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Abstract: Determining the strength of nonlinear, statistical dependencies between two variables is a
crucial matter in many research fields. The established measure for quantifying such relations is the
mutual information. However, estimating mutual information from limited samples is a challenging
task. Since the mutual information is the difference of two entropies, the existing Bayesian estimators
of entropy may be used to estimate information. This procedure, however, is still biased in the
severely under-sampled regime. Here, we propose an alternative estimator that is applicable to
those cases in which the marginal distribution of one of the two variables—the one with minimal
entropy—is well sampled. The other variable, as well as the joint and conditional distributions, can be
severely undersampled. We obtain a consistent estimator that presents very low bias, outperforming
previous methods even when the sampled data contain few coincidences. As with other Bayesian
estimators, our proposal focuses on the strength of the interaction between the two variables, without
seeking to model the specific way in which they are related. A distinctive property of our method is
that the main data statistics determining the amount of mutual information is the inhomogeneity of
the conditional distribution of the low-entropy variable in those states in which the large-entropy
variable registers coincidences.

Keywords: Bayesian estimation; mutual information; bias; sampling

1. Introduction

Inferring the statistical dependencies between two variables from a few measured samples is
a ubiquitous task in many areas of study. Variables are often linked through nonlinear, relations,
which contain stochastic components. The standard measure employed to quantify the amount of
dependency is the mutual information, defined as the reduction in entropy of one of the variables
when conditioning the other variable [1,2]. If the states of the joint distribution are well-sampled,
the joint probabilities can be estimated by the observed frequencies. Replacing such estimates in the
formula for the mutual information yields the so-called “plug-in” estimator of mutual information.
However, unless all the states of the joint distribution are sampled extensively, this procedure typically
over-estimates the mutual information [3-5]. In fact, when the number of samples is of the order of the
effective number of joint states, even independent variables tend to appear as correlated.

The search for an estimator of mutual information that remains approximately unbiased even with
small data samples is an open field of research [6-11]. Here, we focus on discrete variables, and assume
it is not possible to overcome the scarceness of samples by grouping states that are close according to
some metric. In addition to corrections that only work in the limit of large samples [12], the state of the
art for this problem corresponds to quasi-Bayesian methods that estimate mutual information indirectly
through measures of the entropies of the involved variables [8,13,14]. These approaches have the
drawback of not being strictly Bayesian, since the linear combination of two or more Bayesian estimates
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of entropies does not, in general, yield a Bayesian estimator of the combination of entropies [8].
The concern is not so much to remain within theoretical Bayesian purity, but rather to avoid frameworks
that may be unnecessarily biased, or where negative estimates of information may arise.

Here, we propose a new method for estimating mutual information that is valid in the specific
case in which there is an asymmetry between the two variables: One variable has a large number of
effective states, and the other only a few. Examples of asymmetric problems can be found for instance
in neuroscience, when assessing the statistical dependence between the activity of a population of
neurons and a few stereotyped behaviors, as “lever to the left” or “lever to the right.” If the neural
activity is represented as a collection of binary strings, with zeroes and ones tagging the absence or
presence of spikes in small time bins, the set of possible responses is huge, and typically remains
severely undersampled in electrophysiological experiments. If the behavioral paradigm is formulated
in terms of a binary forced choice, the behavioral response only has two possible states.

In our approach, no hypotheses are made about the probability distribution of the large-entropy
variable, but the marginal distribution of the low-entropy variable is assumed to be well sampled.
The prior is chosen so as to accurately represent the amount of dispersion of the conditional distribution
of the low-entropy variable around its marginal distribution. This prior is motivated in the framework
of Bayesian estimation of information, and then tested with selected examples in which the hypotheses
implied in the prior are fulfilled in varying degree, from high to low. The examples show that
our estimator has very low bias, even in the severely under-sampled regime, where there are few
coincidences that is, when any given state of the large-entropy variable has a low probability of being
sampled more than once. The key data statistics that determine the estimated information is the
inhomogeneity of the distribution of the low-entropy variable in those states of the high-entropy
variable where two or more samples are observed. In addition to providing a practical algorithm to
estimate mutual information, our approach sheds light on the way in which just a few samples reveal
those specific properties of the underlying joint probability distribution that determine the amount of
mutual information.

2. Bayesian Approaches to the Estimation of Entropies

We seek a low-bias estimate of the mutual information between two discrete variables. Let X
be a random variable with a large number k, of effective states {x1,...,x; } with probabilities g,
and Y be a variable that varies in a small sety € {y,..., Yk, }, with ky < ky. Given the conditional
probabilities g,|,, the marginal and joint probabilities are g, = }_; 4x 4|, and qxy = qx 4, |, respectively.
The entropy H(Y) is
H(Y) = -} _qylogaqy, @
Y

and can be interpreted as the average number of well-chosen yes/no questions required to guess
the sampled value of Y (when using a logarithm of base two). Since the entropy is a function of the
probabilities, and not of the actual values taken by the random variable, here we follow the usual
notation in which the expressions H(Y) and H(q) = H(qy,, ..., ‘My) are taken to represent the same
concept, defined in Equation (1). The conditional entropy H(Y|X) is the average uncertainty of the
variable Y once X is known,

Y|X qu [_qu|x 1quy|x1 qu le ()
y

The mutual information is the reduction in uncertainty of one variable once we know the other [2]
I(X,Y) = H(X) + H(Y) — H(X,Y) = H(Y) — H(Y|X). ®)

Our aim is to estimate I(X,Y) when Y is well sampled, but X is severely undersampled,
in particular, when the sampled data contain few coincidences in X. Hence, for most values x,
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the number of samples 7, is too small to estimate the conditional probability 4|, from the frequencies
nxy/nyx. The plug-in estimators of entropy, conditional entropy and mutual information are defined
as the ones in which all the probabilities appearing in Equations (1)-(3) are estimated naively by the
frequencies obtained in a given sample. In fact, when n, ~ O(1), the plug-in estimator typically
underestimates H(Y|x) severely [5], and often leads to an overestimation of I(X,Y).

One possibility is to estimate H(X), H(Y) and H(X, Y) using a Bayesian estimator, and then insert
the obtained values in Equation (3) to estimate the mutual information. We now discuss previous
approaches to Bayesian estimators for entropy, to later analyze the case of information. For definiteness,
we focus on H(X), but the same logic applies to H(Y), or H(X,Y).

