing the temperature. Here, the temperature of the
information system is the number of topics that is a parameter and should be selected by searching for
a minimum KL divergence. (6) Since KL divergence is proportional to the difference of free energies,
to measure the degree to which a given system is non-equilibrium, one can use the following expression:
Af = F(T) — Fy, where F is the free energy of the initial state (chaos) of the topic model and F(T) is
the free energy after TM for a fixed number of topics T [50]. (7) The minimum of Ar depends on topic
model parameters such as the number of topics and other hyper-parameters. (8) The optimal number
of topics and the set of optimal hyper-parameters of the topic model correspond to the situation when
the information maximum (in terms of non-classical entropy) is reached. If one does not take semantic
stability into account, then the information maximum corresponds to the Renyi entropy minimum [29].
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However, in our work, we aim to consider the semantic stability of topics; hence, the information
maximum will depend on the semantic component.

It is known that in topic models, the sum of probabilities of all words equals the number of
topics T = Zthl Zgjl puwt, where py € [0,1] forallw = 1,..,W; t = 1,..., T. In the framework of
statistical physics, it is common to investigate the distribution of statistical systems by energy levels,
where energy is expressed in terms of probability. In accordance with such approach, we divide the
range of probabilities [0,1] by a fixed number of intervals, determine energy levels corresponding
to these intervals, and then seek the number of words belonging to each energy level. Let us note
that these values depend on the number of topics and the values of the hyper-parameters of a topic
model. Division into intervals is convenient from a computational point of view. If the lengths of
such intervals tend to zero, the distribution of words by intervals will tend to the probability density
function. However, for simplification, we will consider a two-level system, where the first level
corresponds to words with high probabilities and the second level corresponds to words with small
probabilities close to zero. Therefore, we introduce the density-of-states function for words with high
probabilities under a fixed number of topics and a fixed set of parameters: p = N/(WT), where N is
the number of words with high probabilities. By high probability, we mean the probability satisfying:
p > 1/W. The choice of such a level is informed by the fact that the values 1/W are the initial values
of matrix @ for a topic model. The value W - T determines the total number of micro-states of the topic
model (the size of matrix ®), and normalizes the density-of-states function. During the process of TM,
the probabilities of words redistribute with respect to the above threshold 1/W. A small part of the
words has probabilities higher than the threshold level, while the larger part of words has probabilities
lower than that. The energy of the upper level containing states with high probabilities is expressed
as follows:

wt

E=-In(P)=—1In (;, Y (ot - Q(put — 1/W))> / )

where the step function Q)(-) is defined by Q(pwt —1/W) = 1if pyr > 1/W and Q(pwr —1/W) =0
if pwt < 1/W. Therefore, in Equation (1), we sum only the probabilities that are greater than 1/W.
The energy of the lower level is expressed analogously, except that summing occurs for probabilities
that are smaller than 1/W. A level is characterized by two parameters: (1) the normalized sum of
probabilities of micro-states, that lie in the corresponding interval, B; (2) the normalized number of
micro-states (density-of-states function), p, whose probabilities lie in this interval. Let us note that
the density-of-states function is sometimes called the statistical weight of a complex system’s level.
For a two-level system, the main contribution to the entropy and energy of the whole system is made
by the states with high probabilities, that is mainly by the upper level. Respectively, the free energy
of the whole system is almost entirely determined by the entropy and the energy of the upper level.
The free energy of a statistical system can be expressed through Gibbs—-Shannon entropy and the
internal energy in the following way [51]: F = E— TS = E — 5/g, where g = 1/T. The entropy of
such a system can be expressed through the number of micro-states belonging to the same level [52]:
S = In(N). It follows that the difference of free energies of the topic model is expressed through P and
p in the following way:

Ap =F(T) = Fy = (E(T) — Eo) — (S(T) = So)T
= —1In(P) — TIn(p), 2)

where Ej and S are the energy and the entropy of the initial state of the system, with Ey = —In(T)
and Sp = In(WT). Hence, the degree to which a given system is non-equilibrium can be defined as
the difference between the two free energies and expressed in terms of experimentally-determined
values p and P. Values p and P were calculated for each topic model under variation of parameter T
and hyper-parameters, i.e., A is a function of the number of topics T, hyper-parameters, and size of
vocabulary W.
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2.3. Renyi Entropy of the Topic Model

Using partition function:
Zy = "IN = ¢ ~IE+S — p(P), ()

g = 1/T [53], one can express Renyi entropy in Beck notation through free energy [54] and through
experimentally-determined values p and P:

