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Abstract: The impacts of entropy generation and Hall current on MHD Casson fluid over a stretching
surface with velocity slip factor have been numerically analyzed. Numerical work for the governing
equations is established by using a shooting method with a fourth-order Runge–Kutta integration
scheme. The outcomes show that the entropy generation is enhanced with a magnetic parameter,
Reynolds number and group parameter. Further, the reverse behavior is observed with the Hall
parameter, Eckert number, Casson parameter and slip factor. Also, it is viewed that Bejan number
reduces with a group parameter.
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1. Introduction

The study of magnetohydrodynamic flows with Hall currents has evinced interest attributable to
its numerous applications in industries, such as MHD power generators, Hall current accelerators,
Hall current sensors, and planetary fluid dynamics. Sato [1] was the first author who investigated the
impact of Hall current on the flow of ionized gas between two parallel plates. The influence of Hall
current on the efficiency of an MHD generator was investigated by Sherman and Sutton [2]. Several
authors [3–9] discussed the influence of Hall current on hydromagnetic flow problems for various
aspects. Recently, Abdel-Wahed [10] examined the impacts of hall current on the MHD boundary layer
flow and heat transfer of Ferro nanofluid in a curved tube.

Some different fluids are termed as non-Newtonian fluids such as Jeffrey fluid, viscoelastic
fluid, power-law flow, Williamson fluid, micropolar fluid, and Casson fluid. Casson [11] was the
first investigator who introduced the Casson fluid model. Reviews of Casson fluid over different
geometries have been presented in Refs. [12–17]. Recently, Ramana Reddy et al. [18] numerically
analyzed the combined influences of thermal radiation and viscous dissipation of a paraboloid along
an upper convective surface. All the above previous researchers have employed the first law of
thermodynamics only. On the other hand, the second law of thermodynamics is utilized to minimize
the entropy generation in thermal engineering systems. Entropy generation analysis in applied thermal
engineering was proposed by Bejan [19–21]. Later on, many researchers [22–31] have effectively applied
his approach to calculating the entropy generation analysis for different geometrical configurations.
Recently, Reddy et al. [32] investigated the entropy generation for MHD Casson fluid flow with thermal
radiation influence. Very recently, Afridi et al. [33] discussed the second law analysis for MHD flow
and heat transfer past a slender stretching surface by taking Joule heating and variable thickness.
To our knowledge, no document has yet been initiated for the MHD boundary layer of a Casson
fluid owing to a stretching surface considering Hall effect, slip phenomenon and entropy generation.
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The objective of the present document is to discuss the second law of thermodynamics for a Casson
fluid flow along a stretching surface taking the Hall current, velocity slip, and viscous dissipation
influences. The impact of physical parameters is analyzed with the help of graphs and tables.

2. Mathematical Formulation

In this paper, the magnetohydrodynamic flow of incompressible Casson fluid is considered.
The flow is generated owing to the stretching surface with linear velocity uw(x) = cx, in the x-direction.
Hall current is produced due to the strong magnetic field which is vertical to the stretching surface
in the y-direction, as shown in Figure 1. The induced magnetic field is ignored with respect to small
magnetic Reynolds number. The heat transfer characteristic is examined via viscous dissipation. Bejan
number and entropy generation are utilized to evaluate the loss of energy for the existing flow regime.
Further, it is assumed that the Joule heating is neglected in this study. The generalized Ohm’s law,
including Hall current, is stated in the form Sutton and Sherman [2]:
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, e, ne and me are the current density vector,

the velocity vector, the electric field vector, the magnetic induction vector, the electron collision time,
the cyclotron frequency of electron, the electrical conductivity of the fluid, the charge of electron, the
number density of electrons, and the mass of the electron, respectively. In this work, an electric field is
neglected, thus Equation (1) becomes:

Jx =
σB0

1 + m2
(mu−w) (2)

Jz =
σB0

1 + m2
(mw + u) (3)

where, m = ωeτe is the Hall parameter.
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Figure 1. Physical model and coordinate system. 