We seek the Bayesian estimator of the entropy conditional to having sampled the state x; a number
n; of times. We denote the collection of sampled data as a vectorn = (1, ..., Mk, ), and the total number
of samples N = } ; n;. The Bayesian estimator of the entropy is a function that maps each vector n on a
non-negative real number H(n), in such a way that the posterior expected error is minimized [15,16].
In the Bayesian framework, the sampled data n are known, whereas the underlying distribution q
originating the data is unknown, and must be inferred. In this framework, the estimator of the entropy
is the function H(n) for which

([f1) - H]*) = [ [A(n) - H(@)* plaln) da @

is minimized. The Bayesian nature of this framework is embodied in the fact that the integral weighs
all candidate distributions q that could have originated the data with the posterior distribution p(q|n),
which can be related to the multinomial distribution p(n|q) by means of Bayes rule. The estimator
H(n) can be found by taking the derivative of Equation (4) with respect to H and equating to zero.
The result is [17]

A

H(n) = (Hn) = [H(q)p(q/n)d

= ~' [ H(q) p(nlq) p(q) dq,
where the first equation results from the minimization procedure, and the second, from using Bayes
rule. As a result, the Bayesian estimator is the expected value of H(q|n).

©)

Since p(n|q) is the multinomial distribution

p(n|q) = N! H "x 6)
and since the normalization constant p(n) can be calculated from the integral

= /dq p(nlq) p(q), ?)

the entire gist of the Bayesian approach is to find an adequate prior p(q) to plug into
Equations (5) and (7). For the sake of analytical tractability, p(q) is often decomposed into a weighted
combination of distributions p(q|p) that can be easily integrated, each tagged by one or a few
parameters, here generically called § that vary within a certain domain,

/dﬁ p(B) r(alp). ®)

The decomposition requires to introduce a prior p(f). Hence, the former search for an adequate
prior p(q) is now replaced by the search for an adequate prior p(f). The replacement implies an
assumption and also a simplification. The family of priors that can be generated by Equation (8)
does not necessarily encompass the entire space of possible priors. The decomposition relies on the
assumption that the remaining family is still rich enough to make good inference about the quantity of
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interest, in this case, the entropy. The simplification stems from the fact that the search for p(g) is more
restricted than the search for p(q) because the space of alternatives is smaller (the dimensionality of q is
typically high, whereas the one of § is low). Two popular proposals of Bayesian estimators for entropies
are Nemenman-Shafee-Bialek (NSB) [13] and Pitman—Yor Mixture (PYM) [14]. In NSB, the functions
p(q|B) are Dirichlet distributions, in which f takes the role of a concentration parameter. In PYM,
these functions are Pitman—Yor processes, and f stands for two parameters: one accounting for the
concentration, and the other for the so-called discount. In both cases, the Bayesian machinery implies

1
Hin) =~ [ dB p(g) W(BIn), 9
(H[n) () B p(B) W(BIn) ©
where W(p|n) is the weight of each f in the estimation of the expected entropy

W(gln) = [ da H(a) p(nlq) p(alp). (10)

When choosing the family of functions p(q|B), it is convenient to select them in such a way that
the weight W(B|n) can be solved analytically. However, this is not the only requirement. In order to
calculate the integral in B, the prior p(B) also plays a role. The decomposition of Equation (8) becomes
most useful when the arbitrariness in the choice of p(p) is less serious than the arbitrariness in the
choice of p(q). This assumption is justified when W(B|n) is peaked around a specific B-value, so that,
in practice, the shape of p(B) hardly has an effect. In these cases, a narrow range of relevant S-values
is selected by the sampled data, and all assumptions about the prior probability outside this range
play a minor role. For the choices of the families p(q|B) proposed by NSB and PYM, W(|n) can be
calculated analytically, and one can verify that, indeed, a few coincidences in the data suffice for a peak
to develop. In both cases, the selected B is one for which p(q|p) favours a range of q values that are
compatible with the measured data (as assessed by p(n|q)), and also produce non-negligible entropies
(Equation (10)).

When the chosen Bayesian estimates of the entropies are plugged into Equation (3) to obtain
an estimate of the information, each term is dominated by its own preferred . Since the different
entropies are estimated independently, the  values selected by the data to dominate the priors p(gx)
and p(gy) need not be compatible with the ones dominating the priors of the joint or the conditional
distributions. As a consequence, the estimation of the mutual information is no longer Bayesian,
and can suffer from theoretical issues, as, for example, yield negative estimates [8].

A first alternative would be to consider an integrable prior containing a single § for the
joint probability distribution gy,, and then replace H by I in the equations above, to calculate (I).
This procedure was tested by Archer et al. [8], and the results were only good when the collection of
gxy values governing the data were well described by a distribution that was contained in the family
of proposed priors p(q|B). The authors concluded that mixtures of Dirichlet priors do not provide a
flexible enough family of priors for highly-structured joint distributions, at least for the purpose of
estimating mutual information.

To make progress, we note that I(X,Y) can be written as

q
IGY) =) gx Y ayx 10g57‘y" =Y ax Dxi(qypllay), (11)
x Yy x

where q,|, and qy stand for the k,-dimensional vectors (q, |, - -, Ty, v)and (qy,,..., Ty, ), and Dy
represents the Kullback-Leibler divergence. The average divergence between q, |, and q, captures
a notion of spread. Therefore, the mutual information is sensitive not so much to the value of the
probabilities g,,, but rather, to their degree of scatter around the marginal g,. The parameters
controlling the prior should hence be selected in order to match the width of the distribution of g, |,
values, and not so much each probability. With this intuition in mind, in this paper, we put forward
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a new prior for the whole ensemble of conditional probabilities 4, |, obtained for different x values.
In this prior, the parameter § controls the spread of the conditionals g, |, around the marginal g,,.

3. A Prior Distribution for the Conditional Entropies

Our approach is valid when the total number of samples N is at least of the order of magnitude of
eH(X), since in this regime, some of the x states are expected to be sampled more than once [18,19].
In addition, the marginal distribution g, must be well sampled. This regime is typically achieved when
X has a much larger set of available states than Y. In this case, the maximum likelihood estimators 4,
of the marginal probabilities g, can be assumed to be accurate that is,

b= L~ gy, ¥ (12)
=N Y

In this paper, we put forward a Dirichlet prior distribution centered at g, that is,

k qy\xmr]
p(fayd1B) = TB)™* Iy 1)
kx
_ [ rp Bk H(gy) @P[B Ly ay(logay—loga)] 1
[Hy r(ﬁ%)} e ’ Ty Ty v

exp[fﬁ s DKL(ququ\x)}
ny Ty|x ’

where {q,|, } contains the k, conditional probabilities q, |, corresponding to different x values. Large
values select conditional probabilities close to 4,, while small values imply a large spread that pushes
the selection towards the border of the ky-simplex.

