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Abstract: The reaction counts chemical master equation (CME) is a high-dimensional variant of
the classical population counts CME. In the reaction counts CME setting, we count the reactions
which have fired over time rather than monitoring the population state over time. Since a reaction
either fires or not, the reaction counts CME transitions are only forward stepping. Typically there
are more reactions in a system than species, this results in the reaction counts CME being higher in
dimension, but simpler in dynamics. In this work, we revisit the reaction counts CME framework
and its key theoretical results. Then we will extend the theory by exploiting the reactions counts’
forward stepping feature, by decomposing the state space into independent continuous-time Markov
chains (CTMC). We extend the reaction counts CME theory to derive analytical forms and estimates
for the CTMC decomposition of the CME. This new theory gives new insights into solving hitting
times-, rare events-, and a priori domain construction problems.

Keywords: chemical master equation; jump continuous-time Markov chains; reaction counts

1. Introduction

Continuous-time Markov chains (CTMC) accurately capture the dynamics of a broad range of
biochemical reaction systems. The CTMCs come in two flavours: The discrete state space, the chain
transitions from one state to another, or the continuous state space, the state transitions are smooth
yet non-differentiable. Each type has an intuitive interpretation. Discrete state spaces describe the
population or counts of chemicals in a system, while continuous states spaces describe concentrations of
chemicals in a system [1,2]. It is tempting to generalise concentrations to be simply scaled populations,
which would mean that all systems could be mapped into the continuous setting and solved there.
However, this is not the case mathematically. It was shown that for large populations, the discrete
CTMC and continuous CTMC were equivalent [3,4]. If the large population assumption is not satisfied,
mathematically, the discrete state space system has to be studied in its own right.

The probability distribution of a CTMC over the discrete state space in the biochemical context is
found by solving the chemical master equation (CME). We first present the CME and then describe its
components. The formula of the CME is written as follows,

∂p(Z(t) = z)
∂t

=
Nr

∑
n=1

an(z− νn) p(Z(t) = z− νn)−
Nr

∑
n=1

an(z) p(Z(t) = z). (1)

In the equation above, Z(t) is a CTMC over the state space Ω ⊂ NNs
0 . Each state is a vector of Ns ∈ N

non-negative integers describing the population of the species at time t ≥ 0. Starting from the left-hand
side, the equation states that the change in probability of being in a state z ∈ Ω at time t is given
by the sum of two terms. The first term describes the probability flowing into the state z and the
second term describes the probability flowing out of the state z. There are Nr ∈ N reactions perturbing
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the population; the terms νn are referred to as stoichiometric vectors, they capture the net change
in population if the nth reaction fires. Hence, subtracting the stoichiometric vectors νn from z gives
us the set of all previous states which might transition into z and “contribute” probability. The last
piece of information in the equation are the rates at which reactions fire, these are encapsulated in
the propensity functions {an : Ω → R+, for n = 1, . . . , Nr}. In summary, the CME describes the
change in probability of observing a CTMC in a certain state, which is equal to the sum of probability
transitioning into the state, minus the sum of probability leaving the state.

Even though the dynamics of the derivative are fairly simple, solving the CME is a hard
problem [5–12]. A special case of the CME which is truly unyielding to approximation is when
a system is close to its population boundary (for example, close to zero). In this scenario, none of the
state transitions around a state near the boundary can be summarised by the average transitions out
of the state. This impedes most approximation methods, and even if a method was successful, its
computational effort would be equivalent to that of solving the Finite State Projection for the same error.
An approach which was proposed in various different contexts to simplify dynamics, was to study
the number of reactions fired rather than the population counts [6,13–17]. Because reactions cannot
“un-fire”, the state transitions are only moving forward. Furthermore, given that the system’s starting
population is known, the species count in any state can be reconstructed from the reaction counts.

In this work, we will reintroduce the reaction counts variant of the CME. We will then explore
the theoretical and structural results which emerge from its forward stepping process. Then, we
will show how the reaction counts CME can be used to construct solutions to the classical CME.
Lastly, we decompose the state space of the CME into independent CTMCs and give analytical forms
and estimates to calculate their probabilities. The purpose of this work is to gain intuition and explore
structural properties of the CME, hence, the motivation is more theory rather than the application of
the CME. In light of that, we omit a discussion of numerical methods in this paper and envisage this
aspect in future research.

2. Reaction Counts CME

2.1. Formulation

We denote the state space of the reaction counts CME by Λ ⊂ NNr
0 . Each state is a vector of

non-negative integers of length Nr. Each element of the vector represents the number of times its
corresponding reaction has fired. In the CME setting, the change in state after a reaction fires is given
by the stoichiometric vector, which we denoted earlier by vn, for n = {1, . . . , Nr}. This vector quantifies
the net change in populations after the reaction has fired. Analogously, in the reaction counts CME
setting, a change in state indicates that a reaction has fired, and its corresponding reaction count is
incremented by one. Therefore, the stoichiometric vector for the nth reaction is simply the identity
vector 1n; the vector is zero in all but the nth position, where it is one.

We bridge the species counts CME and the reaction counts CME with the mapping Γ : Ω×Λ→ Ω,
that is, for (x0, r) ∈ Ω×Λ,

Γ(x0, r) := x0 + [v1, v2, . . . , vNr ] r,

= x0 +
Nr

∑
n=1

vn rn. (2)

The mapping above links the reaction counts CME to the species counts CME by stating that, given the
starting state x0 and the reactions which have fired are known, then the current state in the species
counts is the starting species state plus the sum of stochiometries of all the reactions which have fired.
It is important to note that the map Γ is injective into the species state space Ω. In most cases, Λ is of
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higher dimension than Ω, hence, Γ is seldom bijective. For our purpose, we only need the pull back
map of Γ. We denote the pull back map as Γ−1 : Ω×Ω→ P(Λ), where for (x0, x) ∈ Ω×Ω,

Γ−1(x0, x) := {r ∈ Λ : Γ(x0, r) = x}. (3)

With the mapping between Λ and Ω established, we can now inherit the propensity function
from the species counts over to the reaction counts. For n = 1, . . . , Nr, the reaction counts propensity
of the nth reaction is given by,

αn(x0, r) :=

{
an(Γ(x0, r)) if Γ(x0, r) ∈ Ω,
0 otherwise.