R _ In(Z,) _ In(e~9Ar) _ —4AF _ gIn(P) +1In(p) @
T g-1 g—1 g—1 g—1 ’

where, again, g = 1/T. The choice of entropy in Beck notation is determined by the following
considerations. Firstly, constructing topic models with just one or two topics is meaningless in terms
of their informativeness for end users. Correspondingly, the entropy of such a model should be
large. Secondly, excessive increase of the number of topics leads to a flat distribution of words by
topics that, again, should lead to a large value of entropy. Thirdly, both g and Z; calculated for
words with high probabilities are less than one. Correspondingly, if we normalize this value by 1 — g,
we will obtain a negative value of Renyi entropy. Taking into account the necessity to have maximum
entropies at the boundaries of the range of the number of topics, the normalization coefficient g — 1
should be used. Summing up the advantages of Renyi entropy application to TM, the following
can be said. First, since calculation of Renyi entropy is based on the difference of free energies
(i.e., on KL divergence or relative entropy), it is convenient to use Renyi entropy as a measure of
the degree to which a given system is in non-equilibrium, and this is what we do in our approach.
Second, Renyi entropy, in contrast to Gibbs-Shannon entropy, allows taking into account two different
processes: a decrease in Gibbs—Shannon entropy and an increase in internal energy, both of which
occur with the growth of the number of topics. The difference between these two processes can have an
area of balance when two processes counterbalance each other. In this area, Renyi entropy reaches its
minimum. Third, the search for the Renyi entropy minimum (i.e., minimum of KL divergence) can be
convenient for optimizing regularization coefficients in topic modeling. As mentioned above, a relative
drawback of Renyi entropy here is the impossibility of taking into account the semantic component of
topic models since it is expressed only through the density-of-states function and energy of the level.
However, this drawback can be overcome by using two-parametric Sharma-Mittal entropy, where one
of deformation parameters is taken as 4 = 1/T and the second deformation parameter corresponds to
the semantic component of a topic model.

2.4. Sharma—Mittal Entropy in Topic Modeling

Sharma-Mittal two-parametric entropy proposed in [55] has been discussed in many
works [56-58]. The main emphasis in these papers was made on the investigation of its mathematical
properties [56,59,60] or application of this entropy when constructing generalized non-extensive
thermodynamics [61]. In the field of machine learning, Sharma—Mittal entropy is used in a few
works, for instance, in [62]. Two-parametric Sharma-Mittal entropy can be written as:

¥, pH) a0/
Sou = =P )

where r and g are deformation parameters. The essence of deformation parameters r and g for TM
can be determined based on consideration of limit cases. One can show that lim, 1 Sg); = S,If and
lim, 0 Sgm = exp(S[I;) — 1. Since in TM, deformation parameter g can be defined through the number
of topics (7 = 1/T), in order to use Sharma—Mittal entropy for the purposes of TM, one has to define
the meaning of parameter r. Let us note that r € [0;1] according to [55]. In addition, if r — 1,
then Sharma-Mittal entropy transforms into Renyi entropy; hence, in this case, the quality of topic
model is defined only by Renyi entropy and deformation parameter g, i.e., by the number of topics.
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If r — 0, then the value of entropy becomes large since lim,_,g Sgp; = exp(S?) — 1. Based on the
principle that maximum entropy corresponds to the information minimum, we conclude that the
minimum value of parameter r corresponds to the minimum information and maximum entropy.
Taking into account that entropy can be parameterized by the Jaccard coefficient and that semantic
distance between two topic solutions can be estimated by entropy distance, we define r as a parameter
being responsible for the semantic stability of the topic model under variation of the number of topics
or hyper-parameters. Therefore, we define the value of r as equal to the value of the Jaccard coefficient
(i.e., r := J, where ] is the Jaccard coefficient calculated for the sets of the most probable words for each
pair of topic solutions). Consequently, 1 — r = J(W’, W") is the entropy distance or Jaccard distance,
where W' and W' are the sets of the most probable words of the first topic solution and the second
topic solution, correspondingly.

2.5. Sharma—Mittal Entropy for a Two-Level System

Based on Equations (4) and (5) and the statistical sum (3), the Sharma—-Mittal entropy of the topic
model in terms of experimentally-determined values p and P can be defined as:

7(1=r)/(9=1) _4 _ (P1p)-n/la=1) g

_
SsM = 1—7r - 1—7r ‘ ©)

On the one hand, application of Sharma—-Mittal entropy allows estimating the optimal values of
topic model parameters, such as hyper-parameters, and the number of topics, by means of searching
for the minimum entropy, which, in turn, is characterized by the difference of entropies between the
initial distribution and the distribution obtained after TM. On the other hand, it allows estimating the
contribution of the semantic difference between any two topic solutions that, in turn, is influenced
by values of hyper-parameters and the number of topics. Hence, the optimal values of topic model
parameters correspond to the minimum Sharma-Mittal entropy, and the worst values of parameters
correspond to the maximum entropy.

3. Results

3.1. Data and Computational Experiments

For our numerical experiments, the following datasets were used:

e  Russian dataset (from the Lenta.ru news agency): a publicly-available set of 699,746 news articles
in the Russian language dated between 1999 and 2018 from the Lenta.ru online news agency
(available at [63]). Each news item was manually assigned to one of ten topic classes by the dataset
provider. We considered a class-balanced subset of this dataset, which consisted of 8624 news
texts (containing 23,297 unique words). It is available here at [64]. Below, we provide statistics on
the number of documents with respect to categories (Table 1).

Table 1. Statistics on the Russian dataset.

Category Number of Documents
business 466
culture 499
economy and finance 667
incidents 712
media 628
policy 1231
security services 863
science and tech 580
society and travel 1957

sports 1022
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Some of these topics are strongly correlated with each other. Therefore, the documents in this
dataset can be represented by 7-10 topics.

o English dataset (the well-known “20 Newsgroups” dataset http://qwone.com/~jason/
20Newsgroups/): 15,404 English news articles containing 50,948 unique words. Each of the
news items belonged to one or more of 20 topic groups. Since some of these topics can be unified,
14-20 topics can represent the documents of this dataset [65]. This dataset is widely used to test
machine learning models.