For the moment, for simplicity, we work with a prior p({qy,}) defined on the conditional
probabilities g,|,, and make no effort to model the prior probability of q,. In practice, we estimate the
values of g, with the maximum likelihood estimator 4, = n,/N. Since X is assumed to be severely
undersampled, this is a poor procedure to estimate g,. Still, the effect on the mutual information turns
out to be negligible, since the only role of g, in Equation (11) is to weigh each of the Kullback-Leibler
divergences appearing in the average. If ky is large, each Dk -value appears in several terms of the
sum, rendering the individual value of the accompanying g, irrelevant, only the sum of all those with
the same Dxp, matters. In Section 6, we tackle the full problem of making Bayesian inference both in q
and { Qy|x } :

The choice of prior of Equation (13) is inspired in three facts. First, B captures the spread of
qy|x around gy, as implied by the Kullback-Leibler divergence in Equation (13). Admittedly, this
divergence is not exactly the one governing the mutual information (Equation (11)), since Qy|x and
qy are swapped. Yet, it is still a measure of spread. The exchange, as well as the denominator in
Equation (13), were introduced for the sake of the second fact, namely, analytical tractability. The third
fact regards the emergence of a single relevant f when the sampled data begin to register coincidences.
If we follow the Bayesian rationale of the previous section, now replacing the entropy by the mutual
information, we can again define a weight W(p|n) for the parameter

W(p[n)

/{dqy\x} I<qxl{qy|x}) P(n|(fxr {qy\x}) P({CIy\xHﬁ)
p(Bn) F(§,n),
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where F(B,n) can be obtained analytically, and is a well behaved function of its arguments, whereas

p(pln) = PEERE — BB [ fdqy. | p(nlas {dy.d) p({ay )

(14)
_ prB r'(g) ky  T(nyy+Bidy)
= o L tmrp I — T,

For each x, the vector q, |, varies in a ky-dimensional simplex. For p (n|qx, {ayx }) we take the

. [Gx qy)x]™
p(nldx, {q,}) = NI [ — 25— ny‘yx, : (15)
xy Xy«

multinomial

The important point here is that the ratio of the Gamma functions of Equation (14) develops a
peak in § as soon as the collected data register a few coincidences in x. Hence, with few samples,
the prior proposed in Equation (13) renders the choice of p(p) inconsequential.

Assuming that the marginal probability of Y is well-sampled, the entropy H(Y) is well
approximated by the plug-in estimator H(Y) = — Y.y (ny/N) log(n,/N). For each B, the expected
posterior information can be calculated analytically,

(In, ) = A(Y) = L 55 |go(p+m+1) Zﬁ?::”

Po(Bdy +nxy +1) |, (16)
where ¢ is the digamma function. A code implementing the estimate of Equation (16) is publicly
available in the site mentioned in the Supplementary Material below.

When the system is well sampled, nyy, >> 1, so the effect of B becomes negligible, the digamma
functions tend to logarithms, and the frequencies match the probabilities. In this limit, Equation (16)
coincides with the plug-in estimator, which is consistent [20]. As a consequence, our estimator is
also consistent. The rest of the paper focuses on the case in which the marginal probability of X is
severely undersampled.

4. A Closer Look on the Case of a Symmetric and Binary Y-Variable

In this section, we analyze the case of a binary Y-variable, which, for simplicity, is assumed to be
symmetric that is, g,—0 = q,=1 = 1/2, such that H(Y) = log 2 nats. In this case, the Dirichlet prior in
each factor of Equation (13) becomes a Beta distribution

r'(p)

p(qux|B) = T(B/22 [‘h\x(l - ql\x)}lm*l

/ (17)

and p ({ql‘ H /3) = I1x p(91)x|B)- Large values of p mostly select conditional probabilities g, close to
1/2. If all conditional probabilities are similar, and similar to the marginal, the mutual information is
low, since the probability of sampling a specific y value hardly depends on x. Instead, small values of
p produce conditional probabilities g, around the borders (g, ~ 0 or 4|, ~ 1). In this case, g, is
strongly dependent on x (see Figure 1b), so the mutual information is large. The expected prior mutual
information (I|n = 0, B) can be calculated using the analytical approach developed by [14,17],

(IIn=0,p) =log2—yo(B+1)+tpo(p/2+1). (18)



Entropy 2019, 21, 623 7 of 20

The prior information is a slowly-varying function of the order of magnitude of §, namely of
log B. Therefore, if a uniform prior in information is desired, it suffices to choose a prior on log 8 such

that p(log B) e |diog s (I[n = 0, )],

pogP) = £ [291(p-+1) — 4a(/2+ 1) (19)

When k, = 2, the expected posterior information (Equation (16)) becomes

(Iln,B) = A(Y) — ”—I\’]‘ Yo(B+ne+1)— ¥ <

ye{01}

B/2+ nyy
—_ 2 1. 2
,B+nx IIJO(,B/ + Nyy + ) (20)
The marginal likelihood of the data given f is also analytically tractable. The likelihood is binomial
for each x, so

pnIB) = Tl Jo dujx P, maolduys) p(a11slB)
< TL F(nle;f/Z)T(nxﬁﬁ/ZZ)r(ﬁ)_
nx+B)I(B/2)
The posterior for  can be obtained by adding a prior p(B), as p(B|n) o« p(n|B)p(B). The role of

the prior becomes relevant when the number of coincidences is too low for the posterior to develop a
peak (see below).

(21)

Samples
80 x€{xy,..., K, }
50000 .
00000000
b xr1 T2

Weak relation

qmo[ y|a‘NBeta<ﬂ21 B;)

qIO_HHHHEEEEEEE } P(qy(z| 1) 1

¢ _ Strong relation

ZZ 61y|l~Beta<622 5;) M
I afi[ e

Figure 1. A scheme of our method to estimate the mutual information between two variables X
and Y. (a) We collect a few samples of a variable x with a large number of effective states x1,xy, ...,
each sample characterized by a binary variable y (the two values represented in white and gray).
We consider different hypotheses about the strength with which the probability of each y-value
varies with x; (b) one possibility is that the conditional probability of each of the two y-values hardly
varies with x. This situation is modeled by assuming that the different g, are random variables
governed by a Beta distribution with a large hyper-parameter 1; (c) On the other hand, the conditional
probability 4|, could vary strongly with x. This situation is modeled by a Beta distribution with a small
hyper-parameter 8. (d) As p varies, so does the prior mutual information (Equation (18)). This prior
is obtained by averaging all the I({q;|,}) values obtained from different possible sets of marginal
distributions {q|,} that can be generated when sampling the prior p({q;,}|B) of Equation (17).
The shaded area around the solid line illustrates such fluctuations in I ({‘71\ «}) when ky = 50.

In order to gain intuition about the statistical dependence between variables with few samples,
we here highlight the specific aspects of the data that influence the estimator of Equation (20). Grouping
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together the terms of Equation (21) that are equal, the marginal likelihood can be rewritten in terms of
the multiplicities m1,,, that is, the number of states x with specific occurrences {1, = n, nyy = n'} or
{na =n', nyg=n},

T(n+p/2)0(n" +B/2)T(B)
T(n+n'+ p)T(B/2)?

