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Abstract: In this paper, a new lattice Boltzmann model for the two-component system of coupled
sine-Gordon equations is presented by using the coupled mesoscopic Boltzmann equations. Via the
Chapman-Enskog multiscale expansion, the macroscopical governing evolution system can be
recovered correctly by selecting suitable discrete equilibrium distribution functions and the amending
functions. The mesoscopic model has been validated by several related issues where analytic solutions
are available. The experimental results show that the numerical results are consistent with the analytic
solutions. From the mesoscopic point of view, the present approach provides a new way for studying
the complex nonlinear partial differential equations arising in natural nonlinear phenomena of
engineering and science.

Keywords: lattice Boltzmann method; coupled sine-Gordon equations; Chapman-Enskog expansion;
nonlinear partial differential equations

1. Introduction

It is well known that most of the nonlinear phenomena that arise in engineering fields and
mathematical physics, including plasma physics, fluid dynamics and nonlinear fiber optics, can be
described by nonlinear partial differential equations (NPDEs). NPDEs have become an available
tool for describing these natural nonlinear phenomena of engineering and science models. Hence,
it becomes more and more important to be acquainted with all traditional and recently developed
methods for NPDEs, and implementation of these methods [1,2]. Some of the most interesting features
or physical rules are concealed in their nonlinear characteristics and can only be researched with an
approximate method that is designed for inherent nonlinearity issues. As a result of the complexity
and nonlinearity of the wave evolution equations, there is no uniform approach to obtain all solutions
of the nonlinear wave evolution system. Hence, to find more precise and more effective methods for
acquiring the nonlinear wave evolution equations has been an attractive research business. In the
last few decades, quite a number of research work has been designed to research various types of
nonlinear wave evolution equations. They include effective and broadly applicable techniques such
as the finite difference method, variational iteration method, finite element method, finite volume
method, boundary elements method, etc.

In recent years, lattice Boltzmann (LB) method has been developed as an optional numerical
method to study nonlinear wave propagate equations and evolution of complexity physical
system [3,4], especially in liquid mechanics [5–8]. Unlike more conventional numerical approaches,
which are based on the discretization of macroscopic evolution equations, the LB method is based on
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the mesoscopic kinetic Boltzmann equations for discrete distribution functions. The basic viewpoint
is to substitute the macroscopic hydrodynamic equations by a simplified mesoscopic equation
modeled on the kinetic theory of gases. To get the hydrodynamic quantities, such as velocity,
temperature, pressure, we use the Chapman-Enskog (C-E) multiscale expansion [9] which exploits
a small parameter approximation to depict slowly varying solutions of the underlying kinetic evolution
equations. This mesoscopic kinetic method has wide prospects in different areas, such as particle
suspensions [10], approximate incompressible flows [11–14], compressible flows [15–28], biofilter
media [29], and thermal multiphase flows [30]. Recently, the LB method has been successfully
extended to some simulations of NPDEs, including the Korteweg-de Vries equation [31], the Gross-
Pitaevskii equation [32], the convection-diffusion equation [33–39], the Poisson equation [40,41],
the Kuramoto-Sivashinsky equation [42], the wave equation [43–46], the Dirac equation [47], etc.
From the point view of calculation, its remarkable advantages include inherent parallelism, geometrical
flexibility, numerical efficiency, simplicity of programming and simplicity in dealing with complex
boundary conditions.

In this work, we consider the two-component system of coupled sine-Gordon equations,
which was introduced recently by Khusnutdinova and Pelinovsky [48]. The basic one-dimensional
form is shown as follows:

∂2u
∂t2 −

∂2u
∂x2 = −δ2 sin(u− w),

∂2w
∂t2 − α2 ∂2w

∂x2 = sin(u− w),

(α > 0 and δ > 0) (1)

where α remarks the ratio of the acoustic velocities between the components u and w, the dimensionless
parameter δ2 is the same with the ratio of masses of particles in the “lower” and the “upper” parts
of the crystal. This system produces the Frenkel-Kontorova dislocation model [49], and this system
has also turned out to be highly suitable to describe fluxon phenomena of stacked intrinsic Josephson
junctions in high temperature superconductors. Moreover, this system has been studied extensively
for two-junction stacks, for stacks consisting of more junctions only some special cases have been
analyzed [50]. In addition, this system (1) with α = 1 was proposed to describe the open states
in DNA [51].