According to Refs [12]–[13], the rheological equation of the Casson fluid is given by:  

0B 

  Force 

u 

 

w 

x 

z 

y 

Slot 
Stretching surface 

   wU 

Figure 1. Physical model and coordinate system.

According to Refs [12,13], the rheological equation of the Casson fluid is given by:

τi j =

 2
(
µB +

py
√

2π

)
ei j, π > πc

2
(
µB +

py
√

2πc

)
ei j,π < πc

(4)
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where π = ei jei j with ei j being the (i, j)th component of the deformation rate, π depicts the product of
the component of the deformation rate with itself, πc denotes a critical value of this product based on
the non-Newtonian model, µB indicates the plastic dynamic viscosity of non-Newtonian fluids, and py

is the yield stress of the fluid. When π < πc, Equation (4) can be expressed as: τi j = µB
(
1 + 1

γ

)(
2ei j

)
.

Here γ =
µB
√

2πc
py

is the Casson parameter.
Due to the above-mentioned assumptions and the boundary layer approximations, the governing

equations of Casson fluid and generalized Ohm’s law with Hall current influence are given by:

∂u
∂x

+
∂v
∂y

= 0 (5)

u
∂u
∂x

+ v
∂u
∂y

= υ

(
1 +

1
γ

)
∂2u
∂y2 −

σB2
0

ρ(1 + m2)
(u + mw) (6)

u
∂w
∂x

+ v
∂w
∂y

= υ

(
1 +

1
γ

)
∂2w
∂y2 +

σB2
0

ρ(1 + m2)
(mu−w) (7)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 +

υ
cp

(
1 +

1
γ

)
(
∂u
∂y

)2

+

(
∂w
∂y

)2
 (8)

Subject to the boundary conditions:

u = uw +
(
1 + 1

γ

)
L∂u
∂y , v = 0, w =

(
1 + 1

γ

)
L∂w
∂y , T = Tw(x) = T∞ + bx2 at y= 0,

u = w = 0, T = T∞ as y→∞
(9)

The following non-dimensional variables are defined as:

η =
( c
υ

)1/2
y, u = c x f ′(η), v = −(c υ)1/2 f (η), w = c x h(η),θ(η) =

T − T∞
Tw − T∞

(10)

whereυ = µB/ρ,α = k/ρcp, k, ρ, cp, Tw, T∞, b, c, L, f, and h, are the kinematic viscosity, thermal diffusivity,
thermal conductivity, fluid density, specific heat, temperature at the surface, ambient temperature,
positive constants, characteristic length, dimensionless stream function, and dimensionless transverse
velocity, respectively. By invoking Equation (10), Equation (5) is automatically satisfied whereas the
other equations and the boundary condition take the following form:(

1 +
1
γ

)
f
′′′

+ f f ′′ − f ′2 −
M

1 + m2
( f ′ + mh) = 0 (11)

(
1 +

1
γ

)
h′′ + f h′ − f ′h +

M
1 + m2

(m f ′ − h) = 0 (12)

1
Pr
θ′′ + fθ′ − 2 f ′θ+ Ec

(
1 +

1
γ

)(
f ′′ 2 + h′2

)
= 0 (13)

f (0) = 0, f ′(0) = 1 + χ
(
1 + 1

γ

)
f ′′ (0), h(0) = χ

(
1 + 1

γ

)
h′(0), θ(0)= 1,

f ′(∞) = 0, h(∞) = 0, θ(∞) = 0
(14)

Here, prime denotes differentiation with respect to η, f is a dimensionless stream function, h is
the dimensionless transverse velocity, θ is the dimensionless temperature, Pr = υ

α is Prandtl number,

M =
σB2

0
ρc is a magnetic parameter, χ = L

(
c
υ

)1/2
is the slip parameter, Ec = c2

bcp
is the Eckert number, and

m is the Hall parameter. The quantities of physical interest in this problem are the local skin friction
coefficient in the x-direction C f x, the local skin friction coefficient in the z-direction C f z and the local
Nusselt number Nux which are defined as:
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C f x =
τwx