108P(n|15) = Z Myt log

n>n'

(22)
= Zlm”"’ log puw (B),
where
p10(B) :'822:;’
_ (B2 B
pu(p) = B(B+1)  4(B+1)
(23)
(p) = BRB2+Y _ (B/2+])
PO TR T 2
() _ (B/2)(B/2+1) ... (B/2+n—1) (B/2)(B/2+1)...(B/2+n —1)
P (B) = BB+1)...(B+n+n"—1) .

The posterior for B is independent from states x with just a single count, as p1o() = constant.
Only states x with coincidences matter. In order to see how the sampled data favor a particular j,
we search for the p-value (denoted as p*) that maximizes log p(n|B) in the particular case where at
most two samples coincide on the same x, obtaining

d mi1 Mog mqq + mpg
71 = —_— —
B ogp(nl) B +ﬁ—i—Z B+1

=0. (24)
/S*

Denoting the fraction of 2-count states that have one count for each y-value as f11 = mq1/(my1 +
my), Equation (24) implies that the likelihood p(n|B) is maximized at

(25)

. 400 when f11 >1/2,
=y . /fi}u when fi1 < 1/2.

If the y-values are independent of x, we expect f1; ~ 1/2. This case corresponds to a large S*
and, consequently, to little information. On the other side, for small fi;, the parameter * is also
small and the information grows. Moreover, the width of p(n|g) is also modulated by f;;. When the
information is large, the peak around p* is narrow. Low information values, instead, require more
evidence, and they come about with more uncertainty around S*.

In Equation (24), the data only intervene through my; and myg, which characterize the degree of
asymmetry of the y-values throughout the different x-states. This asymmetry, hence, constitutes a
sufficient statistics for B. If a prior p(B) is included, the B that maximizes the posterior p(|n) may
shift, but the effect becomes negligible as the number of coincidences grows.

We now discuss the role of the selected f in the estimation of information, Equation (20), focusing
on the conditional entropy (Hy|x)(B)- First, in terms of the multiplicities, the conditional entropy can
be rewritten as

(Hyx)(B) =Y fr Y. fawHuw(B), (26)

n+n'=r
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where f; is the fraction of the N samples that fall in states x with r counts, and f,,, is the fraction of
all states x with n + n’ counts, of which n correspond to one y-value (whichever) and n’ for the other.
Finally, H,,,/ (B) is the estimation of the entropy of a binary variable after {n, n’'} samples,

(n+B/2)po(n+p/2+1)+ (n' 4+ B/2)po(n" + B/2 + 1)'

Hyw(B) =o(n+n"+p+1) — R 1B

(27)

A priori, (IlIn = 0,8) = log2 — Hyo(B), as in Figure 1d. Surprisingly, from the property
$o(z +1) = ¢o(z) +1/z, it turns out that Hy = Hyp (in fact, Hyy = H(,11),). Hence, if only a
single count breaks the symmetry between the two y-values, there is no effect on the conditional
entropy. This is a reasonable result, since a single extra count is no evidence of an imbalance between
the underlying conditional probabilities, it is just the natural consequence of comparing the counts
falling on an even number of states (2) when taking an odd number of samples. Expanding the first
terms for the conditional entropy,

(Hy|x) = fiHoo(B) + f2fi1H11(B) + faf20H20(B) + - - (28)

In the severely under-sampled regime, these first terms are the most important ones. Moreover,
when evaluating these terms in § = B* (Equation (25)), the conditional entropy simplifies into

log2 when f11 > 1/2,

(f1 + f2)Hoo(B*) + O(f3) when f11 <1/ (29)

(Hy|x) = {

Typically, (f1 + f2) takes most of the weight, so the estimation is close to the prior Hyg evaluated
at the B-value that maximizes the marginal likelihood (or the posterior).

When dealing with few samples, it is important to have not just a good estimate of the mutual
information, but also a confidence interval. Even a small information may be relevant, if the evidence
attests that it is strictly above zero. The theory developed here also allows us to estimate the posterior
variance of the mutual information, as shown in Appendix A. The variance (Equation (A4)) is shown
to be inversely proportional to the number of states ky, thereby implying that our method benefits
from a large number of available states X, even if undersampled.

If an estimator, such as ours, is guaranteed to provide a non-negative estimate for all possible sets
of sampled data, it cannot be free of bias, not at least if the samples are generated by an independent
distribution (g,|, = gy), for which the true information vanishes. In Appendix B, we show that, in
this specific case, the bias decreases with the square root of the number of coincidences. This number
may be large, even in the severely undersampled regime, if exp[H(X)/2] < N < exp[H(X)]. If the
distribution g, is approximately uniform, the number of coincidences is proportional to the square of
the total number of samples, so the bias is inversely proportional to N.