We consider the above system (1) with the initial conditions as follows:

u(x, t0) = ϕ1(x), x ∈ Ω,

∂u(x, t0)

∂t
= ψ1(x), x ∈ Ω,

w(x, t0) = ϕ2(x), x ∈ Ω,

∂w(x, t0)

∂t
= ψ2(x), x ∈ Ω,

(2)

and the boundary conditions: 

u(a, t) = φ1(t), t ≥ t0,

u(b, t) = φ2(t), t ≥ t0,

w(a, t) = φ3(t), t ≥ t0,

w(b, t) = φ4(t), t ≥ t0,

(3)

where ϕ1(x), ψ1(x), ϕ2(x), ψ2(x) and φi(t)(i = 1, 2, 3, 4) are known functions.
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There are many analytical methods solving the two-component system of coupled sine-Gordon
equations, such as the modified decomposition method [52], the homotopy analysis method [53],
the hyperbolic auxiliary function method [54], the homotopy perturbation method [55], the rational
exponential ansatz method [56], the variational iteration method [57] and the modified Kudryashov
method [58]. However, to our best knowledge, there are few numerical method to solve this coupled
system. In recent years, the studies in Refs. [33,59,60] show that the LB method may be an valid
numerical solver for real and complex nonlinear coupled systems. Therefore, it is worthy to more
study LB method and enlarge its applications. As far as we know, there is no LB model for the
two-component system of coupled sine-Gordon equations. The system has similar structure of the
convection-diffusion system except for the second time derivative. We can define the first derivatives
of macroscopic variable as the sum of distribution functions by the thought of the reference [44].
The main goal of this work is to extend the LB model to solve this two-component system of coupled
sine-Gordon numerically by using the double mesoscopic Boltzmann equations. Through the C-E
multiscale expansion, the governing nonlinear coupled evolution equations are recovered accurately
from the double continuous Boltzmann equations. In order to compare the numerical solutions with
the analytic ones, three test problems are taken into account. It is found that the numerical solutions
are in accordance with the analytical ones. This demonstrates that the present model is an valid and
flexible way for actual application.

The content of this paper is arranged as follows. Next section shows our LB model for the
coupled sine-Gordon equations for the two-component system through the present model. Numerical
validation is presented in Section 3. Finally, a brief summary is made.

2. Lattice Boltzmann Model

In the present model, the three-velocity lattice Bhatnagar-Gross-Krook (BGK) model is used.
The directions of the particle discrete velocity are defined as ei, (i = 0, 1, 2):

[e0, e1, e2] = [0, 1, − 1]. (4)

The LB equation with double distribution functions for u(x, t) and w(x, t) are given as follows
(s = 1, 2):

fsi(x + cei∆t, t + ∆t)− fsi(x, t) = −∆t
τs

(
fsi(x, t)− f (0)si (x, t)

)
+ ∆thsi(x, t), (5)

where fsi(x, t) and f (0)si (x, t) refer to the distribution function and equilibrium distribution function,
respectively. hsi(x, t) is defined as an amending function, c is a constant to determine the viscous
coefficient, ∆t is the time step, τs the dimensionless single-relaxation-time which regulates the rate of
approach to the equilibrium. The stability of the equation needs τs > ∆t/2 [61].

Unlike the normal LB method, the first derivatives of macroscopic variables u(x, t) and w(x, t)
are defined [44] as follows: 

∂u(x, t)
∂t

= ∑
i

f1i(x, t),

∂w(x, t)
∂t

= ∑
i

f2i(x, t).
(6)

Thus, the steady macroscopical quantities meet the following conservative conditions:
∑

i
f (0)1i (x, t) =

∂u(x, t)
∂t

,

∑
i

f (0)2i (x, t) =
∂w(x, t)

∂t
.

(7)
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Afterwards, through choosing appropriate local equilibrium distributions and amending
functions, the corresponding macroscopic coupled system can be retrieved correctly.