We conducted our numerical experiments using pLSA and LDA with Gibbs sampling.
These models represent two different types of algorithms. The LDA model used here was based
on the Gibbs sampling procedure, and the pLSA model was based on the E-M algorithm. A detailed
description of these models can be found in Appendix A. Experiments on these models allowed us to
estimate the usability of Sharma-Mittal entropy for two main types of algorithms. Topic modeling was
conducted using the following software implementation: the package “BigARTM” (http:/ /bigartm.org)
was used for pLSA; GibbsLDA++ (http://gibbslda.sourceforge.net) for LDA (Gibbs sampling).
All source codes were integrated into a single package “TopicMiner” (https:/ /linis.hse.ru/en/soft-linis)
as a set of dynamic link libraries. Each model was calculated under variation of the number of topics in
the range of [2;50] in increments of one topic, and for LDA model, also values of hyper-parameters «
and B were varied in the range of [0; 1] in increments of 0.1 for each dataset. For each model and for each
dataset, the following metrics were calculated: (1) log-likelihood; (2) Jaccard index; (3) Sharma—Mittal
entropy; (4) semantic coherence.

3.1.1. Results for the pLSA Model

The choice of pLSA model was determined by the fact that this model has only one parameter:
the number of topics. Correspondingly, we can isolate the effect of this parameter on the values of
the above metrics. Figure 1 plots the log-likelihood as a function of the number of topics for both
datasets. One can see that increasing the number of topics led to a smooth increase of the log-likelihood.
Thus, these curves did not allow determining the optimal number of topics due to the absence of any
clear extrema. The difference between these two curves resulted from different sizes of vocabularies
and the different amounts of documents in the corresponding datasets.

0

-5.0x10°

-1.0x1071

Log-likelihood

-1.5x107

20040

25107
0 10 20 30 40 50
T
Figure 1. Log-likelihood distribution over T (probabilistic Latent Semantic Analysis (pLSA)). Russian
dataset, black; English dataset, red.

Figure 2 demonstrates Renyi entropy curves for the pLSA model on both datasets. The entropy
was calculated according to Equation (4). The exact minimum of Renyi entropy for the Russian
dataset was seven and for the English dataset 16. However, as was noted, being an ill-posed problem,


http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
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topic modeling produced different results on different runs of the same algorithm, which was especially
true for pLSA. From the previous research [29], it is known that the range of such variation between
the runs is approximately £3 topics. Therefore, it makes more sense to look at the range of the
neighboring minima rather than at the exact minimum. It can be seen that the numbers of topics
defined by humans, when corrected for inter-topic correlation, lied within the discovered ranges in
both datasets, which suggests the language-independent character of this metric (at least for European
languages). As Renyi entropy does not include an instrument to evaluate the semantic stability of topic
models, we calculated Jaccard coefficients under variation of the number of topics. Figure 3 presents
a “heat map” of Jaccard coefficients for the dataset in the Russian language. The matrix containing
Jaccard coefficients was symmetric with respect to the main diagonal, and this is the reason why only
half of this matrix is depicted. The structure of the “heat map” of the Jaccard index for the English
dataset was similar to that for the Russian dataset and can be found in [29].

5.57
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£4.59
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3_““\""\“"\""\““
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T
Figure 2. Renyi entropy distribution over the number of topics T (pLSA). Russian dataset, black;
English dataset, red.
50
0.96
20 1 0.84
0.72
30 A1 0.60
0.48
201 - 0.36
- 0.24
10 A
r 0.12
—- 0.00

10 20 30 40 50

Figure 3. Heat map of the Jaccard index for the Russian dataset (pLSA).
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Figure 4 presents a pairwise comparison of topic solutions with the number of topics equal to T
and T + 1 correspondingly, under variation of T for the Russian and English datasets. As demonstrated
in Figures 3 and 4, there are areas of sharp decreases in semantic similarity between topic solutions with
different numbers of topics. In order to incorporate the “density-of-states” function, the probabilities
of words, and semantic similarity under variation of the parameter “number of topics”, we calculated
Sharma-Mittal entropy according to Equation (6) for the pLSA model on both datasets.

1

“l,
3
£
EO.6—_
1]
s ]
20.4—_

0.2-

o 1 20 30 4 50

T

Figure 4. Distribution of Jaccard coefficients of the pairwise comparison for neighboring topic solutions
with the number of topics T and T + 1 (pLSA). Russian dataset, black; English dataset, red.

Figure 5 plots Sharma-Mittal entropy as a function of the number of topics calculated only on the
data from pairwise comparisons of topic solutions with the neighboring values of T (i.e., T and T + 1).
The values of the Jaccard index used for this calculation constitute over-diagonal elements taken from
the full matrix of pairwise comparisons of all topic solutions in the range T = [2;50]. Figures 6 and 7
demonstrate Sharma—Mittal entropy for the Russian and English datasets where large values (>5)
were replaced by five to make the global minimum more visible.