(4)

With the state space, stoichiometry, and the propensities established in the reaction counts setting,
we are ready to formulate the reaction counts based Kurtz process. For x0 ∈ Ω, let (Rx0(t))t≥0 be the
reaction counts Kurtz process,

Rx0(t) :=
Nr

∑
n=1

1n P
(∫ t

0
αn(x0, Rx0(s))ds

)
. (5)

The corresponding reaction counts CME for the process above is given by,

dp(Rx0(t) = r)
dt

=
Nr

∑
n=1

αn(x0, r− 1n) p(Rx0(t) = r− 1n)−
Nr

∑
n=1

αn(x0, r) p(Rx0(t) = r), (6)

for all r ∈ Λ. The initial condition for the reaction counts CME is a points mass on the origin,

p(Rx0(0) = r) =

{
1 if r = 0,
0 otherwise.

(7)

Upon first glance, the CME of the reaction counts is simpler in its complexity compared to its
species counter part. In the reaction case, the processes only move forward, which gives rise to simple
forward propagating dynamics. Furthermore, given solutions to the reaction counts CME exist, with
the simple application of the push forward measure, we would obtain:

p(X(t) = x) = ∑
r∈Γ−1(X(0),x)

p(RX(0)(t) = r). (8)

The relationship given above is the critical motivation for studying the reaction counts CME.
In principle, if structures and results could be attained in the reaction counts setting, then by using
Γ, these results can be mapped into species setting. The simplest example of this is the proof for the
existence of solutions of the CME for finite time. We now show that the reaction counts CME has
analytical solutions, then using the push forward measure in Equation (8), we prove that the solutions
of the CME exist for a broad range of propensity functions.

2.2. Analytical Solutions of the Reaction Counts CME

Firstly, we will establish the notations and assumptions needed to present the results. For brevity,
we denote the sum of all propensities αn as:

α(·, r) :=
Nr

∑
n=1

αn(·, r). (9)
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The reaction counts CME in Equation (6) is a difference differential equation, hence, by arranging the
probability states in a vector u(t) := (p(Rx0(t) = r))r∈Λ, we reduce solving the reaction counts CME
to solving the ODE,

du(t)
dt

= A∗ u(t).

For r, l ∈ Λ, the matrix A∗ has the properties: [A∗]r,r ≤ 0, [A∗]r,l ≥ 0, with ∑l∈Λ[A∗]l,r = 0. We will
prove that A∗ is a generator of a one-parameter semigroup. Before this, let us consider a simple two
reaction system to gain some intuition into the different components of the reaction counts setting.

Example 1. Let us consider the birth-death process in the context of the reaction counts CME. The birth-death
process in the species count is given by,

Z(t) = x0 + P
(∫ t

0
cb ds

)
−P

(∫ t

0
cd Z(s) ds

)
,

where x0 ∈ N0 is the starting population, and the birth and death rates are denoted by cb and cd, respectively.
We can translate this process into the reaction counts setting using the mapping,

Γx0(r1, r2) = x0 + r1 − r2.

We restrict the reaction counts state space Λ ⊂ N0 ×N0 to only contain states which yield non-negative values
by applying Γx0 . Substituting the mapping Γx0 and the process Z(t) into Equations (2) to (5) leads to the
reaction counts birth-death process formulation:

Rx0(t) =

(
1
0

)T

P
(∫ t

0
cb ds

)
+

(
0
1

)T

P
(∫ t

0
cd Γx0 ((Rx0(s))1, (Rx0(s))2) ds

)
. (10)

The relationship between the reaction count state space and the species count state space is visualised in
Figure 1A. The colours in the figure show how the species count state space partitions the reaction count state
space. To demonstrate the forward moving structure of the reaction counts CME, we derive the generator for the
first nine states of its state space:

du(t)
dt

= A∗ u(t),

where,

u(t) =
(

dp(Rx0(t) = (0, 0))
dt

,
dp(Rx0(t) = (1, 0))

dt
,

dp(Rx0(t) = (0, 1))
dt

, . . .
)T

,

A∗ =

(0, 0) (1, 0) (0, 1) (2, 0) (1, 1) (0, 2)



−cb − cdx0 0 0 0 0 0 . . .
cb −cb − cd(x0 + 1) 0 0 0 0 . . .

cdx0 0 −cb − cd(x0 − 1) 0 0 0 . . .
0 cb 0 −cb − cd(x0 + 2) 0 0 . . .
0 cd(x0 + 1) cb 0 −cb − cdx0 0 . . .
0 0 cd(x0 − 1) 0 0 −cb − cd(x0 − 2) . . .
...

...
...

...
...

...
. . .

.

The initial condition is the identity vector with the total probability mass on state (0, 0). We can observe that due
to the forward moving nature of the reaction counts setting, A∗ is a lower diagonal matrix. In Figure 1B,C, we
present a birth-death process with initial state x0 = 0, birth rate cb = 1.0, and death rate cd = 0.1. Specifically,
we show the probability distributions of the first three states of that process which correspond to state 1 in
the species count setting. In Figure 1B, it is shown that the probability distribution of being in state 1 in the
species count CME setting bounds the corresponding reaction counts CME distributions. In Figure 1C, we
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progressively add the first three reaction counts states corresponding to the state 1, showing that the reaction
counts CME approximates the species counts CME from below.
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(1, 2) (2, 2)
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Figure 1. (A) Cartoon showing the mapping of the reactions counts birth-death process to the species
count birth-death process. (B) An evaluation of the birth-death process for parameters (x0 = 0, cb =

1.0, cd = 0.1). The plot shows: The distribution of the species having population one over time
p(Z(t) = 1); and the distributions of reaction (1, 0), (1, 2), and (2, 3) firing at time t, in the reaction
counts setting. (C) (†) = p(R0(t) = (0, 1)), (††) = p(R0(t) = (0, 1)) + p(R0(t) = (1, 2)), († † †) =

p(R0(t) = (0, 1))+ p(R0(t) = (1, 2))+ p(R0(t) = (2, 3)). The distribution of the species count chemical
master equation (CME) in state 1 at t is approached from below by the sum of the probabilities of the
reactions firing which result in being in state 1.