ρu2
w

, C f z =
τwz

ρu2
w

, Nux =
xqw

k(Tw − T∞)
(15)

where τwx and τwz are the surface shear stresses in the x-and z-directions, respectively, and qw is the
surface heat flux which is given by following the relations:

τwx =

(
µB +

py
√

2πc

)(
∂u
∂y

)
y=0

, τwz =

(
µB +

py
√

2πc

)(
∂w
∂y

)
y=0

, qw = −k
(
∂T
∂y

)
y=0

(16)

Using the similarity and dimensionless variables (10), we get:

Re1/2
x C f x =

(
1 +

1
γ

)
f ′′ (0), Re1/2

x C f z =

(
1 +

1
γ

)
h′(0),

Nux

Re1/2
x

= −θ′(0) (17)

where, Rex = x uw
υ is the local Reynolds number.

3. Entropy Generation Analysis

The local entropy generation rate is defined as Bejan ([20,21]):

S
′′
′

gen =
k

T2
∞

(
∂T
∂y

)2

+
µB

T∞

(
1 +

1
γ

)(∂u
∂y

)2

+

(
∂w
∂y

)2+ µB

T∞

σB2
0

(1 + m2)

(
u2 + w2

)
(18)

In the entropy equation, the first term represents the heat transfer irreversibility, second term the
fluid friction, and the last term due to the impact of the magnetic field.

The characteristic entropy generation rate is expressed as:

S
′′
′

0 =
k(∆T)2

L2T2
∞

(19)

The dimensionless entropy generation can be expressed as follows:

NG =
S
′′′

gen

S′′′0
= ReLθ′

2(η) + MReL
(1+m2)

(
Br
Ω

)(
f ′2(η) + h2(η)

)
+ReL

(
1 + 1

γ

)(
Br
Ω

)(
f ′′ 2(η) + h′2(η)

) (20)

where, ReL = c L2

υ is the Reynolds number, Br =
µB u2

w
k∆T is the Brinkman number, Ω = ∆T

T∞ is the
dimensionless temperature difference parameter, and ∆T = (Tw − T∞) is the temperature difference.
Equation (20) can be expressed as:

NG = N1 + N2 (21)

where N1 = ReLθ′
2(η) and N2 = MReL

(1+m2)

(
Br
Ω

)(
f ′2(η) + h2(η)

)
+ ReL

(
1 + 1

γ

)(
Br
Ω

)(
f ′′ 2(η) + h′2(η)

)
indicate the irreversibility due to heat transfer and the entropy generation due to the fluid friction with
the magnetic field, respectively. Bejan number is introduced as:

Be =
N1

NG
=

1
1 + Φ

(22)

From Equation (22), Bejan number is in the range 0 ≤ Be ≤ 1. Therefore, 0 ≤ Φ ≤ 1 shows that the
irreversibility is primarily owing to the heat transfer irreversibility, whereas for Φ > 1 it is owing to the
fluid friction irreversibility.
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4. Results and Discussions

The emerging differential Equations (11)–(13) along with the relevant boundary conditions (14) are
tackled numerically using the Runge-Kutta fourth order procedure with shooting technique. Numerical
calculations were performed in the ranges 0.3 ≤ γ ≤ ∞, 3 ≤ M ≤ 5, 0.0 ≤ m < 1.5, 0.0 ≤ χ ≤ 0.7,
0.0 ≤ Ec ≤ 1.2, 5 ≤ ReL ≤ 20, 1 ≤ BrΩ−1

≤ 3 and Pr = 2. Figures 2–21 are plotted in order to see
the impact of the magnetic parameter M, Hall parameter m, Eckert number Ec, Reynolds number
ReL, group parameter BrΩ−1, and Casson parameter γ, respectively, on the primary velocity f ′(η),
secondary velocity h(η), temperature distribution θ(η), and entropy generation distribution NG as
well as Bejan number Be. Further, the graphical results are presented in both cases of no-slip (χ = 0)
and slip boundary (χ , 0).