20+

H
"

|
N

Sharma-Mittal entropy
=)
L

w
|
—

D T T T T T T T T T T T T T T T T T T T T T T T T T 1
0 10 20 30 40 50
T

Figure 5. Sharma-Mittal entropy distribution over the number of topics T (pLSA). Russian dataset,
black; English dataset, red.
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Figure 6. Sharma-Mittal entropy distribution over T with Sgp; > 5 reduced to five (Russian
dataset). pLSA.
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Figure 7. Sharma-Mittal entropy distribution over T with Sgp; > 5 reduced to five (English
dataset). pLSA.

Figure 8 shows Sharma-Mittal entropy for the pLSA model in two versions: a 3D picture and its
view from above. Together, they show that Sharma-Mittal entropy has areas of minima and maxima,
the overall shape of the curve being determined by the number of topics and the local fluctuations
resulting from the fluctuations of the Jaccard distance. In practice, however, we propose to consider
only two-dimensional versions of this figure (e.g., Figure 6), where the Jaccard index is calculated only
for the neighboring solutions. Such plots are easier to interpret, and at the same time, they demonstrate
the influence of semantic stability. The exact values of the Sharma-Mittal entropy minimum are the
following: T = 20 for the English dataset and T = 7 for the Russian dataset. Horizontal shift of the
Sharma-Mittal entropy minimum as compared to the Renyi entropy minimum on the English dataset
is an effect of the sharp fall of the Jaccard coefficient observed in the range of 14-16 topics. It follows
that application of Sharma—-Mittal entropy for models based on the E-M algorithm allows determining
the optimal number of topics involving the semantic stability of topics. Figures that demonstrate the
behavior of semantic coherence for these datasets can be found in Appendix B. We do not provide
them here since they monotonously decrease, with some fluctuations, but without any clear extrema,
thus providing no criteria for choosing topic number.
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Figure 8. Sharma—-Mittal entropy for the pLSA model (Russian dataset). (a) 3D plot of Sharma—-Mittal
entropy; (b) projection of Sharma-Mittal entropy to OT1 T>.

3.1.2. Results for the LDA with Gibbs Sampling Model

The difference between the pLSA model and LDA Gibbs sampling model is not only in the
application of the Monte Carlo algorithm for determining hidden distributions, but also in the
presence of a regularization procedure. The level of regularization in LDA with Gibbs sampling
is determined by hyper-parameters « and f. In our numerical experiments, we used the algorithm [11]
where hyper-parameters of the LDA model were fixed and did not change from iteration to iteration
since our goal was to analyze the results of the LDA model with respect to different values of
hyper-parameters. Figure 9 plots the log-likelihood for the Russian dataset as a function of T for pLSA
and for LDA with different fixed values of « or 8. The behavior of the log-likelihood for the English
dataset was similar to that for the Russian dataset, and therefore, we do not provide the figure.

-4.8x10°+
-5.0x10°

5.2x10°-

Log-likelihood

5 45107

5.6x10°-

0 10 20 30 0 50
T

Figure 9. Log-likelihood distribution over T for different « and B (Russian dataset). pLSA, black;
LDA (« =0.1, B =0.1), red; LDA (« = 0.5, 8 = 0.1), green; LDA (x = 1, 8 = 1), blue.

Using the results of calculations (Figure 9), one can conclude that the log-likelihood metric allows
estimating the effect of regularization in the LDA Gibbs sampling model. Namely, it can be seen that the
largest values of regularization coefficients (blue curve) led to the lowest values of the log-likelihood,
while according to [21,34], the optimal topic model should correspond to the maximum log-likelihood.
According to our numerical results, the maximum log-likelihood corresponds to the pLSA model,



Entropy 2019, 21, 660 15 of 29

that is to the zero regularization of LDA. Let us note that a similar result was obtained in [66],
where, according to human mark-up, pLSA was shown to perform better than LDA, as regularized
pLSA, and than pLSA regularized with decorrelation and sparsing-smoothing approaches, for the task
of revealing ethnicity-related topics.

