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Abstract: Quantum channels with correlated effects are realistic scenarios for the study of noisy
quantum communication when the channels are consecutively used. In this paper, superdense
coding is reexamined under a correlated amplitude damping (CAD) channel. Two techniques
named as weak measurement and environment-assisted measurement are utilized to enhance the
capacity of superdense coding. The results show that both of them enable us to battle against the
CAD decoherence and improve the capacity with a certain probability. Remarkably, the scheme of
environment-assisted measurement always outperforms the scheme of weak measurement in both
improving the capacity and successful probability. These notable superiorities could be attributed
to the fact that environment-assisted measurement can extract additional information from the
environment and thus it performs much better.
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1. Introduction

Superdense coding [1,2] is a simple yet surprising application of non-local properties of entangled
states. The study of superdense coding is not only of great importance in quantum information theory,
but also of practical significance in quantum communication. In the original proposal, the authors
showed that two-bit classical information can be transmitted via a qubit and an initially shared,
maximally entangled state, such as (|00〉+ |11〉)/

√
2) [3]. This capacity is twice of the classical

strategy allowed by causality. In this spirit, superdense coding has been extended experimentally
to high-dimension [4] as well as multiple quantum systems [5–10], and even continuous variable
systems [11]. On the other hand, the experimental realizations of superdense coding have been
demonstrated in various physical platforms including linear optics [12] and nuclear magnetic resonance
systems [13].

For the noise free case, it is usually believed that the maximal capacity of superdense coding is
C = log d where d is the dimension of sender’s system [14]. In a realistic physical system, however,
the achievable capacity of superdense coding remains fundamentally limited. In linear optical systems,
this is confined by the fact that a complete Bell state analysis is impossible [15,16]. While in other
physical systems, the unavoidable presence of noises also reduces the attainable channel capacity.
In recent years, numerous attentions have been devoted to various scenarios of superdense coding
under noisy channels [17–20]. Most of the earliest studies on noisy superdense coding are focused on
the memoryless or uncorrelated channels. Mathematically, such an uncorrelated noise can be described
by a completely positive, trace-preserving (CPTP) map ε in the quantum operation formalism [21]:
an input state ρin is mapped into the output state ρout = ε(ρin). Consecutively using an uncorrelated
channel is simply expressed as a tensor product of the CPTP map ε: εn = ε⊗n.
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Real physical systems are more or less correlated among consecutive uses [22,23]. Particularly,
correlated effects become significant when the transmission rate of quantum channels is large. So,
quantum memory channels have attracted growing interest in recent literatures [24–30]. In the
correlated channels, the tensor product of ε does not valid: εn 6= ε⊗n. References [31,32] have
discussed the coding theorems of quantum capacity for long-term memory channels. Nevertheless,
most of the attentions are paid to the unital memory channel, while little attentions are focused on the
non-unital memory channel. The dominant noise process in many quantum information processing
tasks is described by an amplitude damping channel, such as the energy relaxation. If the order of
the channel’s relaxation time is comparable to or larger than that of the transmission time through
the channel, then the correlated amplitude damping (CAD) noise would be remarkable. Several
works have shown that the CAD noise plays a significant role in improving the entanglement [33,34]
and enhancing the fidelity of teleportation [35]. The influence of CAD noise on classical capacity,
quantum capacity and entanglement-assisted classical capacity is also been detailedly investigated by
D’Arrigo et al. [36]. It is found that any finite amount of memory can increases the amount of reliably
transmitted information with respect to the memoryless channel.

In this paper, we focus on how to improve the capacity of superdense coding under CAD
channel. With the help of two recent techniques named weak measurement (WM) [37–42] and
environment-assisted measurement (EAM) [43–45] and combining with a appropriate quantum
measurement reversal (QMR), we propose two probabilistic schemes called as WM+CAD+QMR and
CAD+EAM+QMR, respectively, to further enhance the capacity over the CAD channel. Interestingly,
the latter scheme is comprehensively superior to the former one in the improvements of capacity as
well as successful probability. Though these two schemes seem similarly, the underlying mechanisms
are extremely different. Since the EAM is a post measurement, thus it extracts more information from
the system and environment than the preposed WM. Our results offer an active way to improve the
capacity of superdense coding under CAD channel, which is rather significant in realistic quantum
communication.