Theorem 1 (Sunkara 09 ([15])). Given a system with Ns species and Nr reactions at a starting state x0 ∈ Ω.
If Ar is the generator for the reaction counts CME (6), then:

1. There exists a permutation matrix P such that PT A∗ P is lower triangular;
2. The spectrum of A∗ is the set:

spec(A∗) =

{
−

Nr

∑
n=1

αn(x0, r) : r ∈ Λ

}
. (11)

The property of the reaction counts setting, that the process only moves forward, aids in showing
that the generator could be rewritten as a lower triangular matrix. We know that the spectrum of a
lower triangular matrix are the diagonal elements of the matrix. In our case, the diagonal elements
are simply the negative sum of the outgoing propensities. This then reveals that the spectrum of the
generator A∗ is in the negative real numbers. Then by the spectral mapping theorem, solutions to
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the reaction counts CME exist. We can further exploit this “forward stepping” structure to write the
analytical solutions for the probability at each state in Λ.

Proposition 1 (Sunkara 09 ([15])). Given a system with Ns species and Nr reactions at a starting state
x0 ∈ Ω. Let C ∈ (0, 1]. If (Rx0(t))t≥0 is the reaction counts Kurtz process (5) with Λ 6= ∅, then the solution
to (6) at t > 0 is given by:

p(Rx0(t) = 0) = e−α(x0,r) t C, (12)

for r = 0, and,

p(Rx0(t) = r) =
Nr

∑
n=1

(
αn(x0, r− 1n)

∫ t

0
e−α(x0,r) (t−s) p(Rx0(s) = r− 1n)ds

)
, (13)

for r ∈ Λ\0.

Combining Proposition 1 with the push forward measure in Equation (8), we see that at finite
time t the solutions to the CME (1) exist. Unfortunately, since the reaction counts CME cannot reach a
stationary state (in cases where the state space Λ is not finite), the proof for the existence of stationary
solutions for a generalised CME is still an open problem. Now that the solutions of the reaction counts
CME have been established, we can probe further into its properties. Firstly, we explore how the state
space of the reaction count CME has a naturally hierarchical partitioning, and how this partitioning
can be used to build a sequence of approximate sub-processes.

3. Partitioning the State Space

Definition 1. For m ∈ N, we define,

∇m := {r ∈ Λ : ‖r‖1 = m},

to be the set of all states which are reachable by m steps from the origin 0. The state space Λ naturally partitions
into non-intersecting subsets,

Λ = ∇0 ∪∇1 ∪∇2 ∪ · · · .

If we consider truncating the state space progressively, we find that this is equivalent to the Finite
State Projection with an N-step domain expander [9,18].

Lemma 1. For x0 ∈ Ω, let (Rx0(t))t≥0 be the reaction counts Kurtz process (5). Then for any m ∈ N,

∑
r1∈∇m

Nr

∑
n=1

αn(x0, r1)
∫ t

0
p(Rx0(s) = r1) ds =

∞

∑
m̃=m+1

∑
r2∈∇m̃

p(Rx0(t)) = r2). (14)

Proof. Fix m ∈ N. Let (Rx0,∇m(t))t≥0 be the same process as (Rx0(t))t≥0, but with the restriction that all
propensities of states r ∈ ∪∞

m̃=m+1∇m̂ are zero. Since in the reaction counts case, states only transition
forward, we have that,

p(Rx0(t) = r) = p(Rx0,∇m(t) = r), for all r ∈ ∪m
m̃=0∇m̃. (15)
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That is, the probability of both processes are the same for states leading up to the states in ∇m.
However, since the process Rx0,∇m(t) does not evolve past ∇m, by the conservation of probability we
have that,

m

∑̃
m=0

∑
r∈∇m̃

p(Rx0,∇m(t) = r) + ∑
r1∈∇m

Nr

∑
n=1

αn(x0, r1)
∫ t

0
p(Rx0,∇m(s) = r1) ds = 1. (16)

Substituting in Equation (15) for states which appear before ∇m+1 reduces the above expression to,

m

∑̃
m=0

∑
r∈∇m̃

p(Rx0(t) = r) + ∑
r1∈∇m

Nr

∑
n=1

αn(x0, r1)
∫ t

0
p(Rx0(s) = r1) ds = 1. (17)

By the conservation of probability,

∞

∑̃
m=0

∑
r2∈∇m̃

p(Rx0(t) = r2) = 1,

hence, substituting this into the right-hand side of Equation (17) and subtracting the like terms gives,

∑
r1∈∇m

Nr

∑
n=1

αn(x0, r1)
∫ t

0
p(Rx0(s) = r1) ds =

∞

∑
m̃=m+1

∑
r2∈∇m̃

p(Rx0(t) = r2).

Lemma 1 is an alternative formulation of the principle behind the Finite State Projection method.
We extend on this result and can show that for a desired error ε ∈ (0, 1), there exists a subset of the
state space Λ which will produce an approximation with the desired error.

Theorem 2. For x0 ∈ Ω, let (Rx0(t))t≥0 be the reaction counts Kurtz process (5). For ε > 0 there exists
m ∈ N such that,

∞

∑
m̃=m+1

∑
r∈∇m̃

p(Rx0(t) = r) < ε.