Figures 10 and 11 plot Renyi entropy as functions of T for different values of « and g for the
Russian and English datasets. Calculations demonstrated that application of Renyi entropy and the
log-likelihood allowed estimating the influence of regularization in TM. Namely, larger regularization
coefficients led to higher entropy, i.e., to the model’s deterioration. The exact minima of Renyi entropy
were the following: (1) Russian dataset: T =7 fora = 0.1, =01, T =9fora =05,=01T =14
fora =1,8 =1, (2) English dataset: T = 17 fora = 0.1, =0.1; T =15fora = 05,=0.1;T =13
fora =1, = 1. It follows that Renyi entropy is useful for estimating topic model hyper-parameters
for different datasets, at least in European languages. In addition, Renyi entropy is less sensitive to
the size of vocabulary since this metric is normalized with respect to initial states (chaos). However,
as Renyi entropy for the LDA Gibbs sampling model and pLSA model does not allow taking into
account semantic stability, we further do not present our results on Sharma—-Mittal entropy.
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Figure 10. Renyi entropy distribution over T for different « and B (Russian dataset). pLSA—Dblack,
LDA (2 =0.1, 8 =0.1)—red, LDA (x = 0.5, = 0.1)—green, LDA (« =1, f = 1)—blue.
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Figure 11. Renyi entropy distribution over T for different « and B (English dataset). pLSA, black;
LDA (« =0.1, B =0.1), red; LDA (« = 0.5, = 0.1), green; LDA (x = 1, 8 = 1), blue.
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Figures 12 and 13 show curves of Sharma-Mittal entropy for the LDA Gibbs sampling model
under variation of hyper-parameters « and p for the Russian and English datasets. Figures 14 and 15
demonstrate Sharma—-Mittal entropy curves where large values (>6) are replaced by six in order to
demonstrate clearly the location of the global minimum. These figures show that for small values of
hyper-parameters, the behavior of Sharma-Mittal entropy for LDA is similar to that for the pLSA model.
The exact minima of Sharma—-Mittal entropy were: (1) Russian dataset: T = 7fora = 0.1, =0.1,T =7
fora =05 p=01T=19fora = 1,8 = 1; (2) English dataset: T =21 fora =0.1, =01, T =21
fora =0.5,8=0.1, T =13 for « = 1, 8 = 1 Furthermore, these figures demonstrate that the location
of jumps of Sharma-Mittal entropy, which are related to semantic stability, are almost independent
of the regularization coefficients. However, in general, entropy curves were lifted along the Y axis if
regularization coefficients increased. It follows that for LDA Gibbs sampling, the optimal values of
both « and B coefficients were small. It can be concluded that the results of regularization coefficients’
selection by means of Sharma—-Mittal entropy were similar to those obtained with the log-likelihood
and Renyi entropy; however, two-parametric entropy, unlike other considered metrics, allowed
incorporating semantic stability using the Jaccard distance. Sharma-Mittal entropy under variation
of the number of topics and incorporation of the Jaccard coefficient represents a three-dimensional
structure with a set of local minima, which are determined by the number of topics and by semantic
stability. These areas of local minima represent islands of stability. Figures 16 and 17 demonstrate the
three-dimensional surfaces of Sharma-Mittal entropy for the Russian and English datasets and its
projections to the horizontal plane OT; T,.

Numerical results on semantic coherence for LDA with Gibbs sampling can be found in
Appendix B (Figures A3 and A4). However, as with pLSA, this metric fell monotonously and did not
provide any criteria for the choice of the topic number.
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Figure 12. Sharma-Mittal entropy distribution over topics (Russian dataset). pLSA, black; LDA (« =0.1,
B =0.1), red; LDA (« = 0.5, B = 0.1), green; LDA (x« =1, § = 1), blue.
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Figure 13. Sharma-Mittal entropy distribution over topics (English dataset). pLSA, black; LDA (« = 0.1,
B =0.1), red; LDA (« = 0.5, B = 0.1); green, LDA (x« =1, § = 1), blue.
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Figure 14. Sharma-Mittal entropy distribution over topics (Russian dataset). pLSA, black; LDA (« = 0.1,
B =0.1), red; LDA (« = 0.5, B = 0.1), green; LDA (x« =1, § = 1), blue.
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Figure 15. Sharma—-Mittal entropy distribution over topics (English dataset). pLSA, black; LDA (« = 0.1,

B =0.1), red; LDA (« = 0.5, B = 0.1), green; LDA (« = 1, B = 1), blue.
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Figure 16. Sharma-Mittal entropy for the LDA model (Russian dataset). (a) 3D plot of Sharma—Mittal
entropy; (b) projection of Sharma-Mittal entropy to OT1 T5.
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Figure 17. Sharma-Mittal entropy for the LDA model (English dataset). (a) 3D plot of Sharma—Mittal
entropy; (b) projection of Sharma-Mittal entropy to OT; T;.

4. Discussion

In this work, we proposed a new entropy-based approach for the multi-aspect evaluation of the
performance of topic models. Our approach was based on two-parametric Sharma—-Mittal entropy,
that is twice deformed entropy. We considered the deformation parameter, g, being the inverse value of
the number of topics, and the second parameter, r, being the Jaccard coefficient, while 1 — r the entropy
distance. Our numerical experiments demonstrated that, firstly, Sharma-Mittal entropy, as well as
Renyi entropy allowed determining the optimal number of topics. Secondly, as the minimum of
Sharma-Mittal entropy corresponded to the maximum of the log-likelihood, the former also allowed
choosing the optimal values of hyper-parameters. Thirdly, unlike Renyi entropy or the log-likelihood,
it allowed optimizing both hyper-parameters and the number of topics, simultaneously accounting for
semantic stability. This became possible due to the existence of areas of semantic stability that have
been shown to be characterized by low values of Sharma—-Mittal entropy. According to our numerical
results, the location of such areas did not depend on the hyper-parameters. However, on the whole,
larger values of hyper-parameters in the LDA Gibbs sampling led to higher entropy, while small values
made the LDA model almost identical to pLSA. This means that new methods of regularization are
needed that would not impair TM performance in terms of entropy. We concluded that Sharma-Mittal
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entropy is an effective metric for the assessment of topic models performance since it includes the
functionality of several metrics.