The paper is arranged as follows: in Section 2, we review the key results of superdense coding
in CAD channel. Then in Section 3, we propose two schemes to enhance the capacity of superdense
coding in CAD channel by using WM and EAM. Moreover, in Section 4, the advantages of the
CAD+EAM+QMR case are explored by comparing with the results of “WM+CAD+QMR” case. Finally,
a brief summary is given in Section 5.

2. Superdense Coding under the CAD Channel

According to the operator-sum representation, the influence of system-environment interaction
can be expressed by operators on the principal system’s Hilbert space alone. Then the evolution of
the system’s state is dominated by the CPTP map ε(ρ) = ∑

i=0,1
EiρE†

i are Kraus operators. For the AD

noise, the Kraus operators are represented as

E0 =

(
1 0
0
√

1− γ

)
, E1 =

(
1
√

γ

0 0

)
. (1)

The parameter γ ∈ [0, 1] is the decoherence strength of the AD channel. For the two-qubit
memoryless AD channel, identical noises act on individual qubits and the dynamical map is ε⊗2.
However, in the case of sending two qubits by successive uses of an amplitude damping channel with
partial memory, the map of such a CAD channel could not be treated as a tensorial product of the
individual process. In Reference [46], the authors showed that the operator-sum representation of the
CAD channel is written as

εCAD(ρ) = (1− µ)
1

∑
i,j=0

EijρE†
ij + µ

1

∑
k=0

AkρA†
k , (2)
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here, for the two-qubit memoryless or uncorrelated AD channel, Eij = Ei ⊗ Ej, while µ ∈ [0, 1] is
known as the correlation parameter of the CAD channel, µ = 0 indicates that the noise is memoryless
or uncorrelated, and µ = 1 denotes fully correlated and the corresponding Kraus operators Ak can be
obtained by solving the correlated Lindblad equation, which gives the following formalism [47]

A0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0

√
1− γ

 , A1 =


0 0 0

√
γ

0 0 0 0
0 0 0 0
0 0 0 0

 . (3)

First, we consider the behavior of superdense coding under the CAD channel. Let us suppose
that the initial state is established in a maximally entangled state

|ϕ〉S =
|00〉S + |11〉S√

2
. (4)

After it goes through the CAD channel, the pure state inevitably evolves into a mixed state which
can be derived from the Equation (2)

ρCAD =


ρ11 0 0 ρ14

0 ρ22 0 0
0 0 ρ33 0

ρ41 0 0 ρ44

=


1+µγ2+µγ

2 0 0 µ γ+µ
√

γ
2

0 µ γγ
2 0 0

0 0 µ γγ
2 0

µ γ+µ
√

γ
2 0 0 µ γ2+µ γ

2

 , (5)

where µ = 1− µ, γ = 1− γ and ρ0 = |ϕ〉S 〈ϕ|.
In order to quantify the ability of superdense coding over noisy channel, the capacity C∗CAD is

introduced by Hiroshima et al. [14]

C∗CAD = S(ρCAD
∗)− S(ρCAD), (6)

where ρCAD
∗ = 1

4

3
∑

i=0
(Ui ⊗ I)ρCAD(U†

i ⊗ I) is the average density matrix of the signal ensemble ρ∗CAD,

in which, ρ∗CAD = (Ui ⊗ I)ρCAD(U†
i ⊗ I). S(ρCAD) is the von Neumann entropy of ρCAD. Ui are the

mutually orthogonal unital transformations of dense coding for two qubits.

U0 =

(
1 0
0 1

)
, U1 =

(
0 1
1 0

)
, U2 =

(
1 0
0 −1

)
, U3 =

(
0 1
−1 0

)
. (7)

By substituting Equations (5) and (7) into (6), the capacity of superdense coding under CAD
channel C∗CAD can be obtained exactly by Equation (6).

