
entropy

Article

Regionalization of Daily Soil Moisture Dynamics
Using Wavelet-Based Multiscale Entropy and
Principal Component Analysis

Yuqing Sun and Jun Niu *

Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China;
s20183091500@cau.edu.cn
* Correspondence: niuj@cau.edu.cn; Tel.: +86-10-6273-7911

Received: 21 April 2019; Accepted: 28 May 2019; Published: 30 May 2019
����������
�������

Abstract: Hydrological regionalization is a useful step in hydrological modeling and prediction. The
regionalization is not always straightforward, however, due to the lack of long-term hydrological
data and the complex multi-scale variability features embedded in the data. This study examines the
multiscale soil moisture variability for the simulated data on a grid cell base obtained from a large-scale
hydrological model, and clusters the grid-cell based soil moisture data using wavelet-based multiscale
entropy and principal component analysis, over the Xijiang River basin in South China, for the period
of 2002–2010. The effective regionalization, for 169 grid cells with the special resolution of 0.5◦ × 0.5◦,
produced homogeneous groups based on the pattern of wavelet-based entropy information. Four
distinct modes explain 80.14% of the total embedded variability of the transformed wavelet power
across different timescales. Moreover, the possible implications of the regionalization results for local
hydrological applications, such as parameter estimation for an ungagged catchment and designing a
uniform prediction strategy for a sub-area in a large-scale basin, are discussed.
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1. Introduction

The Xijiang River basin (Figure 1) is the largest tributary of the Pearl River basin in South China,
with a total basin area of 0.35 million km2 [1–3]. Recently, with high-speed social and economic
development in the Pearl River Delta, large water demands are required from the new modern cities,
such as Shenzhen and Zhuhai. However, the water amount from the Dongjiang River and Beijiang River
basins (the other two major tributaries in the Pearl River) may be not able to meet the various kinds of
water demands in the region, especially in the dry years. One large water diversion project, which has
already been proposed and approved, aims to divert water from the downstream Xijiang River to the
big cities. Therefore, the variability in the amount of water over the Xijiang River basin is extremely
important for the regional water transfer, water allocation, and other water-related management issues.
Accordingly, a series of hydrological simulations and predictions under the changing environment are
prerequisite to the water resource management in the basin.
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Figure 1. The Xijiang River basin in South China and the examined 169 grid cells in this study. 
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Figure 1. The Xijiang River basin in South China and the examined 169 grid cells in this study.

For a large-scale basin, the homogeneity issue is a common problem when we perform the
modelling of terrestrial hydrological processes and the relevant dynamic predictions. The catchment
regionalization is an important step [4], such as when estimating hydrological parameters of the
ungagged basin [5], selecting optimal models for local hydrological variable predictions, and studying
the possible runoff response features [6]. Meanwhile, the regionalization of hydrological variables
should be more appropriate across different scales, as its evolution incorporates the results of many
surrounding factors [5,7,8]. Among them, the divergences of water resource variables related to
time-space scales could be quantified by the approaches presented in [9].

There are many different approaches in hydrological data analysis, such as multivariate analysis
for the factor identification [10], a genetic algorithm for the global optimization technique [11], a neural
network-based model for the probability assessment [12], the knowledge-based clustered partition
technique [13], among others. As the hydrological variable is a product of integrated effects of many
forcing and affecting factors, which certainly occur at a range of time and space scales. Meanwhile,
the effective summarization of intermittency and time variability at a given scale is also important.
Therefore, the multi-scale analysis approach would be more appropriate.

Regarding the multi-scale analysis, the wavelet transform is a powerful tool to decompose a
time series from a signal time domain to a time-frequency domain. The advantages of a wavelet
transform have been demonstrated in many hydrological regionalization studies e.g., [7,14] (Shannon
proposed the entropy theory in the 1940s [15] and Jaynes presented the principle of maximum entropy
in the 1950s [16,17], which have been employed in many different research fields). The applications
of entropy theory in hydrology science are also noticeable e.g., [18–24] (Agarwal et al. [5] proposed
the wavelet-based multi-scale entropy method to give an entropy signature across multiple scales for
a streamflow time series over the contiguous United States. The wavelet-based multiscale entropy
can capture the information of the embedded evolution processes, as it is an effective measure of the
disorder degree of the signal across different timescales, which is useful in regionalization studies [5].
The present study examines the multi-scale variability of top 1-m grid-based soil moisture data [25] for
the Xijiang River basin in South China, performs the classification using wavelet-based multi-scale
entropy, and discusses the possible applications of the obtained soil moisture regionalization results.