Proof. The proof is an extension of Lemma 1. We define,

φm := ∑
r1∈∇m

Nr

∑
n=1

αn(x0, r1)
∫ t

0
p(Rx0(s) = r1) ds,

and,

ψm+1 :=
∞

∑
m̃=m+1

∑
r2∈∇m̃

p(Rx0(t) = r2),

the left- and right-hand terms of Equation (14). Then for m ∈ N, Lemma 1 can be reformulated to state,

φm = ψm+1;
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separating the ∇m+1 states from ψm+1 gives us,

= ∑
r∈∇m+1

p(Rx0(t) = r) +
∞

∑
m̃=m+2

∑
r2∈∇m̃

p(Rx0(t) = r2)︸ ︷︷ ︸
:=ψm+2

,

= ∑
r∈∇m+1

p(Rx0(t) = r) + ψm+2.

Combining the last and first term in the equalities gives us,

ψm+1 = ∑
r∈∇m+1

p(Rx0(t) = r) + ψm+2.

Rearranging the equality reduces to, ψm+2 − ψm+1 < 0. We have shown that ψ• is monotonically
decreasing. By definition, ψ• has the properties that ψ1 = 1.0− p(Rx0(t) = 0) and limm→∞ ψm = 0.
Hence, there exists an m such that ψm < ε.

Theorem 2 is an alternative proof for the fact that, when studying transient dynamics (finite time)
of the CME for an arbitrary precision, one can always find a finite state space to project the CME onto.
The key structure that we used to prove this is that the state space of reaction counts has a natural
partitioning and that the probability only flows forward. This gave us the monotonicity needed to
prove that state space truncation of the CME is well-posed. In the next section, we further decompose
each state in the reaction counts state space into paths over the state space.

4. Paths

Definition 2. For m ∈ {2, 3, . . .}, a vector g = (g1, . . . , gm) ∈ Λm is said to be an admissible path if for every
index i ∈ {2, . . . , m} there exists an n ∈ {1, . . . , Nr} such that gi = gi−1 + 1n, where 1n is the identity vector
with one in the nth position.

Definition 3. For m ∈ {2, 3, . . .}, we denote the set of all admissible paths of length m by,

γm := {g ∈ Λm : g is admissible }

Definition 4. For a point r ∈ Λ, we denote the set of all admissible paths of length ‖r‖1 + 1 which start at the
origin 0 and end at the state r by,

G(r) := {g ∈ γ‖r‖1+1 : g1 = 0 and g‖r‖1+1 = r}.

4.1. Path Chains

We define a Markov chain over a path in the reaction counts state space. The chain must be such
that it mimics a “realisation” over the reaction state space. Using Proposition 1, we define a path
chain over an admissible path in the reaction state space. It is important to note that a path chain is
a continuous-time Markov chain (CTMC) [19], where all reactions which transition the state off the
path of the chain are accrued into a sink state. For brevity, we simply remove this component and only
describe the states of interest (see Figure 2). Also, given all chains are from the same reaction counts
setting, we omit explicitly stating x0 in the propensity functions. We now define a path chain.
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Figure 2. The cartoon above depicts the generator of a path chain. With α(·) being the total outward
propensity and β(·, ·) the propensity to transition to the next state in the chain. All reactions leading
away from the chain are directed into the sink state.

Definition 5. For m ∈ N, g ∈ γm, and C ∈ (0, 1], we define a path chain to be the stochastic process
(Xg,C(t))t≥0, with state space {g ∪ {sink}} and the probability distribution given by,

p(Xg,C(t) = g1) := e−α(g1) tC, (18)

p(Xg,C(t) = gk) := β(gk−1, gk)
∫ t

0
e−α(gk) (t−s) p(Xg,C(s) = gk−1) ds, (19)

for k ∈ {2, . . . , m}. Then to conserve probability,

p(Xg,C(t) = gk) = sink) := 1.0− ∑
gk∈g

p(Xg,C(t) = gk).

The propensity function α is inherited from Equation (9) and β(gk, gk+1) := αn(gk), where n is the reaction
index which transitions the state gi to gi+1.

Before stating the new proposition, let us recall the decompositions performed so far. Firstly, we
showed that every state in the species state space can be decomposed into multiple reaction states in
the reaction count setting. That is, a population state can be decomposed into all the different ways
in which it can be visited. We then ventured further and showed that a path on the species counts
state space corresponds to a path with only forward stepping transitions in the reaction counts state
space. Now, we extend this further by showing that any state in the reaction counts state space can be
decomposed into the sum of all independent path chains which start at the origin and end in that state.

Proposition 2. For x0 ∈ Ω, let (Rx0(t))t≥0 be the Reaction counts Kurtz process (5).
For r ∈ Λ\0, let

G(r) := {g ∈ γ‖r‖1+1 : g1 = 0 and g‖r‖1+1 = r},

be the set of all admissible paths of length ‖r‖1 + 1 which start at 0 and ending at r (Definition 4).
Then,

p(Rx0(t) = r) = ∑
g∈G(r)

p(Xg,1(t) = r). (20)

Proof. The Proposition will be proved using mathematical induction. Firstly, we show the base case;
that every state which is reachable by one step from the origin satisfies Equation (20). Let r = In, with
n ∈ {1, . . . , Nr}. Applying Proposition 1 we know that,

p(Rx0(t) = In) = αn(0)
∫ t

0
e−a(In)(t−s) p(Rx0(s) = 0) ds. (21)
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Now we consider the path chains leading to In. The state can only be reached in one way, hence, we
have that G(In) = {g = (0, In)}. Now calculating the probability of the evolution of a path chain
(Definition 5) over g ∈ G(In) gives us,

p(Xg,1.0(t) = In) := β(0, In)
∫ t

0
e−α(In) (t−s) p(Xg,1(s) = 0) ds. (22)

Given the two equations above match, we can conclude that for r ∈ ∇1,

p(R(t) = r) = ∑
g∈G(r)

p(Xg,1(t) = r).