5. Testing the Estimator

We now analyze the performance of our estimator in three examples where the number of samples
N is below or in the order of the effective size of the system exp(Hxy). In this regime, most observed
x-states have very few samples. In each example, we define the probabilities g and ¢, with three
different criteria, giving rise to collections of probabilities that can be described with varying success
by the prior proposed in this paper, Equation (17). Once the probabilities are defined, the true value
Ixy of the mutual information can be calculated, and compared to the one estimated by our method in
50 different sets of samples n of the measured data. We present the estimate obtained with (I|n, B*)
from Equation (20) evaluated in the f* that maximizes the marginal likelihood p(n|g). We did not
observe any improvement when integrating over the whole posterior p(B|n) with the prior p(B) of
Equation (19), except when miyg or m1g were of order 1. This fact implies the existence of a well-defined
peak in the marginal likelihood.
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In Figure 2, the performance of our estimator is compared with that of three other methods
widely employed in the literature: Plug in, NSB and PYM. In addition, two other estimators were
evaluated, but not shown in the figure to avoid cramming: the one of reference [21], which is a
particularly convenient case of the Schuermann family of estimators [22], and the one of reference [23],
extensively used in ecology. Their estimates fell between the plug-in estimator and NSB in the first
case, and between NSB and PYM in the second case.
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Figure 2. Comparison of the performance of four different estimators for Ixy: the plug-in estimator,
NSB estimator used in the limit of infinite states, PYM estimator, and our estimator (I|n)(p)
(Equation (20)) calculated with the p that maximizes the marginal likelihood p(n|8) (Equation (21)).
The curves represent the average over 50 different data sets n, with the standard deviation displayed
as a colored area around the mean. (a) estimates of mutual information as a function of the total
number of samples N, when the values of q;|, are generated under the hypothesis of our method
(Equation (17)). We sample once the marginal probabilities g ~ PY(d = 0.55, & = 50) (as described
in [14]), as well as the conditionals q,|, ~ Beta(B/2,/2) with p = 2.3. The effective size of the
system is exp(Hyy) =~ 800. The exact value of Ixy is shown as a horizontal dashed line; (b) E vbvbsgv
gtimates of mutual information, for data sets where the conditional probabilities have spherical
symmetry. X, a binary variable of dimension 12, corresponds to the presence of 12 delta functions
equally spaced in a sphere (7x = 2712, for all x). We generate the conditional probabilities such that
they are invariant under rotations of the sphere, namely g, = q,r(x), being R a rotation. To this
aim, we set qy|x as a sigmoid function of a combination of frequency components (g — 717 — 712)
of the spherical spectrum [24]. The effective size of the system is exp(Hxy) =~ 5000; (c) estimates
of mutual information, for a conditional distribution far away from our hypotheses. The x states
are generated as Bernoulli (p = 0.05) binary vectors of dimension D = 40, while the conditional
probabilities depend on the parity of the sum of the components of the vector. When the sum is even
we set q,), = 1/2, and when is odd, g, is generated by sampling a mixture of two deltas of equal
weight g, ~ [6(q —q0) +6(q — 1+ q0)]/2 with go = 0.1. The resulting distribution of g, -values
contains three peaks, and therefore, cannot be described with a Dirichlet distribution. The effective
size of the system is exp(Hxy) =~ 4000; (d) bias in the estimation as a function of the value of mutual
information. Settings remain the same as in (a), but fixing N = 500 and changing 8 € (0.04, 14) in
the conditional; (e) bias in the estimation as a function of the value of mutual information. Settings
as in (b), but fixing N = 2000 and changing the gain of the sigmoid in the conditional; (f) bias in the
estimation as a function of the value of mutual information. Settings as in (c), but fixing N = 2000 and
changing go € (0.01, 0.4) in the conditional.
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In the first example (Figure 2a,d), the probabilities g, are obtained by sampling a Pitman—Yor
distribution with concentration parameter « = 50 and tail parameter d = 0.55 (as described in [14]).
These values correspond to a Pitman—Yor prior with a heavy tail. The conditional probabilities g,
are defined by sampling a symmetric Beta distribution g, ~ Beta(B/2,8/2), as in Equation (17).
In Figure 2a, we use f = 2.3. Once the joint probability gy, is defined, 50 sets of samples n are
generated. The effective size of the system is exp(Hxy) ~ 800. We compare our estimator to the
plug-in estimator (Plug-in), NSB and PYM when applied to Hx and Hxy (all methods coincide in the
estimation of Hy). Our estimator has a low bias, even when the number of samples per effective state
is as low as N/efxr = 0.15. The variance is larger than in the Plug-in estimator, comparable to NSB
and smaller than PYM. All the other methods (Plug-in, NSB and to a lesser extend PYM) overestimate
the mutual information. In Figure 2d, the performance of the estimators is also tested for different
values of the exact mutual information Ixy, which we explore by varying g € (0.04, 14). For each j,
the conditional probabilities 4y, are sampled once. Each vector n contains N = 500 samples, and n
is sampled 50 times. Our estimates have very low bias, even as the mutual information goes to zero
—namely, for independent variables.

Secondly, we analyze an example where the statistical relation between X and Y is remarkably
intricate (example inspired by [25]), which underscores the fact that making inference about the mutual
information does not require inferences on the joint probability distribution. The variable x is a binary
vector of dimension 12. Each component represents the presence or absence of one of a maximum of
12 delta functions equally spaced on the surface of a sphere. There are 2!2 possible x vectors, and they
are governed by a uniform prior probability: g, = 2712. The conditional probabilities are generated
in such a way that they be invariant under rotations of the sphere that is, 4|, = q,r(x), Where Ris a
rotation. Using a spherical harmonic representation [24], the frequency components 77,(f(x)) of the
spherical spectrum are obtained, where f(x) is the combination of deltas. The conditional probabilities
q,|x are defined as a sigmoid function of (7o — 711 — 712). The offset of the sigmoid is chosen such that
gy=1 ~ 0.5, and the gain such that Ixy =~ 0.5 nats. In this example, and, unlike the Dirichlet prior
implied by our estimator, p(q, ;) has some level of roughness (inset in Figure 2b), due to peaks coming
from the invariant classes in {x1, ..., x,12 }. Hence, the example does not truly fit into the hypothesis of
our method. With these settings, the effective size of the system is exp(Hxy) ~ 5000. Our estimator
has little bias (Figure 2b,e), even with N /e!xy = 0.2 samples per effective state. In this regime, around
~ 80% of the samples fall on x states that occur only once (f; ~ 0.8), ~ 19% on states that occur twice
and ~ 1% on states with three counts, or maybe four. As mentioned above, in such cases, the value of
Ixy is very similar to the one that would be obtained by evaluating the prior information (I|n = 0, )
of (Equation (18)) at the B* that maximizes the marginal likelihood p(n|g), which in turn is mainly
determined by f11. In Figure 2e, the estimator is tested with a fixed number of samples N = 2000
for different values of the mutual information, which we explore by varying the gain of the sigmoid.
The bias of the estimate is small in the entire range of mutual informations.

In the third place, we consider an example where the conditional probabilities are generated
from a distribution that is poorly approximated by a Dirichlet prior. The conditional probabilities
are sampled from three Dirac deltas, as g, ~ [0.56(q —1/2) +0.250(7 — q0) + 0.256(q — 1 + q0)],
with gg = 0.1. The delta placed in g = 1/2 could be approximated by a Dirichlet prior with a large S,
while the other two deltas could be approximated by a small B, but there is no single value of § that
can approximate all three deltas at the same time. The x states are generated as Bernoulli (p = 0.05)
binary vectors of dimension D = 40, while the conditional probabilities ¢;|, depend on the parity of
the sum of the components of the vector x. When the sum is even, we assign ¢, |, = 1/2, and when
it is odd, we assign ¢, = qo or q,|, = 1 — qo, both options with equal probability. Although in this
case our method has some degree of bias, it still preserves a good performance in relation to the other
approaches (see Figure 2¢,f). The marginal likelihood p(n|B) contains a single peak in an intermediate
value of B, coinciding with none of the deltas in p(g;, ), but still capturing the right value of the mutual
information. As in the previous examples, we also test the performance of the estimator for different
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values of the mutual information, varying in this case the value of g9 (with N = 2000). Our method
performs acceptably for all values of mutual information. The other methods, instead, are challenged
more severely, probably because a large fraction of the x states have a very low probability, and are
therefore difficult to sample. Those states, however, provide a crucial contribution to the relative
weight of each of the three values of 4;|,. PYM, in particular, sometimes produces a negative estimate
for Ixy, even on average.