However, our approach had certain limitations. First of all, topic models have an obvious
drawback, which is expressed by the fact that the probabilities of words in topics depend on the
number of documents containing these words. This means that if a topic is represented in a small
number of documents, then the topic model will assign small probabilities to the words of this topic,
and correspondingly, a user will not be able to see this topic. Thus, topic models can detect topics that
are represented in many documents and poorly identify topics with a small number of documents.
Therefore, Renyi entropy and Sharma-Mittal entropy allow determining the number of those large
topics only. Secondly, in our work, Sharma-Mittal entropy was tested only for two European languages,
while there are papers on the application of topic models for the Chinese, Japanese, and Arabic
languages. Correspondingly, our research should be extended and tested on non-European languages.
Thirdly, our metric allowed finding the global minimum when topic modeling was performed in a wide
range of the number of topics; however, this process was resource-intensive and in practice can be
applied to datasets containing up to 100-200 thousand documents. For huge datasets, this metric is not
applicable. This problem might be partially solved by means of renormalization, which can be adapted
for topic models from statistical physics. Research on application of renormalization for fast search of
Renyi entropy and Sharma-Mittal entropy minima deserves a separate paper. Fourthly, we would
like to note that our method was not embedded in algorithms of topic modeling. Therefore, in future
research, the metric of quality based on Sharma-Mittal entropy can be used for the development of new
topic models. Sharma-Mittal entropy can be embedded in the algorithms based on the Gibbs sampling
procedure, where walks in the multi-dimensional space of words, hyper-parameters, and the number of
topics will be determined by the level of this entropy. Correspondingly, transition along different axes
of multi-dimensional space can be guided by the entropy minimization principle. An algorithm similar
to the algorithm of annealing based on searching for the minimum Tsallis entropy [67] can be used in
this case. However, unlike the algorithm proposed by Tsallis, one can use deformation parameter g as
a parameter that controls the number of components in the mixture of distributions and search for
the minimum when changing the number of components. Therefore, the walk in the multi-parameter
space can be determined by the direction of the minimum of deformed entropy when changing the
dimension of the space.

For topic models based on the maximum log-likelihood principle, the sizes of matrices are
included in the model as external parameters, which are selected by the user. Correspondingly,
new topic models can be developed in the future by using the principle of deformed logarithm
maximization, where one of deformation parameters corresponds to the sizes of matrices (namely,
the number of topics) and the other parameter corresponds to semantic stability (e.g., the Jaccard
index). Note that both parameters here are maximization parameters. A more detailed discussion of
these possible directions for research is out of the scope for this paper and can be used as a starting
point for new research.
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Abbreviations

The following abbreviations are used in this manuscript:

E-M expectation-maximization

HDP  Hierarchical Dirichlet Process

KL Kullback-Leibler

LDA  Latent Dirichlet Allocation

pLSA  probabilistic Latent Semantic Analysis
™ Topic Modeling

Appendix A. Types of Topic Models

Appendix A.1. Models Based on Likelihood Maximization

Mathematical formulation of this family of models is based on the fact that matrix containing
distributions of words by documents, F, is represented as a product of ® and © [15,27], so the problem
F = @O is considered as a problem of stochastic matrix decomposition, which is carried out using the
Expectation-Maximization (E-M) algorithm. Logarithm of likelihood is maximized for searching the
approximation of solution [10]. Let us note that stochastic matrix decomposition is not unique and is
defined with accuracy up to a non-degenerate transformation: F = ®@ = (®R)(R~1®) = '@’ [15].
It means that different topic solutions with the same number of topics can be assigned to the initial set
of words and documents (matrix F). The elements of matrices ® and ® can differ under variation of
matrix of transformation R. It follows that the problem of TM is ill-posed. Nowadays, many models
with different types of regularization exist. One of the most used regularizer found in literature
is a product of conjugate distributions, namely, multinomial and Dirichlet distributions. In this
case, the final distribution of words by topics and distribution of topics by documents are Dirichlet
distributions [10] in accordance with properties of conjugate distributions. Another variant of widely
used regularization is additive regularization developed by Vorontsov [15]. In the framework of this
approach, a set of functions characterizing the variant of regularization is added to the logarithm of
likelihood in the framework of maximization problem, the level of regularization is defined by the value
of regularization coefficient. For example, Gibbs—Shannon entropy or Kullback-Leibler divergence
can play a role of regularizer. Despite the large number of possibilities of this approach, the method
of additive regularization does not assist in choosing regularization parameters and selecting the
combination of regularizers [68]. Basically, the selection of regularization coefficients is carried out
manually taking into account the perplexity stabilization [68]. Generally, the problem of selecting
regularizers and their coefficient values is still in the research core for this type of models. Alternative
variant of regularization is a model taking into account the relations between words. Such information
is taken externally (for instance, from the dataset) and is expressed in form of covariance matrix C
of size W x W, where W is the number of unique words. A significant disadvantage of this type of
regularization is the problem of calculating the covariance matrix, since the size of the dictionary
of unique words can exceed one million of words. However, in our point of view, this type of
regularization is potentially perspective since “word embedding” method is actively developed in
the framework of neural networks. This method allows calculating word co-occurrence matrices
which, in turn, can be incorporated in topic models. Nowadays, there are two hybrids of topic
models and “word embedding” model [69,70]. However, these models also possess instability since
“word embedding” algorithms possess instability [71,72].
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Let us consider the Probabilistic Latent Semantic Analysis (PLSA) model, which is used in our
numerical experiments, in detail. In the framework of this model, the determination of the matrices ®
and O is performed as described in [27]. The entire dataset is generated as:

p(D) = TT TT p(dw)"®) = TT TT pla)" = p(aofd"=)

deDwew deD weW
=TT IT p(@"®) Y pleolt)" @ p(e]d) ")
deD weW teT

where p(d, w) is the joint probability distribution, n(d, w) counts the appearance frequency of the term
w in the document d. Note that this model involves a conditional independence assumption, namely,
d and w are independently conditioned on the state of the associated latent variable [27].