C∗CAD = − (ρ11 + ρ22) log2(
ρ11 + ρ22

2
)− (ρ33 + ρ44)log2(

ρ33 + ρ44

2
) + 2ρ22log2(ρ22)

+
ρ11 + ρ44 +

√
ρ11

2 + ρ44
2 + 4ρ14

2 − 4ρ11ρ44

2ρ11
log2(

ρ11 + ρ44 +
√

ρ11
2 + ρ44

2 + 4ρ14
2 − 4ρ11ρ44

2ρ11
)

+
ρ11 + ρ44 −

√
ρ11

2 + ρ44
2 + 4ρ14

2 − 4ρ11ρ44

2ρ11
log2(

ρ11 + ρ44 −
√

ρ11
2 + ρ44

2 + 4ρ14
2 − 4ρ11ρ44

2ρ11
).

(8)

Numerical results clearly show that the existence of correlated effect has a significant impact
on the capacity C∗CAD. In Figure 1, the superdense coding capacity C∗CAD in CAD channel is plotted
as a function of correlation parameter µ and decoherence strength γ. As one might expect, C∗CAD
decreases with the increase of decoherence strength γ and then enters the blank region which means
the quantum advantage of superdense coding disappears. While it increases with the increase of
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correlation parameter µ. Namely, the effects of CAD noise are twofold: The presence of AD noise
indeed reduces the capacity. On the other hand, the nonlocal correlations between consecutive uses
also induce the recovery of capacity. In this sense, the property of CAD channel is similar to the
non-Markovian environment in open quantum systems [48].

Figure 1. (color online) The capacity C∗CAD of superdense coding as a function of the correlation
parameter µ and the decoherence strength γ. The blank regions indicate the quantum advantage of
superdense coding has disappeared. CAD: correlated amplitude damping.

Although the correlated effects enable us to enhance the capacity of superdense coding,
the capacity is still restrained because of the destructive behavior of AD noise. Particularly, the
quantum advantage of superdense coding can not be maintained in some regions. In the following, we
would explore and compare two schemes for enhancing the superdense coding.

3. Enhanced Superdense Coding under CAD Channel

3.1. WM+CAD+QMR Scheme

In this section, a WM+CAD+QMR scheme is proposed to further remove the adverse effects
in CAD noise. In this scheme, the initially entangled state is sequentially subjected to three steps:
WM, CAD noise and QMR. The basic idea of this method stems from the fact WM is not completely
destructive and can be reversed with a certain probability. Thus a preposed WM is intentionally taken
to make the entangled state insensitive to the CAD noise and then a post-QMR is designed to recover
the initial state. Such a procedure can be described by the following map

ρWM=MQMR

[
εCAD

(
MWMρ0M†

WM

)]
M†

QMR, (9)

where MWM and MQMR are non-unital quantum operations which are given by

MWM =

(
1 0
0
√

1− p

)
⊗
(

1 0
0
√

1− p

)
, (10)

MQMR =

( √
1− q 0
0 1

)
⊗
( √

1− q 0
0 1

)
. (11)

Note that p, q ∈ [0, 1] are the measurement strengths of WM and QMR, respectively. p ∈ (0, 1)
indicates that the WM does not completely project the state into |00〉 or |11〉. To remove the effect of
AD noise and achieve the maximal capacity, how to choose the optimal strength of the QMR is crucial.
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Mathematically, one can find the most optimal reversing measurement strength that gives the maximal
capacity by varying q from 0 to 1. However, the generally analytic expression is state-dependent and
not applicable in practice. In Refs. [39,40,49], according the quantum jump method [50], the authors
derived a state-independent relationship of q which is formulated as

q = p + γ p. (12)

in it, p = 1− p. Then the final state ρWM after the sequential WM, CAD channel and QMR is given by

ρWM =
1
N


U
2 0 0 X

2
0 V

2 0 0
0 0 V

2 0
X
2 0 0 W

2

 , (13)

where U = p2γ2 (1 + p2µγ2 + p2µγ
)
, V = p3µγγ2, W = p2 (µ γ2 + µγ

)
, X = p2γ

(
µ γ + µ

√
γ
)
.