4.1. Velocity and Temperature Profiles

Figures 2–11 elucidate the influence of pertinent parameters on the velocity and temperature
distributions. Figures 2–4 show the effect of the magnetic parameter M for both cases of no-slip
(χ = 0) and slip boundary (χ , 0) on the primary velocity f ′(η), the secondary velocity h(η), and the
temperature profile θ(η). From Figures 2 and 4, the primary velocity f ′(η) reduces with an increase in
M, whereas the reverse trend is seen for θ(η) in both cases. From Figure 3, the secondary velocity h(η)
augments for larger values of M near the stretching sheet whereas it decays with an increase of η. This
is attributable to the fact that the resistive Lorentz force owing to the magnetic field declines the fluid
motion. This force helps to encourage the temperature profile. Both the velocity components within the
boundary layers reduce with an increase in χ. On the contrary, increasing χ enhances θ(η) within the
thermal boundary layer. Physically, the coupled effect of the slip factor and the magnetic field generate
a retarding force. This retarding force allows more fluid to slip past the surface which decelerates the
flow motion. Also, the temperature profile augments due to the occurrence of the force. The influence
of the Eckert number Ec and slip parameter χ on the temperature field is displayed in Figure 5. Eckert
number represents the kinetic energy of the flow relative to the boundary layer enthalpy difference.
Enhancing Ec leads to a boost in thermal energy, which in turn elevates the temperature field for
both cases. The thermal boundary layer thickness for the case (χ = 0) is more pronounced than the
case (χ , 0). Figures 6–8 show the impact of Hall parameter m on the velocity components and the
temperature field for two different cases. From Figures 6 and 7, the velocity components enhance with
an increase in m for both the cases. Physically, decreasing the conductivity

(
σ

1+m2

)
for rising values

of m generates a magnetic damping force which boosts the velocity components of the fluid. It is
also revealed that the velocity components are greater in the case (χ = 0) in comparison to the case
(χ , 0). It is noticed from Figure 8, that the temperature field θ(η) reduces with an increase in m.
For the no-slip boundary case (χ = 0), the temperature field is lower when compared to the case of slip
boundary (χ , 0). The influences of Casson parameter γ on the primary velocity f ′(η), the secondary
velocity h(η) and the temperature distribution θ(η) for both cases (χ , 0) and (χ = 0) are depicted in
Figures 9–11. Further, as γ→∞ the present problem reduces to the Newtonian fluid. From the figures,
it is evident that the velocity components reduce with an increase in the parameter γ. Conversely, the
temperature distribution is a growing function of the Casson fluid parameter γ, for both cases. This is
owing to the fact that enhancing the values of γ augments the plastic dynamic viscosity and as a result,
the yield stress dwindles. This creates resistance to the fluid motion and enhances the temperature
distribution. It is interesting to see that increasing values of χ depresses both components of velocity
whereas the opposite trend is observed for the temperature distribution.
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4.2. Entropy Generation (NG)