Finally, we check numerically the accuracy of the analytically predicted mean posterior
information (Equation (20)) and variance (Equation (A4)) in the severely under-sampled regime.
The test is performed in a different spirit than the numerical evaluations of Figure 2. There, averages
were taken for multiple samples of the vector n, from a fixed choice of the probabilities q, and
q,|x- The averages of Equations (20) and (A4), however, must be interpreted in the Bayesian
sense. The square brackets in (I|n) and <H§|X> represent averages taken for a fixed data sample n,
and unknown underlying probability distributions qx and q,,|,. We generate many such distributions
with g ~ DP(«) (a Dirichlet Process with concentration parameter «) and q,|, ~ Beta(B/2, 8/2).
A total of 13,500 distributions gy, are produced, with log  sampled from Equation (19), and three
equiprobable values of a# = {84,65, 66}. For each of these distributions, we generate five (5) sets
of just N = 40 samples, thereby constructing a list of 5x 13,500 cases, each case characterized by
specific values of o, B, qx, {q,|x}, I(qx, {qyx}), m, (I|n) and o?(I|n). Following the Bayesian rationale,
we partition this list in classes, each class containing all the cases that end up in the same set of
multiplicities {m,,, } —for example, {my9 = 36, myy = 2}. For each of the 100 most occurring sets
of multiplicities (which together cover 70% of all the cases), we calculate the mean and the standard
deviation of the mutual information I(q, {qy| ) of the corresponding class, and compare them with
our predicted estimates (I|{m,,/}) and (c?|{m,, }), using the prior p(logB) from Equation (19).
Figure 3 shows a good match between the numerical (y-axis) and analytical (x-axis) averages that
define the mean information (panel a) and the standard deviation (b). The small departures from the
diagonal stem from the fact that the analytical average contains all the possible q, and {qy‘ «}, even if
some of them are highly improbable for one given set of multiplicities. The numerical average, instead,
includes the subset of the 13,500 explored cases that produced the tested multiplicity. All the depicted
subsets contained many cases, but, still, they remained unavoidably below the infinity covered by the
theoretical result.
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Figure 3. Verification of the accuracy of the analytically predicted mean posterior information
(Equation (20)) and variance (Equation (A4)) in the severely under-sampled regime. A collection
of 13,500 distributions qyy are constructed by sampling q. ~ DP(«) and q,|, ~ Beta(B/2, B/2), with «
varying in the set {e* ¢°¢°} and log B from Equation (19). Each distribution gxy has an associated
Ixy(qxy). From each qy,, we take five (5) sets of just N = 40 samples. (a) the values of I(qxy)
are grouped according to the multiplicities {m,, } produced by the samples, averaged together,
and depicted as the y component of each data point. The x component is the analytical result of
Equation (20), based on the sampled multiplicities; (b) same analysis for the standard deviation of the
information (the square root of the variance calculated in Equation (A4)).
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We have also tested cases where Y takes more than two values, and where the marginal
distribution g, is not uniform, observing similar performance of our estimator.

6. A Prior Distribution for the Large Entropy Variable

The prior considered so far did not model the probability q, of the large-entropy variable X.
Throughout the calculation, the probabilities q, were approximated by the maximum likelihood
estimator §x = ny/N. Here, we justify such procedure by demonstrating that proper Bayesian
inference on q, hardly modifies the estimation of the mutual information. To that end, we replace the
prior of Equation (13) by another prior that depends on both q. and {q|, }-

The simplest hypothesis is to assume that the prior p(qx, {q,,}) factorizes as p(qx) p({qy<}),
implying that the marginal probabilities 4, are independent of the conditional probabilities g,,.. We
propose g, ~ DP(a), so that the marginal probabilities g, are drawn from a Dirichlet Process with
concentration parameter «, associated with the total number of pseudo-counts. After integrating in qy
and in qy|,, the mean posterior mutual information for fixed hyper-parameters § and  is

(o, B) = e {AY) = Tomso & [wo(B+me+1) = T, B0 (B, +may +1)| }
(30)

s [AY) = 9o(B+1) + K,y o(Bdy +1)] -

Before including the prior p(qy), in the severely undersampled regime, the mean posterior
information was approximately equal to the prior information evaluated in the best 8 (Equation (16)).
The new calculation (Equation (30)) contains the prior information explicitly, weighted by a/ (N + «),
that is, the ratio between the number of pseudo-counts from the prior and the total number of counts.
Thereby, the role of the non-observed (but still inferred) states is established.

The independence assumed between q, and {qy| ) implies that

p(nfa, p) = p(nx|a) p(n[p). (31)

The inference over « coincides with the one of PYM with the tail parameter as d = 0 [14], since

[(1+a) g1

I'(N+a) ’ 32)

p(nxa) o
where k1 =}, , -1 is the number of states x with at least one sample. With few coincidences in
x, p(ny|a) develops a peak around a single a-value that represents the number of effective states.
Compared to the present Bayesian approach, maximum likelihood underestimates the number of
effective states (or entropy) in x. Since the expected variance of the mutual information decreases with
the square root of the number of effective states, the Bayesian variance is reduced with respect to the
one of the Plug-in estimator.

7. Discussion

In this work, we propose a novel estimator for mutual information of discrete variables X and
Y, which is adequate when X has a much larger number of effective states than Y. If this condition
does not hold, the performance of the estimator breaks down. We inspire our proposal in the Bayesian
framework, in which the core issue can be boiled down to finding an adequate prior. The more the
prior is dictated by the data, the less we need to assume from outside. Equation (11) implies that the
mutual information I(X,Y) is the spread of the conditional probabilities of one of the variables (for

example, but the same holds for ¢,,) around the corresponding marginal (g, or g, respectively).

Ty|x/
This observation inspires the choice of our prior (Equation (13)), which is designed to capture the same
idea, and, in addition, to be analytically tractable. We choose to work with a hyper-parameter § that

regulates the scatter of ¢, |, around gy, and not the scatter of q,, around g, because the asymmetry in
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the number of available states of the two variables makes the f of the first option (and not the second)
strongly modulated by the data, by the emergence of a peak in p(n|p).

Although our proposal is inspired in previous Bayesian studies, the procedure described here
is not strictly Bayesian, since our prior (Equation (13)) requires the knowledge of 4, which depends
on the sampled data. However, in the limit in which gy, is well sampled, this is a pardonable crime,
since gy is defined by a negligible fraction of the measured data. Still, Bayesian purists should employ
a two-step procedure to define their priors. First, they should perform Bayesian inference on the
center of the Dirichlet distribution of Equation (13) by maximizing p(gy,|n), and then replace 4, in
Equation (13) by the inferred g,,. For all practical purposes, however, if the conditions of validity of our
method hold, both procedures lead to the same result.