N = (U + 2V + W) /2 is the normalization factor. Among them, µ = 1− µ, γ = 1− γ.
The capacity of superdense coding of the mixed state ρWM and the corresponding successful

probability could be obtained from Equation (6). To quantify the capacity improved by the
WM+CAD+QMR scheme, we introduce the capacity improvement

C1
imp = C∗WM − C∗CAD. (14)

As illustrated in Figure 2, it was found that C1
imp is positive in most cases of µ and γ. The positive

values of C1
imp imply that the capacity of superdense coding is improved by the operations of WM and

QMR. The largest improvement approaches to 1 classical bit. Even in the severely decoherence cases
(i.e., γ→ 1), the capacity of superdense coding with the assistance of WM and QMR is always greater
than that without WM and QMR as long as the WM is strong enough. Hence the quantum advantage of
superdense coding is almost preserved. Since both WM and QMR operations are non-unital operations,
thus the price of high capacity of superdense coding is based on the probabilistic nature of WM. The
successful probability of WM+CAD+QMR scheme can be obtained as

P∗WM =
U + 2V + W

2
. (15)

Figure 3 shows the behavior of successful probability under WM+CAD+QMR scheme as a
function of γ with different µ and p. Clearly, the successful probability is dependent on the correlated
parameter µ, but mostly, it is determined by the measurement strength of WM. It decreases with
increasing strength of WM, which means that the high capacity of superdense coding is achieved at
the expense of low successful probability. The trade-off between the high capacity and low successful
probability should be considered in practical situation. In Section 4, we will show that WM+CAD+QMR
scheme can enhance the capacity, but the enhancement on average capacity is disappointing.

3.2. CAD+EAM+QMR Scheme

Though the WM+CAD+QMR scheme has been confirmed to be beneficial to the improvement
of capacity, its validity is limited in the following two aspects: one is the balance between high
capacity and low successful probability. The other is the effectiveness in some particular cases (i.e.,
the blank regions in Figure 2). It is natural to pursue a better method that can overcome these
two shortages. In this section, we propose a new scheme named CAD+EAM+QMR to enhance the
superdense coding in CAD noise. The distinguished difference between the WM+CAD+QMR and
CAD+EAM+QMR schemes is that the WM operation is performed before CAD noise in the former,
while the EAM operation is performed after the CAD noise in the later. The underlying crucial idea
in the CAD+EAM+QMR scheme is to extract the information by performing a measurement on the
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environment followed by a QMR operation according to the environment measurement outputs. As we
will show, this scheme works much better on improving the capacity and successful probability.

Figure 2. (color online) The capacity improvement C1
imp as a function of the correlated parameter µ

and the decoherence strength γ. From left to right, the strengths of WM p = 0.1 (a), p = 0.5 (b) and
p = 0.9 (c), respectively. The parameter q is set to q = p + γp.
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Figure 3. (color online) The successful probability of weak measurement (WM)+CAD+quantum
measurement reversal (QMR) scheme P∗WM as a function of the strength of decoherence γ for different
correlated parameters µ. From left to right, the strengths of WM are p = 0.1 (a), p = 0.5 (b) and p = 0.9
(c), respectively. The parameter q is set to q = p + γp.

The CAD+EAM+QMR scheme is implemented as follows: first, we send the initial state ρ(0) =
|ϕ〉S〈ϕ| into a CAD noisy channel. Due to the system-environment interaction, the initial state will be
decohered after a period of time. An ideal detector is added to monitor the changes of environment.
For the CAD noise, there are three possible outcomes (i.e., zero, one and two clicks) of the detector.
We discard the result of clicks (including one or two clicks) since the reduced states of system are
invertible, while the reduced state corresponding to the no click could be recovered by a QMR
operation.