Now we perform the inductive step. Fix m > 1. Assume that for ř ∈ ∇m,

p(Rx0(t) = ř) = ∑
g∈G(ř)

p(Xg,1(t) = ř). (23)

Then for r ∈ ∇m+1, Proposition 1 states that,

p(R(t) = r) =
Nr

∑
n=1

αn(r− In)
∫ t

0
e−α(r) (t−s) p(Rx0(s) = r− In) ds,

using the inductive assumption Equation (23) on the right-hand side inside the integral,

=
Nr

∑
n=1

αn(r− In)
∫ t

0
e−α(r) (t−s) ∑

g∈G(r−In)

p(Xg,1(s) = r− In) ds.

Rewriting the propensities in the path propensity notation gives,

=
Nr

∑
n=1

β(r− In, r)
∫ t

0
e−α(r) (t−s) ∑

g∈G(r−In)

p(Xg,1(s) = r− In)ds,

=
Nr

∑
n=1

∑
g∈G(r−In)

β(r− In, r)
∫ t

0
e−α(r) (t−s) p(Xg,1(s) = r− In) ds.

Since all paths in G(r) are paths from the set ∪Nr
n=1G(r− In), with r as the last state, the two summations

reduce to give,

= ∑
ĝ∈G(r)

β(ĝm, r)
∫ t

0
e−α(r) (t−s) p(Xĝ,1(s) = ĝm) ds.

By Definition 5, the term above captures all the paths in G(r), therefore,

= ∑
ĝ∈G(r)

p(Xĝ,1(s) = r) ds.

We have shown that given Equation (23) holds on ∇m, then Equation (23) also holds for ∇m+1.
Hence, by mathematical induction, for any r ∈ Λ,

p(Rx0(t) = r) = ∑
g∈G(r)

p(Xg,1(t) = r) ds.
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We have shown that each state in the reaction counts CME can be decomposed into the framework
of “path chains” that we have defined. In essence, we have shown that the path chains are trajectories
of the reaction counts Kurtz process. Even though at first glance the result is not a startling revelation,
the real novelty lies in how we derived the probability distributions for these trajectories. By carefully
decomposing the state space and concurrently deriving the corresponding probability distributions,
we were able to give an analytical form for the probability of individual trajectories of the Kurtz
process. Using the probability distribution given over the path chains in Definition 5, we can derive the
classical stochastic simulation algorithm [20]. Using the path chains framework we have introduced
so far, we can build realisations for applications such as: Hitting time problems, rare event problems,
observable problems, etc. In the following section, we further build on the properties of path chains by
proposing a method for estimating the path probabilities of trajectories.

4.2. Gated- and Un-Gated Path Chains

Given a path or trajectory, we define the path probability to be the probability distribution of the
last state in the chain. We can use Definition 5 to analytically compute the probability of any path.
However, we can exploit the properties of the path chains further and derive some simple estimates for
the path probability. We borrow the notion of gating and un-gating introduced by Sunkara (2013) [21],
and show how these can be used to calculate estimates for the path probabilities.

The concept of gating is mathematically tedious to prove, however, the concept is fairly simple.
Given a chain g of length m, gating this chain at position j < m means that we set the propensity of
leaving state gj to zero. Hence, the probability will simply flow into state gj and remain there (hence,
the term “gating”). Then we can “un-gate” the state gj, which means that we reset the time to zero, set
the initial probability at state gj to the accumulated probability from the gating, and then allow the
process to continue. The reason we are interested in this notion of gating and un-gating is that for path
chains, it happens so that gating and un-gating the chains gives an upper bound for the original path
probability. We will now prove that this is indeed the case.

Definition 6. For an admissible path g ∈ γm, we define a truncated path gj := (gj, gj+1, . . . , gm), where the
first j− 1 terms of the path are ignored.

Definition 7. Fix ∆t < ∞ and x0 ∈ Ω. Let g ∈ γm be a path of length m + 1. We define (Xg,C(t))t∈[0,∆t] to
be a path chain over g in the time interval [0, ∆t]. Then for j ∈ {2, . . . , m} we define an un-gated path chain
over gj to be given by:

p(Xgj ,C(t) = gk) := β(gk−1, gk)
∫ t

0
e−α(gk) (t−s) p(Xg,Cj(s) = gk−1) ds, (24)

for k ∈ {j + 1, . . . , m} and,
p(Xgj ,C(t) = gj) := e−α(gj) t Cj

where,

Cj := β(gj−1, gj)
∫ ∆t

0
p(Xg,C(s) = gj−1).

To conserve probability,

p(Xgj ,C(t) = gk) = sink) := 1.0− ∑
gk∈gj

p(Xg,C(t) = gk).

We see that the un-gated path chain is a normal path chain with the initial probability reset to the
total probability which has flown into the gated state (see Figure 3). We now show that gating and
un-gating over a path gives an upper bound for the path probability. First we consider the case of a
single gating and un-gating at the position g2.
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Figure 3. The cartoon above depicts the cascade of gating being performed on a path chain. When a
state is gated, the propensities leaving the state are set to zero (depicted with a red cross). When the
state is un-gated, the propensities are reintroduced.

Lemma 2. Fix g ∈ γm and ∆t > 0. Given two path chains (Xg,C(t))t∈[0,∆t] and (Xg2,C2
(t))t∈[0,∆t], it follows

that for all t ∈ [0, ∆t], ∫ t

0
p(Xg,C(s) = 2) dt ≤

∫ t

0
p(Xg2,C2

(s) = 2) dt,

and for j ∈ {3, . . . , m}
p(Xg,C(t) = gj) ≤ p(Xg2,C2

(t) = gj).