By confining the set or possible priors p({q,, }) to those generated by Equation (13), we relinquish
all aspiration to model the prior of, say, 4,|,—3, in terms of the observed frequencies at x = 3. In fact,
the preferred B-value is totally blind to the specific x-value of each sampled datum. Only the number
of x-values containing different counts of each y-value matters. Hence, the estimation of mutual
information is performed without attempting to infer the specific way the variables X and Y are related,
a property named equitability [26], and that is shared also by other methods [8,13,14]. Although this
fact may be seen as a disadvantage, deriving a functional relation between the variables can actually
bias the inference on mutual information [26]. Moreover, fitting a relation is unreasonable in the severe
under-sampled regime, in which not all x-states are observed, most sampled x-states contain a single
count, and few x-states contain more than two counts—at least without a strong assumption about
the probability space. In fact, if the space of probabilities of the involved variables has some known
structure or smoothness condition, other approaches that estimate information by fitting the relation
first may perform well [9-11]. Part of the approach developed here could be extended to continuous
variables or spaces with a determined metric. This extension is left for future work.

In the explored examples, our estimator had a small bias, even in the severely under-sampled
regime, and it outperformed other estimators discussed in the literature. More importantly, the second
and third examples of Section 5 showed that it even worked when the collection of true conditional
probabilities g,|, was not contained in the family of priors generated by p(q,<|f). In these cases,
the success of the method relies on the peaked nature of the posterior distribution p(B|n). Even if the
selected p(q,¢|B) provides a poor description of the actual collection of probabilities, the dominant
B captures the right value of mutual information. This is the sheer instantiation of the equitability
property discussed above.

When the number of samples N is much larger than the total number of available states ky X ky,
our estimator of mutual information tends to the plug-in estimator, which is known to be consistent [20].
Consequently, our estimator is also consistent. By construction, (I|n) is equal to the mutual information
averaged over all distributions q, and {qy‘x} compatible with the measured data, each weighted by
its posterior probability. As such, it can never produce a negative result, which is a desirable property.
The down side is that the estimator must be positively biased, at least, when the true information
vanishes. The derivation in Appendix B shows that, when the number of samples N € [eH(X)/2, H(X)],
this bias is inversely proportional to the square root of the number of pairwise coincidences or, when gy
is fairly uniform, to the inverse of the total number of samples. Moreover, the factor of proportionality is
significantly smaller than the one obtained in the bound of the bias of other frequentist estimators [3,27].
If the number of samples N grows even further, the bias tends to zero, since the bias of all consistent
estimators vanishes asymptotically [28].

Our method provides also a transparent way to identify the statistics that matter, out of all the
measured data. Quite naturally, the x-states that have not been sampled provide no evidence in
shaping p(B|n), as indicated by Equation (14), and only shift the posterior information towards the
prior (Equation (30)). More interestingly, the x-states with just a single count are also irrelevant, both
in shaping p(B|n) and in modifying the posterior information away from the prior. These states are
unable to provide evidence about the existence of either flat or skewed conditional probabilities g, ..
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Only the states x that have been sampled at least twice contribute to the formation of a peak in p(B|n),
and in deviating the posterior information away from the prior.

Our method can also be extended to generalizations of mutual information designed to
characterize the degree of interdependence of more than two variables [29-41], as long as all but
one of the variables are extensively sampled. The applicability of the method to these measures will be
the object of future work, once a certain degree of consensus has been reached regarding their meaning
and range of applicability.

Several fields can benefit from the application of our estimator of mutual information. Examples
can be found in neuroscience, when studying whether neural activity (a variable with many possible
states) correlates with a few selected stimuli or behavioral responses [12,42,43], or in genomics,
to understand associations between genes (large-entropy variable) and a few specific phenotypes [44].
The method can also shed light on the development of rate-distortion methods to be employed
in situations in which only a few samples are available. In particular, it can be applied within the
information bottleneck framework [45,46], aimed at extracting a maximally compressed representation
of an input variable, but still preserving those features that are relevant for the prediction of an
output variable. The possibility of detecting statistical dependencies with only few samples is of key
importance, not just for analyzing data sets, but also to understand how living organisms quickly infer
dependencies in their environments and adapt accordingly [47].

8. Conclusions

We have proposed a novel estimator for the mutual information I(X;Y) between two variables,
applicable to those cases in which the marginal distribution of one of the variables—the one with
minimal entropy—is well sampled. The other variable, as well as the joint and conditional distributions,
can be severely undersampled. We obtain a consistent estimator that presents very low bias,
outperforming previous methods discussed in the literature. The main data statistics determining the
estimated value is the inhomogeneity of the conditional distribution of the low-entropy variable in
those states in which the large-entropy variable registers coincidences.

Supplementary Materials: The code with our estimator is available online at https://github.com/dghernandez/
info-estimation.

Author Contributions: Conceptualization, D.G.H.; methodology, D.G.H.; software, D.G.H.; validation, D.G.H.;
formal analysis, D.G.H. and LS.; resources, 1.S.; data curation, D.G.H.; writing—original draft preparation, D.G.H.;
writing—review and editing, D.G.H. and 1.S.; visualization, D.G.H.

Funding: This research was funded by CONICET, CNEA, ANPCyT Raices 2016 grant number 1004.
Acknowledgments: We thank Ilya Nemenman for his fruitful comments and discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Expected Variance for a Symmetric, Binary Y-Variable

The posterior variance of the mutual information is
o*(Iln) = ((I|]n)?) — (I|m)?. (A1)

In the first place, we demonstrate that this quantity is proportional to k!, implying that our
estimator becomes increasingly accurate as the number of states of the X-variable increases. Given that

(Iln) = H(Y) = (Hyx)(n), (A2)

with
HY|X({q1\x}) = _quXHY\x(ql\x)'
(A3)
Hy(m) = = [ 108(g1) + (1= 112) log(1 —quy.) |
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it is easy to show that

o (Ijn) = o*(Hy|x|n) = (Hyx ({1 })) — (Hyx({g2:1))%. (A4)

In other words, if the marginal entropy is well sampled, the variance in the information is mainly
due to the variance in the conditional entropy. In turn, Hy|x is defined as an average of ky terms
(Equation (A3)). The independence hypothesis implied in the prior of Equation (13), and in the way
different gy, and gy factor out in q(n|qx, {q,}) (Equation (6)), imply that the different terms of
(Equation (A3)) are all independent from each other. The average of k, independent terms has a
variance proportional to 1/ky, so the estimator proposed here becomes increasingly accurate as ky
grows.