Now, we consider that the initial state is still given by Equation (4) and the environments are all
in vacuum state. Supposing that the outcome of EAM is no click, the reduced state of the system of
interest could be derived as

ρ′ =


µ

1+γ2 +
µ

1+γ 0 0 µ γ

1+γ2 +
µ
√

γ
1+γ

0 0 0 0
0 0 0 0

µ γ

1+γ2 +
µ
√

γ
1+γ 0 0 µ γ2

1+γ2 +
µγ

1+γ

 , (16)
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To restore the initial state, a non-unital quantum operation QMR given by Equation (11) is required
to perform on the qubits. Thus, the final state ρEAM is determined as

ρEAM=
1

N′


q2U′ 0 0 qX′

0 0 0 0
0 0 0 0

qX′ 0 0 W ′

 , (17)

where U′ = µ/(1+γ2)+µ/(1+γ), W ′ = µγ2/(1+γ2)+µγ/(1+γ), X′ = µγ/(1+γ2)+µ
√

γ/(1+γ).
N′ = q2U′ + W ′ is the normalization factor.

Based on the above results, we can calculate the capacity of superdense coding of the mixed state
ρEAM and obtain the optimal strength of QMR numerically by varying q from 0 to 1. Similarly, we also
define the capacity improvement between C∗EAM and C∗CAD

C2
imp = C∗EAM − C∗CAD. (18)

To demonstrate the power of the CAD+EAM+QMR scheme, we plot the capacity difference C2
imp

as a function of µ and γ in Figure 4. It is interesting to note that C2
imp is always positive regardless of

the values of correlated parameter µ and decoherence parameter γ. This confirms that the capacity
of superdense coding in CAD noise is greatly enhanced with the assistance of EAM and QMR.
Considering that the EAM and QMR are also probabilistic operations, the successful probability is
given by

P∗EAM = q2U′ + W ′. (19)
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Figure 4. (color online) The capacity difference C2
imp between C∗EAM and C∗CAD as a function of the

memory parameter µ and the decoherence strength γ. EAM: environment-assisted measurement.

Figure 5 shows the behaviors of P∗EAM as a function of γ with different values of µ. Though
the successful probability decays with increasing decoherence parameter γ, it is improved with the
increase of correlated parameter µ.
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Figure 5. (color online) The successful probability of EAM+QMR scheme P∗EAM as a function of the
strength of decoherence γ for different memory parameters µ.

4. Comparison between WM+CAD+QMR Scheme and CAD+EAM+QMR Scheme

To provide a complete picture of these two schemes, we will make a detailed comparison
between them from the following two aspects: capacity improvement and successful probability.
Both WM+CAD+QMR and CAD+EAM+QMR schemes are devoted to improving the capacity of
superdense coding in CAD noise, but the efficiency is not the same. By introducing the capacity
difference C3

imp which is given by

C3
imp = C∗EAM − C∗WM, (20)

we can obtain an intuitive understanding of the distinction. In Figure 6, C3
imp as a function of µ and γ

with different strengths p of WM are plotted. Note that the parameter q has been optimized to ensure
the maximal capacity. At first sight, we find that C3

imp are always larger than 0 in both Figures 6a–c.
This means that the CAD+EAM+QMR scheme always outperforms the WM+CAD+QMR scheme on
the improving of the capacity of superdense coding in CAD decoherence.
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Figure 6. (color online) The capacity difference C3
imp between C∗EAM and C∗WM as a function of µ and γ

with p = 0.1(a), 0.5(b), 0.9(c) in turn.