This paper is organized as follows. The methods and analyzed data are introduced in
Sections 2 and 3, respectively. The multi-scale soil moisture variability, the grid-based hydrological
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regionalization with the wavelet-based entropy information, and the possible applications of the
obtained results are presented in Section 4. The conclusions are given in Section 5.

2. Data and Methodology

The analyzed time series (i.e., daily soil moisture data with the spatial resolution 0.5◦ × 0.5◦)
are derived from the large-scale hydrologic modelling using the Variable Infiltration Capacity (VIC)
model [26,27] for the terrestrial hydrological processes in the Xijiang river basin in South China. The
grid-cell based simulations have been validated by both the records of streamflow gauging stations
and the reanalysis of soil moisture data. The wavelet transform is employed to reveal the multi-scale
variability embedded in the daily top 1-m soil moisture time series, and the wavelet-based entropy is
used to unfold the disorder features of each examined timescales. The principal component analysis
is subsequently performed on the multi-scale wavelet entropy to regionalize all grid cells over the
studied basin. The whole methodology is illustrated in Figure 2.
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2.1. Data

The soil moisture data for studying temporal and spatial variability and the hydrological
regionalization in the present study are obtained from VIC modelling over the Xijiang River basin
in South China, for the period of 2001–2010. The simulations of terrestrial hydrological processes
over the basin have been reported in the study reported by Niu et al. Among them, the daily forcing
data, including precipitation, maximum/minimum temperature, and wind speed, for the period of
2001–2010, were obtained from 32 national standard weather stations over the studied area and further
gridded to 0.5◦ × 0.5◦ grid cells. The year 2001 served as the model spin-up period, then the simulated
daily top-1 m soil moisture data for the period 2002–2010 are derived for 169 grid cells for the present
study. For the modelling of the terrestrial hydrological processes in the Xijiang River basin, the
runoff simulations have been effectively validated by six gauging stations in the basin [3,28], and the
comparisons between the simulated soil moisture and re-analysis data from the National Center for
Environmental Prediction are also examined [28,29].
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2.2. Wavelet Transform

The wavelet transform has been applied in the field of hydrology in many cases (see [30]), as it
is a powerful tool to analyze variability properties for both stationary and nonstationary time series
at different timescales. Mathematically, a wavelet transform decomposes a time series xt in terms of
“daughter” wavelets ψ(t, s) derived from a “mother” wavelet function ψ0(t) by the timescale (s) dilation
and time position (t) translation:

ψ(t, s) =
1

s1/2
ψ0(

t′ − t
s

) (1)

where s1/2 is an energy normalization factor to keep the energy of daughter wavelets the same as the
energy of the mother wavelet. The wavelet transform of the time series xt is defined as the convolution
integral of xt and a dilated and translated version of ψ0(t):

W(t, s) =
1

s1/2

∫
ψ∗(

t′ − t
s

)xtdt (2)

where ψ* is the complex conjugate of ψ defined on the time and scale.
In this study, considering a time series xt (i.e., simulated soil moisture) observed at an equal time

interval δt (i.e., daily) over a period of time t = 1, . . . , T, for the purpose of convenience, the timescales
of wavelet transform are written as fractional powers of two:

s j = s02 jδ j , j = 0, 1, . . . , J. (3)

J = δ−1
j log2

(
Tδt

s0

)
(4)

where s0 is the smallest resolvable scale and J determines the largest scale [31]. The δj is a parameter
based on the width in spectral-space of the wavelet function. The smaller value of δj will provide finer
resolution. For the Morlet wavelet used, it is suggested that a δj of about 0.5 is sufficient [31], and the
0.12 is adopted giving a total of 39 scales in this study.

2.3. Multi-Scale Wavelet Entropy

Multi-scale wavelet entropy is an effective tool to gage the complexity of a time series (such as the
daily soil moisture time series in this study), with utilizing the wavelet transform and Shannon entropy
methods collectively [5]. The entropy-based investigation on wavelet power at different timescales
provides comprehensive information to determine the least-biased probability distribution of a random
variable. A discrete form of entropy Hwt(x) is written as (Shannon, 1948):

Hwt(x) = −
K∑

k=1

p(xk) log2[p(xk)] (5)

where k is the time interval of the K events, xk is a wavelet variation corresponding to the interval k,
and p(xk) is the probability of xk. Hwt(x) is a measure of information content in the analyzed signal, a
lower entropy reflects more information, and less information is represented by a higher entropy.