The estimation of the one-dimensional distributions is based on log-likelihood maximization with
linear constraints:

L(¢,0) = ), ), n(dw)ln (P(d) Z<Pwt9td) %II;%XL(%G)I

deD weW teT

where Pwt 2 0, Ywew Puwt =1, 0a > 0, Yier by =1

The determination of the local maximum of L(¢, 0) is carried out using Expectation-Maximization
(E-M) algorithm. The initial approximation of ¢+ and 6;; is chosen randomly or uniformly before the
first iteration.

E-step: using Bayes’ rule, conditional probabilities p(f|d, w) are calculated for all t € T and each
w € W,d € D [73], namely:

L pldelp() _ pdp(lnp()
pUld @) = =2y = 5@) et pwls)p ()
p@lp(tld)  puiby

N Yser p(wls)p(s|d) B YoeT PusOsa
M-step: using conditional probabilities, new approximations of ¢y, 6y are estimated, namely:

Yaep n(d, w)p(t|d, w)
Ywew Laep n(d, w)p(t|d,w)’

Eoenn(d,w)p(tldw)
YieT Lwew n(d, w)p(tld, w)

(Pwt =

0 =

Thus, alternating E and M steps in a cycle, p(f|d) and p(w|t) can be estimated. Note that this
model has no additional parameters except of “the number of topics”, which defines the size of
matrices @, ©.

Appendix A.2. Models Based on Monte-Carlo Methods

This class of models represents a variant of Potts model adapted for text analysis. Each document
of the collection is considered a one-dimensional grid, where a node is a word. The number of the states
of the spin is considered as the number of topics. The difference between topic model and Potts model is
that in TM a large amount of documents is used. Probabilities of distribution of words and documents
can be estimated by means of expectation under condition of known integrand. According to approach
of Blei [10], probability density functions of multinomial and Dirichlet distributions are used as
integrand. Determining the hidden distributions is implemented by means of Gibbs sampling. Due to
the presence of a set of local minima and maxima of integrand, this type of models also possess a certain
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degree of instability. One can also introduce regularizers for these types of models, for example,
by fixing belongings of some words in a range of topics [74]. This type of regularization behaves
as process of crystallization, where a layer of words (which are often found together with words
from the core) is formed around the core containing fixed words. Another variant of regularization
represents a modified Gibbs-sampling procedure, where sampling is implemented not for one word,
but for several words, which are placed inside a window of fixed size [16]. As demonstrated in
experiments, this variant of regularization gives a high level of stability, however, there are a lot of
“garbage topics”, which can not be interpreted. One can claim that the problem of optimization of
regularization procedure for models based on Gibbs sampling and determining the optimal number of
topics is not completely solved.

Let us consider Latent Dirichlet Allocation (LDA) model with Gibbs sampling procedure in
detail. LDA is a topic model, in which each topic is smoothed by the same regularizer in the form of
Dirichlet function [11]. According to Blei et al. [10], it is assumed to use Dirichlet distributions with
one-dimensional parameters  and «, correspondingly, in order to simplify the derivation of analytical
expressions for the matrices ® and ®. In LDA, documents are generated by picking a distribution
over topics 0 from a Dirichlet distribution with parameter «, then the words in the document are
generated by picking a topic t from this distribution and then picking a word from that topic according
to probabilities which are determined by ¢.; [11], where ¢4, is drawn from a Dirichlet distribution
with parameter 8. On this basis, the probability of the i-th word in a given document d is defined
as follows [11]:

T T T cqituw Cui+ B
p(wia) = Y p(Wialzia = )p(zia = 1) = Y duibs; = J . J ,
i ]; i i 1 ]; wyvaj ]; Z]T=1 Cd,j + T Zg)vzl Cw,j + ‘BW

where z; ; is a latent variable (topic), p(w; 4|z; = j) is the probability of the word w; in document
d under the j-th topic, p(z;4 = j) is the probability of choosing a word from topic j in the current
document d, w; 4 is the i-th word in document d, counter ¢, ; is the number of words in document d
assigned to topic j, counter ¢, ; is the number of word w is assigned to topic j; Z]-T:1 cg,j is the total
number of words in document d (i.e., length of document d), ZZ;V:1 Cw,j is the total number of words
assigned to topic j. Correspondingly, 8 and ¢ can be obtained as follows:

Cqj+a

btj = (A1)
1 Z]'Tzl Cd,j +aT

Cw,]' + :B
. 7
Yoo—1 Cw,j + pW

The algorithm of calculation consists of three phases. The first one is the initialization of matrices,

Pw j = (A2)

counters and parameters « and f, in addition to specifying the number of iterations. Counters,
which define the initial values of matrices ® and ©, are set as constants. So, matrices are filled with
constants, for example, @ can be filled with uniform distribution, where all elements of the matrix are
equal to 1/W, where W is the number of unique words in a collection of documents.