Figures 12–17 portray the impact of pertinent parameters on the entropy generation. The influence
of the Casson parameter γ and slip factor χ on the entropy generation NG is depicted in Figure 12.
It is evident that an elevation in Casson parameter and slip factor diminishes the entropy generation
gradually. We noticed that NG in the case of no-slip (χ = 0) is greater than for the slip case (χ , 0).
Figure 13 exhibits the variation of entropy generation NG with the magnetic parameter M and slip
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factor χ. From Figure 13, the entropy generation NG is an enhancing function of M whereas it is a
decreasing function of χ. Physically, an increase of M generates a Lorentz force which increases the
entropy production rate. This phenomenon shows that the magnetic force is a key principle in the
entropy generation. Furthermore, the entropy generation profile NG for the case (χ = 0) is more than
that for the case (χ , 0). The entropy generation reduces with an increase of χ which reveals the
system is cooling down. In Figure 14, the variations in the entropy generation profile are depicted for
various values of Hall parameter m and slip factor χ. It is seen that the increase of m and χ decreases
the entropy generation at the sheet nearby. This is due to the fact that the Hall current has considerable
effects on Lorentz force term and current density. Consequently, increasing m augments effective
electric conductivity which in turn depreciates NG and θ(η) as depicted in Figure 8. Further, the case
of (χ = 0) shows more impact on the entropy generation NG compared with the case (χ , 0). Figure 15
portrays the influence of Eckert number Ec and slip parameter χ on the entropy generation NG. It is
interesting to see that enhancing values of Ec reduce NG near the surface and then rise in the region
far away from the surface. For the case (χ = 0), the entropy generation NG is more pronounced with
a rise in Ec than the case (χ , 0). Figure 16 illustrates the impacts of Reynolds number ReL and slip
parameter χ on the entropy generation NG. It reveals that NG is an increasing function of ReL. On the
contrary, increasing values of χ reduce NG. Physically, the Reynolds number is represented by the ratio
of inertial forces and viscous forces. Higher values of Reynolds number show the dominance of inertial
forces which causes an enhancement in the entropy production. Further, it is remarkable that NG is
higher in case (χ = 0) than that in the case (χ , 0). Figure 17 is displayed to show the impact of group
parameter BrΩ−1 and slip parameter χ on the entropy generation NG. From this figure, it is detected
that NG boosts with an increase in BrΩ−1. However, the scenario becomes different with an increase
in χ within the boundary layer region. Physically, increasing BrΩ−1 promotes the viscous effects of
the fluid, which causes the entropy generation to enhance. The group parameter has a vital role to
maximize the energy which measures the ratio of viscous effects and thermal asymmetry. On the other
hand, it is noticed that the entropy generation is minimized with rising slip factor χ. This is due to the
fact that the friction between the stretching surface and the fluid dwindles with an increase in χ.
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Figure 16. Effect of Reynolds number ReL and slip parameter χ on entropy generation NG with γ = 0.3,
M = 3, m = 0.5, Pr = 2 and BrΩ−1 = 1.
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4.3. Bejan Number (Be)

Figures 18–21 delineate the variation of the Bejan number for pertinent parameters. Figure 18
is plotted to depict the variation of Bejan number Be against magnetic parameter M and slip factor
χ. Figure 18 shows that Be reduces with increasing M near the stretching sheet, but increases after a
certain distance η from the stretching sheet for both cases. Physically, an increase in M leads to the
irreversibility influences attributable to the fluid friction and the magnetic field becomes dominant
in the neighborhood of the surface. For slip case (χ , 0), the Bejan number Be is more pronounced
with the rise in M than the no-slip case (χ = 0). The variations of Be with various values of the Hall
parameter m and slip factor χ are plotted in Figure 19. From Figure 19, the Bejan number Be enhances
with rising values of m near the stretching surface whereas the opposite trend occurs after a certain
distance η from the boundary for both cases. It is observed that increasing m shows more impact on
the Bejan number Be of the case (χ , 0) compared with the case (χ = 0). Figure 20 is portrayed of
Be against the group parameter BrΩ−1 and slip factor χ. From Figure 20, the Bejan number Be is a
decreasing function of BrΩ−1 for both cases slip and no-slip. Physically, the rise in values of BrΩ−1

leads to promoting the fluid friction and magnetic field near the stretching surface which causes a
reduction in Be. On the contrary, the heat transfer irreversibility is negligible (Refer Equation (22)).
Notably, the Bejan number Be is more significant in the sense of magnitude for the slip case as compared
to the no-slip case (χ = 0) with increasing BrΩ−1. Figure 21 is plotted to show the variation of Be for
various values of the Casson parameter γ and slip factor χ. From Figure 21, the Bejan number Be
diminishes with an increase in γ near the stretching surface whereas the reverse behavior occurs after a
certain distance η from the boundary for both cases of slip and no-slip. For the case (χ , 0), the Bejan
number Be is enhanced with the rise in γ whereas the opposite trend is noticed for the case (χ = 0).
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Figure 19. Effect of Hall parameter m and slip factor χ on Bejan number Be with M = 3, Ec = 0.0, γ = 0.3,
Pr = 2, ReL = 5 and BrΩ−1 = 1.
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Figure 21. Effect of Casson parameter γ and slip factor χ on Bejan number Be with M = 3, Ec = 0.0,
γ = 0.3, Pr = 2, BrΩ−1 = 1, ReL = 5 and m = 0.5.