P(xk) =
E(k, j)
TE( j)

=

∣∣∣W(k, j)
∣∣∣2∑∣∣∣W(k, j)
∣∣∣2 (6)

where E(k, j) denotes the wavelet energy at time position k and time scale j, TE(j) is the total wavelet
energy of the soil moisture time series at timescale j.
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A high value of Hwt at certain time scales represents a high degree of highly complicated and
disordered hydrological systems, which indicates a high degree of unpredictability embedded. More
details about the entropy and its applications are provided in Singh [18].

The wavelet energy based entropy measure was proposed in [32,33], Agarwal et al. [5] proposed
the wavelet-based multi-scale entropy for the hydrological regionalization. Wavelet-based multi-scale
entropy is a useful measure of the order/disorder degree of the analyzed signal and reflects information
associated with the multi-scale signal. The application in this study is to measure the spatial and
temporal variability/disorder features of soil moisture in Xijiang River basin in South China.

2.4. Principal Component Analysis

The principal component analysis transforms a high-dimensional dataset into a low-dimensional
orthogonal feature space, but nevertheless represents a large fraction of the variability contained in
the original dataset [34]. The application effectiveness on multi-scale hydrological variables have
been demonstrated in the study of Niu et al. [6]. The principal component analysis in this study was
employed to classify the coherent modes of the wavelet-based multi-scale entropy of the top-1 m soil
moisture for a large number of grid cells. It transforms a high-dimensional (of N dimensions) dataset
into a low-dimensional orthogonal feature (eigenvector) space (of M dimensions, with N > M), but
nevertheless represents a large fraction of the variability contained in the original dataset [34]. In the
present study, the high-dimensional dataset is the wavelet-based entropy at K (K = 39) scale for N
(N = 169) grid cells with the spatial resolution 0.5◦ × 0.5◦. The elements of the new M vectors (V = V1,
. . . , VM) are referred to as the principal components (PCs).

The eigenvalues (λ) are scalar descriptions of the degree of variance explained by the corresponding
PCs. In this study, the M (number of) PCs are determined using the following four steps: (1) The
wavelet-based entropy of each grid cell is standardized by subtracting its mean and dividing by its
standard deviation; (2) The covariance matrix Ci,j (i = 1, 2, . . . , N; j = 1, 2, . . . , N) of the N wavelet-based
entropy is computed; (3) A matrix of eigenvectors is obtained by decomposing the covariance matrix.
The transformation conserves the total variance as:

N∑
i=1

Ci,i =
N∑

i=1

λi. (7)

Both the Scree graph (eigenvalue versus PC number) and Kaiser’s rule [35] are used to determine how
many PCs are retained (i.e., the value of M).

3. Results

3.1. Multi-Scale Variability Of The Grid-Based Soil Moisture

The multi-scale variability of the daily top 1-m soil moisture time series for the grid cell No. 120,
using the continuous wavelet transform, is displayed in Figure 3. The local wavelet power spectrum in

Figure 3b,
∣∣∣W(t, s)

∣∣∣2, is normalized by 1/STD2 (with STD = 1324 mm). The vertical axis of Figure 3b is
the wavelet timescale, and the horizontal axis is the time position for the period of 2002–2010. The
values of s0 = 2δt(60), δ j = 0.11, and J = 38 in equation (3) and (4) give a total of 39 timescales ranging
from 62 days to 4.01 years. The shaded contours are at normalized variances of different levels. The soil
moisture variability at both the time and frequency domain are revealed by the local wavelet power.
The significant regions highlighted by the white contour show less randomness of the dynamic soil
moisture evolutions. As shown in Figure 3b, the high variability events of soil moisture are detected
during the period of 2002–2003 around the 0.25-year timescale, the period of 2006–2007 around the
0.5-year timescale, and around 2010 in the band of 0.25–0.5-year timescales. The annual regular soil
moisture variability is also identified by the local wavelet spectrum.
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Figure 3. (a) The daily soil moisture time series for the 120th grid cell in the Xijiang River used for the
wavelet analysis. (b) Its local wavelet power spectrum, normalized by 1/σ2 (σ2 = 1324 mm2). The
dashed curve depicts the cone of influence beyond which the edge effects become important. The
color contours are at normalized variances of 1 (royal blue), 2 (blue), 4 (green), and 16 (red). The white
contour closes regions of greater than 95% confidence for a red-noise process with a lag-1 coefficient α
of 0.98. (c) Global wavelet power spectrum (solid line with square) over 39 timescales, and the dashed
line is the 95% confidence level. (d) The corresponding wavelet multi-scale entropy over 39 timescales.