Proof. We break down the proof into two steps. First we investigate the bounds formed by gating at
the second step, and then we prove the bound over the remaining states in the chain. We begin by
showing that for t ∈ [0, ∆t],

∫ t

0
p(Xg,C(s) = 2) dt ≤

∫ t

0
p(Xg2,C2

(s) = 2) dt. (25)

From the definition of the path chain (Definition 5), the solution for the probability of being in state g2

at time t is given by,

p(Xg,C(t) = g2) =
C β(g1, g2)

α(g1)− α(g2)

(
e−α(g2)t − e−α(g1)t

)
. (26)

Using the solution above, we can calculate the probability which would accumulate in g2 if the chain
was gated at g2,

C2 :=
C β(g1, g2)

α(g1)

(
1− e−α(g1)∆t

)
. (27)

Substituting the above terms into the definition of the probability of being is state g2 at time t in the
un-gated path chain (Xg2,C2

(t))t∈[0,∆t] gives us,

p(Xg2,C2
(t) = g2) =

C β(g1, g2)

α(g1)

(
1− e−α(g1)∆t

)
e−α(g2)t. (28)
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Taking the integral of Equations (26) and (28) over the interval [0, t] ⊆ [0, ∆t] gives us,
∫ t

0
p(Xg,C(s) = g2) ds =

C β(g1, g2)

(α(g1)− α(g2)) α(g1) α(g1)

(
α(g2)(e−α(g1) t − 1)− α(g1)(e−α(g2) t − 1)

)
, (29)∫ t

0
p(Xg2,C2

(s) = g2) ds =
C β(g1, g2)

α(g1) α(g2)

(
1− e−α(g1)∆t

) (
1− e−α(g2)t

)
. (30)

To simplify notation, let us define,

φ̂(t) :=
∫ t

0
p(Xg2,C2

(s) = g2) ds and φ(t) :=
∫ t

0
p(Xg,C(s) = g2) ds.

Then the difference between φ̂(t) and φ(t) reduces to,

φ̂(t)− φ(t) =
C β(g1, g2)

α(g1) α(g2)

(
1− e−α(g1)∆t

) (
1− e−α(g2)t

)
− C β(g1, g2)

(α(g1)− α(g2)) α(g1) α(g1)

(
α(g2)(e−α(g1) t − 1)− α(g1)(e−α(g2) t − 1)

)
. (31)

Since e−α(g1)∆t ≤ e−α(g1)t for all t ∈ [0, ∆t], we attain the lower bound,

≥ C β(g1, g2)

α(g1) α(g2)

(
1− e−α(g1)t

) (
1− e−α(g2)t

)
− C β(g1, g2)

(α(g1)− α(g2)) α(g1) α(g1)

(
α(g2)(e−α(g1) t − 1)− α(g1)(e−α(g2) t − 1)

)
. (32)

We show that the right-hand side of the equation above is always positive. We define the right
hand-side of Equation (32) as a function,

Ψ(g1, g2, t) :=
C β(g1, g2)

(
e−α(g2)tα(g2)− e−α(g1)tα(g1) + e−(α(g1)+α(g2))t(α(g1)− α(g2))

)
(α(g1)− α(g2)) α(g1) α(g2)

. (33)

We notice that the function Ψ has the property,

Ψ(g1, g2, t) = Ψ(g2, g1, t).

Firstly, if we consider the case α(g1) = α(g2), we can see that ψ(g1, g2, t) = 0. Using the symmetry of
Ψ, we only need to consider the case α(g1) < α(g2). Then it follows that,

Ψ(g1, g2, t) =
C β(g1, g2)

(
e−α(g2)∆tα(g2)− e−α(g1)tα(g1) + e−(α(g1)+α(g2))t(α(g1)− α(g2))

)
(α(g1)− α(g2)) α(g1) α(g2)

,

replacing e−α(g1)tα(g1) with e−α(g1)tα(g2) gives us,

≥
C β(g1, g2)

(
(e−α(g2)t − e−α(g1)t)α(g2) + e−(α(g1)+α(g2))t(α(g1)− α(g2))

)
(α(g1)− α(g2)) α(g1) α(g2)

,

= C β(g1, g2)

 (e−α(g2)t − e−α(g1)t)

(α(g1)− α(g2)) α(g1)︸ ︷︷ ︸
>0

+
e−(α(g1)+α(g2))∆t)

α(g1) α(g2)︸ ︷︷ ︸
>0

 ,

≥ 0.
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Hence, the right-hand side of Equation (33) is positive. So it follows that for t ∈ [0, ∆t],

∫ t

0
p(Xg,C(s) = 2) ds ≤

∫ t

0
p(Xg2,C2

(s) = 2) ds.

We have shown that the outflow of probability in the un-gated chain is more than in the original path
chain. We now show that this phenomenon continues all the way down the chain. We prove this using
mathematical induction. First, let us consider the base case j = 3. By the definition of path chains,

p(Xg,C(t) = g3)− p(Xg2,C2
(t) = g3) = β(g2, g3)

∫ t

0
e−α(g3)(t−s)

(
p(Xg,C(s) = g2)− p(Xg2,C2

(s) = g2)
)

ds,

≤ β(g2, g3)
∫ t

0

(
p(Xg,C(s) = g2)− p(Xg2,C2

(s) = g2)
)

ds,

applying condition (25) gives us that,

≤ 0.

Hence, for t ∈ [0, ∆],
p(Xg,C(t) = g3) ≤ p(Xg2,C2

(t) = g3).

We now build the inductive step. Fix k ∈ {4, . . . , m}, assume that, for all t ∈ [0, ∆t],

p(Xg,C(t) = gk) ≤ p(Xg2,C2
(t) = gk). (34)

Then by the definition of path chains,

p(Xg,C(t) = gk+1)− p(Xg2 ,C2
(t) = gk+1) = β(gk, gk+1)

∫ t

0
e−α(gk+1)(t−s)

(
p(Xg,C(s) = gk)− p(Xg2 ,C2

(s) = gk)
)

ds,

≤ β(gk, gk+1)
∫ t

0

(
p(Xg,C(s) = gk)− p(Xg2 ,C2

(s) = gk)
)

ds,

applying the inductive assumption Equation (34) gives us that,

≤ 0.