4.4. Tables Discussion

Tables 1 and 2, are constructed to display the numerical values of skin-friction f ′′ (0) and h′(0),
as well as the heat transfer coefficient θ′(0) for various values of the magnetic parameter M, Hall
parameter m, Eckert number Ec and slip factor χ for both cases of Newtonian (γ→∞ ) and Casson
flows. It is noticed that the magnitude values f ′′ (0) and h′(0) enhance gradually for rising values of M
whereas the reverse scenario is noticed for θ′(0) in both cases. Physically, increasing the magnetic
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parameter generates an electromagnetic force which depreciates the heat transfer rate while it augments
both the magnitude values of the friction factor within the boundary layer. The values of h′(0) and
θ′(0) augment with increasing m whereas the reverse scenario is noticed for the magnitude values
of f ′′ (0) for both cases. This is due to the fact that the electrical conductivity of the fluid declines
with rising m which eventually dwindles the magnetic damping force. This serves to boost h′(0) and
θ′(0), but on the contrary, the magnitude values of f ′′ (0) reduce. From Tables 1 and 2, the values
of θ′(0) boost whereas the coefficients f ′′ (0) and h′(0) are insensitive for rising Ec for both cases.
Physically, the higher values of Eckert number Ec retard the fluid flow adjacent to the stretching surface.
This agrees with the fact that the temperature distributions are enhanced with an increase in Ec as
shown in Figure 5. Both the magnitude values of the friction factor f ′′ (0) and h′(0) as well as the heat
transfer rate θ′(0) reduce with increasing χ. Physically, with an increase in χ generates a resistive force
neighboring to a surface which declines the physical quantities f ′′ (0), h′(0) and θ′(0). For Casson flow,
the values of skin-friction f ′′ (0) and h′(0) and the heat transfer coefficient θ′(0) are more pronounced
for all the previous physical parameters than Newtonian flow.

Table 1. Variation of
√

Rex C f x,
√

Rex C f z and Re−1/2
x Nux for different values of M, m, Ec, χ and Pr = 2.

(Casson Fluid) γ = 0.3

M m Ec χ
√

Rex Cfx
√

Rex Cfz Re−1/2
x Nux

3.0 0.5 0.2 0.1 −2.74748 0.380355 1.45858
4.0 0.5 0.2 0.1 −2.98256 0.420435 1.36772
5.0 0.5 0.2 0.1 −3.18327 0.449734 1.28796
3.0 0.2 0.2 0.1 −2.84235 0.167365 1.43078
3.0 0.9 0.2 0.1 −2.56821 0.558594 1.51369
3.0 1.5 0.2 0.1 −2.31976 0.654144 1.59518
3.0 0.5 0.0 0.1 −2.74748 0.380355 1.69467
3.0 0.5 0.6 0.1 −2.74748 0.380355 0.98639
3.0 0.5 1.2 0.1 −2.74748 0.380355 0.27812
3.0 0.5 0.2 0.0 −3.90412 0.700737 1.58973
3.0 0.5 0.2 0.4 −1.48494 0.125011 1.13318
3.0 0.5 0.2 0.7 −1.02344 0.062368 0.93521

Table 2. Variation of
√

Rex C f x,
√

Rex C f z and Re−1/2
x Nux for different values of M, m, Ec, χ and Pr = 2.