Figure 3c provides the global wavelet power spectrum of the analyzed soil moisture time series
and its 95% confidence level spectrum by assuming the red-noise processes with lag-1 autocorrelation.
It is observed that the significant timescales are at some very short timescales, 0.5-year, and around
1-year. These are partly related to external effects of remote climatic patterns, as it is found be related
to the evolutions of teleconnection patterns (e.g., Indian Ocean Dipole (IOD) and El Niño-Southern
Oscillation (ENSO)), demonstrated in the study of Niu [36].

The wavelet power entropy results for the 39 timescales are shown in Figure 3d. The high value
of entropy indicates the high disordered soil moisture at certain timescales, and a low value of entropy
represents relatively consistent features at these timescales. As shown in the figure, those variabilities
that are not very high in the global wavelet power spectrum may also show high disorder features,
such as in the band of the 0.25–0.5-year timescale, and the annual soil moisture shows both high
variability and disorder characteristics.

To display the wavelet-based entropy features for the soil moisture dynamics over the total 169
grid cells in the Xijiang River basin, Figure 4 summarizes the entropy variations for each of the 39
timescales (within 0.17–4.01 years) from 169 daily soil moisture time series. It is observed that the
high entropy value with less variations is located around the 0.5-year and 1-year timescales, which
indicates the soil moisture dynamics are still dominated by the annual and seasonal variability with less
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difference across the whole Xijiang basin area. Meanwhile, the high variations of entropy occurred at
less than the 0.5-year and around the 2-year timescales, which demonstrates the local differences of the
embedded short-term and long-term disorder characteristics over these timescales. These differences
emphasize the importance of regional hydrological regionalization, i.e., the segments classification on
the soil moisture dynamics for the Xijiang River basin in this study.Entropy 2019, 20, x 7 of 12 
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Figure 4. Boxplot for wavelet multi-scale entropy for a total of 169 grid cells. The bottom axes is the
corresponding timescale for the 39 wavelet scales calculated by Equation (3), with the s0 60-days (about
0.17 year), based on the daily step time series.

3.2. Hydrological Regionalization

To reveal the similarity of multi-scale soil moisture dynamics in different grid cells in the Xijiang
River basin in South China, the hydrological regionalization is performed based on wavelet-based
multi-scale entropy of soil moisture data by employing PCA method. Figure 5 shows that the
explained variability embedded in all the wavelet-base entropy for 39 timescales by the first 10
principle components, which accounts for about 94.67% of the total variability (see Table 1). The
number of clusters are determined by both the Scree plot and the Kaiser’s rule. The first four
principle components (which explains 80.14% of the total variability) are used to reflect the total
entropy variability presented across 39 timescales over the studied basin. Figure 6 shows the clustered
wavelet-based entropy variabilities of different grid cells for the obtained four coherent modes (the
bold curve). The hydrological similarity in terms of multi-scale soil moisture dynamics is observed in
the different clusters.

Table 1. Eigenvalues, proportions of variance and cumulative proportions of variance for the first ten
principal components.

Measures PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Eigenvalues 79.81 26.26 19.91 9.46 7.01 5.21 4.23 3.41 2.73 1.97
Proportions of variance 47.22 15.54 11.78 5.60 4.15 3.08 2.50 2.02 1.62 1.17
Cumulative proportions

of variance 47.22 62.76 74.54 80.14 84.29 87.37 89.87 91.88 93.50 94.67
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Figure 5. The scree plot of the first ten principal components of the wavelet-based multi-scale entropy.
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Figure 6. The obtained multi-scale wavelet entropy among the 169 grid cells for (a) the first cluster,
(b)the second cluster, (c) the third cluster, and (d) the fourth cluster over the Xijiang River basin
(The solid line with the circle is the average one for each cluster).