The second phase (sampling procedure) is an exhaustive search through all the documents and
all words in each document in a cycle. Each word w; in a given document d is matched with the topic
number, which is generated as follows:

c;]' +a C;;,j +B

Y c;,]lf +aT YV, c;fj + W’

p(zi =jlz—i) =~

where c‘;]’: is the number of words from document d assigned to topic j not including the current word

wj, C;ZJ is the number of instances of word w assigned to topic j not including the current instance 7,
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C;,; and c;’] are called counters. Here, the probabilities of belonging of the current word to different
topics are calculated, then z; is sampled according to this distribution. The initial probability of
word-topic matching is defined only by 1/W when considering a uniform distribution as the initial
approximation of matrix ®. However, after each word matching to a topic, the values of counters
change and, hence, after an important number of iterations, counters contain the full statistics of
document collection under study.

At the third phase, ® and @ are calculated according to the Equations (A1) and (A2). Finally,
the matrices are ready for manual analyses, where for sociological analysis, only the most probable
words and documents for each topics are considered. Note that the coefficients « and § defining
Dirichlet distribution are parameters of this model, which one has to select. The hyper-parameter
B determines whether topics will have more sparse or more uniform distributions over words [21].
The hyper-parameter & determines the level of sparsity of vectors 6.. If « = 1 then Dirichlet distribution
transforms into uniforms distribution while small values of a cause more sparse vectors 6.;. Therefore,
in general, the hyper-parameters « and 8 influence the sparsity of matrices ® and © [34]. The sparsity
of matrices influences, in turn, the number of topics, which can appear in a document collection.
Consequently, the number of topics may implicitly depend on the values of hyper-parameters.
Work [11] suggests a rule to select hyper-parameters: « = 50/T and B = 0.01, where T is the
number of topics. Such values of parameters were widely used in different studies [75-77].

Appendix A.3. Models Based on Hierarchical Dirichlet Process

Alternative approach in TM is hierarchical model based on Dirichlet processes (HDP) [13].
In paper [78], a two-level version of hierarchical Dirichlet process (with Split-Merge Operations)
based on Chinese Restaurant Franchise (CRF) is used. According to this paper, Chinese Restaurant
Franchise is associated to topic model in the following way: “restaurant” corresponds to “document”;
customer corresponds to “word”; “dish” corresponds to “topic”. In this approach, “customers” are
partitioned at the group-level and “dishes” are partitioned at the top level. The customer partition
represents the per-document partition of words; the top level partition represents the sharing of topics
between documents [78]. Let us note that the list of dishes (topics) is the same for all restaurants.
Despite the fact, that this type of models is referred to the class of non-parametric methods in literature,
this model has a set of pre-defined parameters, which influence on the results and on the number
of topics.

Appendix B. Numerical Results on Semantic Coherence

Appendix B.1. PLSA

In order to calculate semantic coherence, we considered 30 top-words for each topic of topic
solutions for the two datasets from Section 3. Figure A1 demonstrates behavior of individual topic
coherence for topic solution on 30 topics for the Russian and English datasets, where topics are ordered
in descending order with respect to the coherence. It is not obvious how to separate “good” and “bad”
topics for the Russian dataset since topic coherence change is nearly smooth. For the English dataset
one can see a dramatic decrease in the region of 25 topics, however it does not correspond to the
mark-up of this dataset.

Figure A2 demonstrates aggregated semantic coherence for topic solutions with the different topic
numbers T for the Russian and English datasets. This figure does not allow us to choose the “optimal”
number of topics since the maximum coherence for the Russian dataset corresponds to T = 4, however,
it is not close to the human mark-up. For the English dataset we observe a number of peaks that does
not assist in selecting the number of topics. It follows that semantic coherence does not allow us to
determine the single “optimal” number of topics for pLSA model.
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Figure A1. Topic coherence for solution on 30 topics (pLSA). Russian dataset, black; English dataset, red.
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Figure A2. Distribution of semantic coherence over T (pLSA). Russian dataset, black; English
dataset, red.

Appendix B.2. LDA with Gibbs Sampling

For calculation of semantic coherence for LDA models we, again, considered 30 top-words for
each topic. Figure A3 demonstrates behavior of individual topic coherences for topic solutions on
30 topics for the Russian and English datasets, where topics are ordered in descending order with
respect to the coherence. However, it is not obvious how to choose the optimal number of topics,
i.e., where to cut the line in order to separate “good” and “bad” topics for the Russian dataset. For the
English dataset we observe a sharp fall for T = 25, however this number of topics does not correspond
to the description of the dataset. Figure A4 demonstrates aggregated semantic coherence for topic
solutions with different topic numbers T for the Russian and English datasets. One can see that the
maximum is reached for T = 4 for the Russian dataset which does not correspond to the human
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annotation. For the English dataset one can see a peak for T = 19, however this pick is not unique and
it is not obvious which one we should choose. Thus, we have demonstrated limitations of semantic
coherence as a method for selecting the number of topics.
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Figure A3. Topic coherence for solution on 30 topics. LDA (¢ = 0.1, = 0.1). Russian dataset,
black; English dataset, red.
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Figure A4. Distribution of semantic coherence over T. LDA (¢« = 0.1, 8 = 0.1). Russian dataset,
black; English dataset, red.
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