(Newtonian Fluid) γ→∞

M m Ec χ
√

Rex Cfx
√

Rex Cfz Re−1/2
x Nux

3.0 0.5 0.2 0.1 −1.55680 0.244065 1.35999
4.0 0.5 0.2 0.1 −1.70926 0.278256 1.25131
5.0 0.5 0.2 0.1 −1.84307 0.305619 1.15369
3.0 0.2 0.2 0.1 −1.62314 0.108807 1.32919
3.0 0.9 0.2 0.1 −1.43584 0.349753 1.42218
3.0 1.5 0.2 0.1 −1.27717 0.395964 1.51636
2.0 0.5 0.0 0.1 −1.55680 0.244065 1.56711
2.0 0.5 0.6 0.1 −1.55680 0.244065 0.94577
2.0 0.5 1.2 0.1 −1.55680 0.244065 0.32444
2.0 0.5 0.2 0.0 −1.87548 0.336623 1.45527
2.0 0.5 0.2 0.4 −1.04359 0.120217 1.12444
2.0 0.5 0.2 0.7 −0.78951 0.072391 0.95809

5. Conclusions

In the present work, a numerical study of entropy generation on MHD Casson fluid with Hall
current and slip factor has been addressed. The skin-frictions f ′′ (0), h′(0) and heat transfer coefficient
θ′(0), Bejan number Be and entropy generation NG are analyzed and represented through tables and
graphs for various pertinent parameters. The significant outcomes are listed below:
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1- The primary velocity f ′(η) reduces with the rising of M, whereas the opposite behavior is
observed for the temperature field θ(η).

2- The secondary velocity h(η) elevates with the rising of M near the stretching sheet whereas the
reverse behavior occurs far away from the surface.

3- Both the velocity components f ′(η) and h(η) enhance with an increase in m whereas the opposite
scenario is observed for the temperature field θ(η).

4- Enhancing the values of Ec leads to boosting the temperature field θ(η).
5- Both the velocity components f ′(η) and h(η) depreciate with an increase in γ whereas the reverse

behavior is noticed for the temperature field θ(η).
6- Entropy generation NG augments for rising values of M, ReL, and BrΩ−1 whereas an opposite

trend is remarkable for χ.
7- Entropy generation NG depreciates with increasing values of m, γ, Ec, and χ.
8- Bejan number Be reduces with rising M but increases after a certain distance η from the

stretching sheet.
9- Bejan number Be enhances with rising m but depresses after a certain distance η from the

stretching sheet.
10- Bejan number Be is a decreasing function of BrΩ−1.
11- Bejan number Be diminishes with a rise in γ near the stretching surface whereas the reverse

behavior occurs after a certain distance η from the stretching sheet.
12- The impact of M, m, Ec and χ on the values f ′′ (0), h′(0) and θ′(0) are more pronounced for

Casson fluid when compared to the Newtonian fluid.
13- The magnitude values f ′′ (0) and h′(0) augment, whereas the values of θ′(0) decrease with an

increase in M.
14- The values of h′(0) and θ′(0) enhance whereas the magnitude values of f ′′ (0) depreciate with

increasing m.
15- The values of θ′(0) enhance for large values of Ec.
16- Both the magnitude values of f ′′ (0) and h′(0) as well as θ′(0) diminish with rising χ.
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Nomenclature

B0 constant magnetic field (kg/s2 A)
b, c positive constant
cp specific heat (J/kg K)
C f x, C f z skin friction coefficients
Ec Eckert number
f ′(η) primary velocity
h(η) secondary velocity
k thermal conductivity of the fluid (W m−1 K−1)
M magnetic parameter
m Hall parameter
Nux local Nusselt number
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py yield stress of the fluid
Pr Prandtl number
ReL Reynolds number
T fluid temperature (K)
Tw the temperature at the stretching surface (K)
T∞ the temperature at the stretching surface (K)
u, v, w velocity components along x-, y-, z-axes (m s−1)
x, y, z Cartesian coordinate (m)

Greek Symbols

α thermal diffusivity of the base fluid (m2 s−1)
γ Casson parameter
χ slip parameter
BrΩ−1 group parameter
η similarity independent variable
θ dimensionless temperature
µ dynamic viscosity (kg m−1 s−1)
µB plastic dynamic viscosity of the non-Newtonian fluid
ρ fluid density (kg m−3)
υ kinematic viscosity (m2 s−1)
σ the electrical conductivity of the fluid (s/m)

Subscripts

w quantities at the wall
∞ quantities far away from the surface
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