We now derive the detailed dependence of <H%,| x) — (Hy| x)? on the sampled data n. The mean
conditional entropy (Hy|x) can be written in terms of (Hy/y) (141, 1x0, B), that is, of the entropy of the
variable Y for a particular state x with ny = nyg + 1,1 counts at fixed

(Hyp)@) = [ p(Bln)dp T3 (Hyj)(nao,na, ),

B/2+ nyy

(Hy|y) (nxo,nx1, B) = _{lPO(IB+nx+1)_ 2 < B+ 1y

ye{0,1}

> Po(B/2+ nyy + 1)} - (A5)

Similarly, for the second moment,

(B0 (m) = [ dBp(BIn) L, f sy p(qujelnso, mar, ) [Sv o Hypor (o)
= B p(BIn) [Supw v (Hyje) (ma0, 11, B) (Hy o) (nso mat, B) + Lo () (s, ms1, )] (A6)
= [dBp(BIn) [(Hypx)(n, B) + Ly 32 VarlHy ) (0, a1, B)]

In turn, Var[Hyj,((nx0,121,8)] = (Hy; (0,151, ) — (Hyjx (120,121, B))?, where the first

moment (Hyjy)(1x0, 21, B) is given in Equation (A5). The second moment is [14],

<H%\x> (121, 11x0, B) fol dql\x p(‘71\x|”x0r 11, B) le(‘x(lh\x)

2
Jy 4a11¢ P(@1jxlns0, 1, B) (4116108 (q11) + (1= 11 1og(1 = 11|

(A7)
+ e 01y %G (g + iy, B +nx) .
In this equation,
F(zo,21) = —¢1(z0+21+2) +[licqory [Yo(zi +1) — vo(z0 +21 +2)], ’8)
G(zi,2) = [Yo(zi+2) —o(z+2)]> +1(zi +2) — 1 (z+2),

and 1 (z) is the first polygamma function.

Replacing the obtained expressions in Equation (A4), the variance of the estimated information is
obtained. The two terms of Equation (A6) represent the two sources of uncertainty of the conditional
entropy: the uncertainty of B (first term), manifest in the width of p(B|n), and the uncertainty of the
conditional entropies for a fixed f (second term), manifest in the width of p({gy), }|B). As the number
of samples decreases, the uncertainty in f becomes the dominant term.
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The approximate symbol in Equation (A2) stems from the fact that H(Y) is assumed to be well
approximated by the plug-in estimator. The error in the marginal entropy Hy is thereby neglected,
and the error in the mutual information is assumed to derive from the uncertainty in the conditional
entropy Hyx (Equation (A4)) alone. The assumption is well justified in the context explored in this
paper, that is, when exp[H(X)] > exp[H(Y)].

Appendix B. Bounding the Bias for Independent Variables

The core idea of a Bayesian approach is that the measured datum n is given, and the underlying
probabilities are unknown. Bayesian estimators are hence constructed by averaging over all possible
inferred probabilities. In this context, the calculation of the bias of an estimator is somehow at odds
with the core idea, since the bias is obtained by fixing the underlying probability, and averaging on
the possible outcomes of the sampled data. Perhaps for this reason, the bias of Bayesian estimators
is hardly ever calculated. Yet, if a Bayesian estimator is regarded as a function of n, it is always
possible to average the estimate over all the possible sampled data for a fixed underlying distribution.
This average is performed in this appendix for the estimator (I|n, *), evaluated at the p-value that
maximizes p(n|p), for a binary and symmetric Y variable, in the severely undersampled regime,
and when the variables X and Y are independent (that is, g, = g, = 1/2, Vx). In this regime, the true
information vanishes, so the calculated average equals the bias.

We work with a number of samples N in which the previous estimators begin to fail, but ours
is still useful that is, exp[H(X)/2] < N < exp[H(X)]. In this regime, the majority of the x-states
are sampled at most once, and most of the x-states with coincidences are sampled only twice. As an
approximation, we assume that no x-states are sampled more than twice. Since the p-value that
maximizes p(n|p) cannot be calculated in the absence of coincidences (see Equation (25)), we assume
that there is at least one coincidence. The total number m of x-states with two-fold coincidences is
decomposed into m = myg + my1, where myg is the number of states sampled with two equal y-values
(whichever), and mq; = m — myg is the number of states with two different y-values.

We define a variable z = myp/m — 1/2. Equation (25) implies that the optimal B is p*(z) =
(1/2—2z)/z,ifz > 0and B* — oo if z < 0. In turn, assuming no more than two-fold coincidences occur
(see Equations (24) and (29)), (I(n, B*)) can be expressed as

_ 1 1242 :
<1<n,ﬁ*>>:logz—Hoous*(z))—{ log2 “’<222)*¢( =) i Zg (A9)

In order to calculate the bias in the non-informative case, we take q,|, = 1/2, V x (a distribution

with I(X;Y) = 0). The bias B is obtained by averaging (I(n, f*)) over p (n|qx, {qy‘x}),

B

L (I(n,8)) p (nlax {ay.})
(A10)

= Lo p (mlax) Ty, p (ma0lm, {aye}) ((n, 7))

The distribution p(mao|m, {q,c}) is a Binomial(1/2,m). For non-negligible values of m, the
Binomial can be approximated by a Gaussian that we write in terms of the variable z, such that

p (z|m, {qy‘x}) ~ N (0,1/4m). Then, Equation (A10) becomes

2

) —2mz
B Y p(mlay) | dz e (1, ) (A11)

m>0
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The function (I(n, 5*)) of Equation (A9) is continuous in z, and starts growing from zero when

z = 0 (mpy = m/2). As the main contributions to the integral of Equation (A11) come from small values

of z, we expand (I(n, B*)) in a Taylor series, obtaining (I(n, 8*)) ~ z + z% — 2z* + O(z°). The integral
of Equation (A11) can be calculated using the moments of the Half Gaussian, yielding

2\/1E m='2 + % m—1— 13—6 m-2, (A12)

where the averages indicated with a horizontal line are weighted by p (m|qx). We have checked in

simulations that in the regime exp[H(X)/2] < N < exp[H(X)], the dependence of the bias on m

scales as predicted by Equation (A12). It is worth noticing that, when m is as small as 20 coincidences,

the bias drops to B ~ 0.05 nats. If the probabilities g, are approximately homogeneous, then the

number coincidences scales as m =~ 0.5N?/ exp[H(X)] [18]. In that case, the leading term in the bias is

1 VeH(X)
2yt N
For comparison, the bias of the entropy estimator Hg proposed by Grassberger [21] is bounded
by —AHg < 0.14...¢H(X)/N. Although the scaling in N is the same, the accompanying factor is

much larger than in our estimator, especially in the undersampled regime considered here, where
exp[H(X)/2] < N < exp[H(X)].

~

B (A13)
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