Another interesting aspect worth comparing is the successful probability. In both WM+CAD+
QMR and CAD+EAM+QMR schemes, we know that a high capacity corresponds to a low successful
probability. One might conjecture that the successful probability of CAD+EAM+QMR scheme is also
smaller than that of WM+CAD+QMR scheme since C∗EAM > C∗WM. However, we argue that this
intuition is not true. According to Equations (19) and (15), we define a ratio as P∗EAM/P∗WM and plot
the numerical results in Figure 7. Remarkably, the results show that P∗EAM/P∗WM ≥ 1 for any given µ,
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γ and p, which means that the successful probability of CAD+EAM+QMR scheme is also larger than
that of WM+CAD+QMR scheme.
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Figure 7. (color online) The ratio P∗EAM/P∗WM as a function of γ for different µ when p =

0.1(a), 0.5(b), 0.9(c), one after another.

In order to further verify whether the EAM and WM schemes are really effective in enhancing
superdense coding under the CAD noise, we should take the combination of capacity and successful
probability into consideration. Here, we introduce a quantity D = C∗ ∗ P∗ which quantifies the average
capacity. In Figure 8, DEAM, DWM and DCAD are plotted as a function of decoherence strength γ under
CAD noise with µ = 0.1, p = 0. It clearly shows that DWM starts out a little better than DCAD in
the weak decoherence region, but DWM becomes worse than DCAD with the increase of decoherence
strength γ. However, DEAM is always much greater than DWM and DCAD. This confirms that the EAM
scheme indeed greatly improves the capacity of superdense coding in CAD noise, and significantly
better than the WM scheme. We can understand this phenomenon as follows: for the WM+CAD+QMR
scheme, only a part of information of the system is extracted by WM and used to correct the CAD
noise. While for the CAD+EAM+QMR scheme, the post EAM not only collect the system’s information,
but also gathers the additional information from the environment. Therefore, both the capacity and
the successful probability can significantly surpass those obtained in WM+CAD+QMR scheme.
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Figure 8. (color online) Average capacity D = C∗ ∗ P∗ as a function of the decoherence strength γ with
µ = 0.1, p = 0.

5. Discussions and Conclusions

Before conclusion, it is necessary to discuss the experimental implements of WM and EAM.
References. [38,39] pointed out that WM can be achieved through a single operation, which is
very important in actual experiments because of the difficulty of controlling two qubits and their
coupling. In addition, the operation time is also significantly important due to the limited coherent
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time. As described in References. [39,40], the WM can be implemented with a Brewster angle glass
plate (BAGP) for photon polarization qubit, where BAGP probabilistically refuses vertical polarization
and completely transmits horizontal polarization. Those operations accurately act as the WM. It is
easier to realize EAM by adding an ideal detector to monitor the environment, function as follows: the
detector clicks if there is excitation (one or two) in the environment and never clicks if no excitation is
detected in the environment. The no click corresponds to a success EAM operation.

Though the WM and EAM and greatly improve the capacity of superdense coding, the largest
capacity is restricted to two by using entangled qubits. This limit can be surpassed by using
high-dimensional entanglement, as reported in Reference [4]. The authors demonstrated a channel
capacity of 2.09± 0.01 with entangled qudits. However, this capacity is smaller than the limit 2.32 of
owing to the fidelity of entangled qudit state and imperfect four-dimensional Bell-state measurement.
It is worth to mention that our scheme could be extended to d-dimensional systems. For example,
in Reference [41], we have shown that WM and QMR can protect qutrit-qutrit entanglement from
amplitude damping decoherence. Since the capacity of superdense coding is directly dependent on
the entanglement, this means that one can use WM and EAM to enhance the capacity even in the
d-dimensional cases.

In summary, we have examined the superdense coding in the CAD noise and revealed that
correlated effects are expected to increase the capacity. We also proposed two schemes named
as WM+CAD+QMR and CAD+EAM+QMR to battle against CAD noise. Even though they are
probabilistic strategies, the capacity is indeed drastically improved. Particularly, it is demonstrated
that the CAD+EAM+QMR scheme is always better than the WM+CAD+QMR one, not only on the
enhancement of capacity but also on the improvement of successful probability. The underlying factor
is attributed to the difference between WM and EAM. The results obtained in this paper provide
another perspective to suppress decoherence in quantum information processing.
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