The geographical distributions of the four coherent wavelet-based entropy modes are shown in
Figure 7. For the first cluster, it mainly locates at the northern and southern edges of the Xijang River
basin, where the headwater regions with high-slope mountainous areas are. The second cluster of grid
cells shows the two contiguity regions, which are geographically separated, but both are middle and
lower reaches of three sub-basins (i.e., Nanpan, Guihe, and Liujiang River basins). The third cluster
is around the main river channels of the Xijiang River basin, especially for the lower reaches of the
whole Xijiang River basin. The fourth cluster has a common feature with a relatively low-slope region,
including both headwater regions (i.e., Napan and Guihe River basin) and the flat area (i.e., Hongshui
River basin). Therefore, the hydrological regionalization of soil water dynamics on wavelet-based
entropy reflects both geographic contiguity and similar soil water-related response characteristics.
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4. Discussion

Hydrological regionalization is an important step towards the hydrological applications of the
similar approaches or estimations of similar parameter values, especially when a large-scale basin
area is involved. One distinguished feature of the present study is that the regionalization is based
on wavelet multi-scale entropy information of simulated soil water data. Although the Xijiang River
basin in South China has abundant precipitation, drought events frequently occurred due to uneven
distributions in both the seasonal and spatial aspects. This irregularity is further aggregated by the
diversified land surface characteristics. However, we can still identify the coherent regions, as the
obtained results in this study.

The clusters of soil moisture dynamics, based on wavelet-based multi-scale entropy will help us
develop similar approaches to short-term or long-term drought forecasting, as the soil water in the grid
cells located in the same clustered region may have consistent variability and disorder features across
different timescales. Furthermore, the response features of agricultural drought (mainly reflected by
soil water) to metrological drought (mainly represented by precipitation) are also grouped based on
the obtained results, which are certainly favorable for the formation of drought mitigation strategies
in the basin. There are also some alternate watershed regionalization methods [37–39]. The joint
entropy approach could be employed, when we want to retrieve vegetation growth patterns from
multiple variables (e.g., soil moisture, precipitation, and temperature) [39]. Furthermore, the analyzed
variables (such as streamflow, precipitation, and land-cover) may interact differently in time and
space, and the entropy-based index and k-mean clustering may be employed for the spatiotemporal
analysis [37,38]. In the present study, we emphasized the multi-scale variability and disorder features
using the wavelet-based multi-scale entropy method.

5. Conclusions

In the Xijiang River in South China, water resources are increasingly important to fulfill the
regional water demands, in the face of extreme hydrological events and increasing water requirement
for the large cities around the lower reaches of the basin. For a large-scale basin, such as the case
of the Xijiang River basin here, it is difficult to perform comprehensive hydrologic regionalization,
due to the lack of land surface fluxes and the capture of the multi-scale variability features. This
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study proposed a framework (shown in Figure 2), mainly including long-term effective hydrological
modeling, multi-scale wavelet entropy analysis, and cluster analysis. It demonstrates the hydrological
regionalization in terms of the variability and disorder features of soil water dynamics, with a 0.5◦ × 0.5◦

grid cell basis over the basin, which will provide clues to regional water resource management.
The continuous wavelet transform is performed on daily top-1 m soil moisture data over 39

timescales (within 0.17–4.01 years) for 169 grid cells. The multi-scale variability is then revealed by
both the local wavelet power and global wavelet power. The entropy information of the wavelet-based
power becomes a measure of randomness of the given grid cell-based soil moisture time series at
different timescales. The dominant timescale bands for the entropy features of soil moisture variability
are identified at seasonal and annual timescales, but the diversified disorder features of them are found
around less than the 0.5-year and around the 2-year timescales, which indicates the necessity of the
hydrologic regionalization of soil moisture dynamics in the region.

The hydrological regionalization of soil water dynamics are subsequently carried out, in terms
of the multi-scale wavelet entropy, using the principal component analysis. The four distinct modes
were obtained, which can account for 80.14% of the embedded variability in the wavelet power of
the soil water time series over 169 grid cells in the basin. The clusters of different coherent modes are
geographically close or apart, and different clusters show the distinct geographical characteristics and
soil water response features. The hydrological regionalization of soil water dynamics is favorable to
the selection of modeling/forecasting approaches and relevant model parameter estimation, especially
for a large-scale basin. Meanwhile, it could be useful information during drought mitigation processes.
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