Hence, by mathematical induction, for j ∈ {3, . . . , m} and t ∈ [0, ∆t], the probabilities of the un-gated
chain bound the probability on the original path chain, that is,

p(Xg,C(t) = gj) ≤ p(Xg2,C2
(t) = gj).

The intuition behind Lemma 2 is that once we gate and un-gate a state, the un-gated chain has
more probability in it than the regular path chain beyond the gated state. Since the dynamics of the
path chain beyond the gated state are not changed, we would expect that the un-gated chain (having
more probability) would be an upper bound for the original path chain. The proof, as seen above, is
sadly tedious. We now consider a cascade of gating and un-gating, that is, we gate and un-gate as we
transition through the path chain. We prove that this gives an upper bound for the path probabilities.
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4.3. Cascade of Gating and Un-Gating

We now set up a cascade of gating and un-gating at ever state of the path chain. We achieve this
by defining the starting probability of the un-gating. Previously, an un-gated path chain at position j
had a initial probability of,

Cj := β(gj−1, gj)
∫ ∆t

0
p(Xg,C(s) = gj−1) ds.

We now introduce a recurrent initial probability,

C̃j := β(gj−1, gj)
∫ ∆t

0
p(Xgj−1,C̃j−1

(s) = gj−1) ds, (35)

for j ∈ {2, . . . , m− 1}. Using this new recursive initial probability, we will build a sequence of path
chains and using the idea of gating and un-gating at each transition of the path chain, we can construct
an upper bound for the path probability.

Theorem 3. Fix g ∈ γm and ∆t > 0. Let (Xg,C(t))t∈[0,∆t] be a path chain over g. We recursively define a set
of un-gated chains, {(Xgj ,C̃j

(t))t∈[0,∆t] : j ∈ {2, . . . , m− 2}}. Then for k ∈ {3, . . . , m− 1},

∫ ∆t

0
p(Xg,C(s) = gk) ds ≤

∫ ∆t

0
p(Xgk−1,C̃k−1

(s) = gk) ds.

Proof. We prove this result by repeatedly applying Lemma 2. Fix k ∈ {3, . . . , m− 1}, then by the first
clause of Lemma 2 we have that,∫ ∆t

0
p(Xgk−1,C̃k−1

(s) = gk) ds ≥
∫ ∆t

0
p(Xgk−2,C̃k−2

(s) = gk) ds,

since gk is the third state of the chain gk−2, we can apply the second clause of Lemma 2 to get,

≥
∫ ∆t

0
p(Xgk−3,C̃k−3

(s) = gk) ds,

stepping backward in the chain using Lemma 2, we reduce down to,

...

≥
∫ ∆t

0
p(Xg,C(s) = gk) ds.

In summary, by gating and un-gating along a path chain we can easily construct estimates for
the probability of the trajectories of interest. We now consider an example where we build a path
chain of the birth-death process introduced in Example 1, to show how to compute the gating and
un-gating steps.

Example 2. Let us consider the birth-death process introduced in Example 1, with the parameters x0 = 2, cb =

1.0, and cd = 0.1. We will now construct the path probability of the chain:

g = ((0, 0), (1, 0), (1, 1), (1, 2), (1, 3)) .
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The generator for this path chain is given by,

A∗ =

(0, 0) (1, 0) (1, 1) (1, 2) (1, 3) sink



−cb − 2 cd 0 0 0 0 0
cb −cb − 3 cd 0 0 0 0
0 −3 cd −cb − 2 cd 0 0 0
0 0 2 cd −cb − cd 0 0
0 0 0 cd 0 0

2 cd cb cb cb 0 0

.

We can solve for p(Xg, 1(t) = (1, 3)) by simply taking the matrix exponential at time t and applying it to the
respective initial probability. Now we will construct the gating and un-gating approximation. This approximation
is calculated using the following recursive equation: Let m be the number of states in the chain g, then,

un(t) =
β(gn−1, gn)

α(gn−1)

(
1.0− e−α(gn−1) t

)
un−1(t),

for n = 2, . . . , m with u1 = 1.0. The functions α and β are as given in Definition 5. Hence, u5(t) is the gated
and un-gated estimate for the probability p(Xg,1(t) = (1, 3)). In Figure 4A, we plot the true path probability,
p(Xg,1(t) = (1, 3)), and the upper bound for the path probability, u5(t), for time interval t ∈ [0, 10] seconds.
The graph shows that u5(t) is an upper bound for p(Xg, 1(t) = (1, 3)) at any time point. It is interesting
to observe that the error between the two functions decreases over time, however it is not clear whether the
difference will converge to zero as time goes to infinity. To test whether this behaviour can be observed in other
parameter settings, we plot the analytical path probability and its upper bound for three different parameter
settings in Figure 4B. We observe the same effect in all three presented cases. This raises the question whether
this observation is a structural property or only an artefact of the specific model which is considered here.
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Figure 4. (A) Graph of the path probability p(Xg,1(t) = (1, 3)) and the upper bound of the path
probability u5(t) for the time interval t ∈ [0, 10]. (B) Case 1 : (cb = 1.0, cd = 0.15), Case 2 :
(cb = 1.0, cd = 0.2), Case 3 : (cb = 2.0, cd = 0.15). “analytical” refers to the path probability and
“approximation” refers to the upper bound of the path probability.

5. Conclusions

We began by formulating the reaction counts CME and showing that its forward stepping
characteristic yields analytical solutions. Then, with a simple application of the push forward measure,
we could prove the existence of solutions of the CME for finite time. We further decomposed the
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reaction counts state space into independent CTMCs and gave analytical forms and estimates for their
path probabilities. Hence, we have derived analytical theory for trajectories which arise from the
solutions of the CME. This theory can be used for computing observable estimates of the underlying
CTMCs. We can also use the paths to estimate the hitting times and rare event probabilities. A natural
future direction would be to investigate if the current framework of the time independent propensities
can be translated to the time dependent propensities. An even more challenging task would be, in the
context of parameter inference, to reverse time on the trajectories and to cascade probability backwards.

Funding: V. Sunkara was supported by the BMBF (Germany) project PrevOp-OVERLOAD, grant number
01EC1408H, and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy—The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689).
The publication cost were funded by the German Research Foundation and the OpenAccess Publication Fund of
Freie Universität Berlin.

Acknowledgments: The author would like to thank the Biocomputing group at FU Berlin for all their stimulating
discussions and constant encouragement.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Wilkinson, D.J. Mathematical and Computational Biology Series. In Stochastic Modelling for Systems Biology;
Chapman & Hall/CRC: Boca Raton, FL, USA, 2006.

2. Van Kampen, N.G. Stochastic Processes in Physics and Chemistry, 3rd ed.; North Holland: Amsterdam,
The Netherlands, 2007.

3. Kurtz, T.G. Strong approximation theorems for density dependent Markov chains. Stoch. Process. Their Appl.
1978, 6, 223–240, [CrossRef]

4. Grima, R.; Thomas, P.; Straube, A.V. How accurate are the nonlinear chemical Fokker-Planck and chemical
Langevin equations? J. Chem. Phys. 2011, 135, 084103, [CrossRef] [PubMed]

5. Higham, D.J. Modeling and Simulating Chemical Reactions. SIAM Rev. 2008, 50, 347–368, [CrossRef]
6. Hegland, M.; Hellander, A.; Lötstedt, P. Sparse grids and hybrid methods for the chemical master equation.

BIT Numer. Math. 2008, 48, 265–283, [CrossRef]
7. Engblom, S. Spectral approximation of solutions to the chemical master equation. J. Comput. Appl. Math.

2009, 229, 208–221, [CrossRef]
8. Jahnke, T.; Udrescu, T. Solving chemical master equations by adaptive wavelet compression. J. Comput. Phys.

2010, 229, 5724–5741, [CrossRef]
9. Sunkara, V.; Hegland, M. An Optimal Finite State Projection Method. Procedia Comput. Sci. 2010, 1, 1579–1586,

[CrossRef]
10. Kazeev, V.; Khammash, M.; Nip, M.; Schwab, C. Direct Solution of the chemical master equation Using

Quantized Tensor Trains. PLoS Comput. Biol. 2014, 10, e1003359, [CrossRef] [PubMed]
11. Schnoerr, D.; Sanguinetti, G.; Grima, R. Approximation and inference methods for stochastic biochemical

kinetics—A tutorial review. J. Phys. A Math. Theor. 2017, 50, 093001, [CrossRef]
12. Vlysidis, M.; Kaznessis, Y. Solving Stochastic Reaction Networks with Maximum Entropy Lagrange

Multipliers. Entropy 2018, 20, 700, [CrossRef]
13. Haseltine, E.L.; Rawlings, J.B. Approximate simulation of coupled fast and slow reactions for stochastic

chemical kinetics. J. Chem. Phys. 2002, 117, 6959–6969, [CrossRef]
14. Goutsias, J. Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems.

J. Chem. Phys. 2005, 122, 184102, [CrossRef] [PubMed]
15. Sunkara, V. The chemical master equation with respect to reaction counts. In Proceedings of the 18th World

IMACS Congress and (MODSIM09) International Congress on Modelling and Simulation, Cairns, Australia,
13–17 July 2009; Volume 1, pp. 2377–2383.

16. Menz, S.; Latorre, J.; Schütte, C.; Huisinga, W. Hybrid Stochastic–Deterministic Solution of the Chemical
Master Equation. Multiscale Model. Simul. 2012, 10, 1232–1262, [CrossRef]

17. Black, A.J.; Ross, J.V. Computation of epidemic final size distributions. J. Theor. Biol. 2015, 367, 159–165,
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/0304-4149(78)90020-0
http://dx.doi.org/10.1063/1.3625958
http://www.ncbi.nlm.nih.gov/pubmed/21895155
http://dx.doi.org/10.1137/060666457
http://dx.doi.org/10.1007/s10543-008-0174-z
http://dx.doi.org/10.1016/j.cam.2008.10.029
http://dx.doi.org/10.1016/j.jcp.2010.04.015
http://dx.doi.org/10.1016/j.procs.2010.04.177
http://dx.doi.org/10.1371/journal.pcbi.1003359
http://www.ncbi.nlm.nih.gov/pubmed/24626049
http://dx.doi.org/10.1088/1751-8121/aa54d9
http://dx.doi.org/10.3390/e20090700
http://dx.doi.org/10.1063/1.1505860
http://dx.doi.org/10.1063/1.1889434
http://www.ncbi.nlm.nih.gov/pubmed/15918689
http://dx.doi.org/10.1137/110825716
http://dx.doi.org/10.1016/j.jtbi.2014.11.029
http://www.ncbi.nlm.nih.gov/pubmed/25497476


Entropy 2019, 21, 607 18 of 18

18. Khammash, M.; Munsky, B. The finite state projection algorithm for the solution of the chemical master
equation. J. Chem. Phys. 2006, 124, 1–12, [CrossRef]

19. Norris, J.R. Markov Chains; Cambridge University Press: Cambridge, UK, 1997; doi:10.1017/CBO9780511810633.
20. Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 1977, 81, 2340–2361,

[CrossRef]
21. Sunkara, V. Analysis and Numerics of the Chemical Master Equation. Ph.D. Thesis, The Australian National

University, Canberra, Australia, 2013.

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.2145882
https://doi.org/10.1017/CBO9780511810633
http://dx.doi.org/10.1021/j100540a008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Reaction Counts CME
	Formulation
	Analytical Solutions of the Reaction Counts CME

	Partitioning the State Space
	Paths
	Path Chains
	Gated- and Un-Gated Path Chains
	Cascade of Gating and Un-Gating

	Conclusions
	References