Next, we will give the detailed derivation. Applying the Taylor expansion to the left-hand side of
Equation (5) about the point x and t, we can obtain (s = 1, 2):

∆t
( ∂

∂t
+ cei

∂

∂x

)
fsi +

∆t2

2

( ∂

∂t
+ cei

∂

∂x

)2
fsi + O(∆t3) = −∆t

τs

(
fsi − f (0)si

)
+ ∆thsi. (8)

By introducing the C-E multiscale expansions, we can expand the distribution function fsi around
f (0)si as follows: 

fsi = f (0)si + ε f (1)si + ε2 f (2)si + O(ε3),

hsi = ε2h(1)si ,

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
,

∂

∂x
= ε

∂

∂x1
.

(9)

And f (k)si (x, t) (k = 1, 2, · · · ) are the non-equilibrium distribution functions, which satisfy the
solvability conditions (s = 1, 2):

∑
i

f (k)si (x, t) = 0 (k = 1, 2, · · · ). (10)

Dividing both sides of Equation (8) by ∆t and substituting Equation (9) into Equation (8), we have:(
ε
( ∂

∂t1
+ cei

∂

∂x1

)
+ ε2 ∂

∂t2

)(
f (0)si + ε f (1)si

)
+

∆t
2

(
ε
( ∂

∂t1
+ cei

∂

∂x1

)
+ ε2 ∂

∂t2

)2
f (0)si

= − 1
τs

(
ε f (1)si + ε2 f (2)si

)
+ ε2h(1)si .

(11)

Comparing the two sides of Equation (11) and setting terms of order ε to each other, we have O(ε):( ∂

∂t1
+ cei

∂

∂x1

)
f (0)si = − 1

τs
f (1)si . (12)

Therefore:

f (1)si = −τs

( ∂

∂t1
+ cei

∂

∂x1

)
f (0)si . (13)

Comparing the two sides of Equation (11) and setting terms of order ε2 to each other, we get O(ε2):

∂

∂t2
f (0)si +

( ∂

∂t1
+ cei

∂

∂x1

)
f (1)si +

∆t
2

( ∂

∂t1
+ cei

∂

∂x1

)2
f (0)si = − 1

τs
f (2)si + h(1)si . (14)

Substituting Equation (13) into Equation (14), we get:

∂

∂t2
f (0)si +

(∆t
2
− τs

)( ∂

∂t1
+ cei

∂

∂x1

)2
f (0)si = − 1

τs
f (2)si + h(1)si , (15)

that is:
∂

∂t2
f (0)si +

(∆t
2
− τs

)( ∂2

∂t2
1
+ 2cei

∂

∂t1

∂

∂x1
+ c2e2

i
∂2

∂x2
1

)
f (0)si = − 1

τs
f (2)si + h(1)si . (16)
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Summing Equation (12) over i, we obtain:

∂

∂t1
∑

i
f (0)si +

∂

∂x1
∑

i
cei f (0)si = 0. (17)

Summing Equation (16) over i, and using Equation (17), we obtain:

∂

∂t2
∑

i
f (0)si +

(∆t
2
− τs

)( ∂

∂t1

∂

∂x1
∑

i
cei f (0)si +

∂2

∂x2
1

∑
i

c2e2
i f (0)si

)
= ∑

i
h(1)si . (18)

According to the macroscopic equations, the local equilibrium distribution function f (0)si (x, t) is
required to satisfy the following relations:

∑
i

f (0)1i (x, t) =
∂u
∂t

,

∑
i

f (0)2i (x, t) =
∂w
∂t

,

∑
i

cei f (0)1i (x, t) = ∑
i

cei f (0)2i (x, t) = 0,

∑
i

c2e2
i f (0)1i (x, t) = µ1u(x, t),

∑
i

c2e2
i f (0)2i (x, t) = µ2w(x, t),

(19)

in terms of:

µ1 =
2

2τ1 − ∆t
, µ2 =

2α2

2τ2 − ∆t
. (20)

Meanwhile, the source term hsi satisfies:
∑

i
h1i(x, t) = ∑

i
ε2h(1)1i (x, t) = −δ2 sin(u− w),

∑
i

h2i(x, t) = ∑
i

ε2h(1)2i (x, t) = sin(u− w).
(21)

With Equation (19), Equation (17) becomes:

∂2u
∂t1∂t

= 0, (22)

and:
∂2w
∂t1∂t

= 0. (23)

With Equations (19), Equation (18) becomes:

∂2u
∂t2∂t

+ µ1

(∆t
2
− τ1

)∂2u
∂x2

1
= ∑

i
h(1)1i , (24)

and:
∂2w
∂t2∂t

+ µ2

(∆t
2
− τ2

)∂2w
∂x2

1
= ∑

i
h(1)2i . (25)
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When (22) ×ε + (24) ×ε2 is applied, the final equation is:

∂2u
∂t2 −

∂2u
∂x2 = −δ2 sin(u− w). (26)

When (23) ×ε +(25) ×ε2 is applied, the final equation is:

∂2w
∂t2 − α2 ∂2w

∂x2 = sin(u− w). (27)

Meanwhile, from Equation (19), we can get the local equilibrium distribution functions
f (0)si (x, t), (s = 1, 2, i = 0, 1, 2) as: 

f (0)10 =
∂u
∂t
− µ1u

c2 ,

f (0)11 = f (0)12 =
µ1u
2c2 ,

f (0)20 =
∂w
∂t
− µ2w

c2 ,

f (0)21 = f (0)22 =
µ2w
2c2 .

(28)

From Equation (21), the amending functions hsi(x, t), (s = 1, 2, i = 0, 1, 2) can be determined.
For the sake of simplicity, only one case is presented here:

h10(x, t) = h11(x, t) = h12(x, t) = − δ2 sin(u− w)

3
, (29)

and:

h20(x, t) = h21(x, t) = h22(x, t) =
sin(u− w)

3
. (30)

In the simulation process, in order to get u(x, t) and w(x, t), we can apply the backward difference

to the items
∂u(x, t)

∂t
and

∂w(x, t)
∂t

as:

∂u(x, t)
∂t

=
u(x, t)− u(x, t− ∆t)

∆t
, (31)

and:
∂w(x, t)

∂t
=

w(x, t)− w(x, t− ∆t)
∆t

, (32)

then using Equation (6), we get:

u(x, t) = ∆t ∑
i

f1i(x, t) + u(x, t− ∆t), (33)

and:
w(x, t) = ∆t ∑

i
f2i(x, t) + w(x, t− ∆t). (34)

3. Numerical Simulation

In order to test the accuracy and efficiency of the present LB model, three initial and boundary
value problems which have analytical solutions are simulated.

For the sake of numerical stability of the finite LB scheme, ∆x/∆t ≥ 1 is adopt in all simulations.
Initially, the distribution functions fsi(x, t) are set to equal f (0)si (x, t). And the macroscopic variables
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u(x, t) and w(x, t) in Equation (1) are set to equal the initial conditions. The initial and boundary
conditions of the test problems with analytical solutions are content with their analytical solutions.
The non-equilibrium extrapolation scheme [62] is adopted to deal with the boundary condition.

Firstly, let us introduce symbols f n
s,i,j = fsi(xj, tn), (s = 1, 2, i = 0, 1, 2),

un
j = u(xj, tn), wn

j = w(xj, tn), xj = j∆x, tn = n∆t, n is the nth layer time, j is the spatial grid. Then we
can reformulate the LB Equation (5) by the classical finite difference notation:

f n+1
1,0,j =

(
1− ∆t

τ1

)
f n
1,0,j +

∆t
τ1

(
f n
1,0,j + f n

1,1,j + f n
1,2,j −

µ1

c2 un
j

)
− δ2∆t

3
sin(un

j − wn
j ),

f n+1
1,1,j+1 =

(
1− ∆t

τ1

)
f n
1,1,j +

∆t
τ1

µ1

2c2 un
j −

δ2∆t
3

sin(un
j − wn

j ),

f n+1
1,2,j−1 =

(
1− ∆t

τ1

)
f n
1,2,j +

∆t
τ1

µ1

2c2 un
j −

δ2∆t
3

sin(un
j − wn

j ),

f n+1
2,0,j =

(
1− ∆t

τ2

)
f n
2,0,j +

∆t
τ2

(
f n
2,0,j + f n

2,1,j + f n
2,2,j −

µ2

c2 wn
j

)
+

∆t
3

sin(un
j − wn

j ),

f n+1
2,1,j+1 =

(
1− ∆t

τ2

)
f n
2,1,j +

∆t
τ2

µ2

2c2 wn
j +

∆t
3

sin(un
j − wn

j ),

f n+1
2,2,j−1 =

(
1− ∆t

τ2

)
f n
2,2,j +

∆t
τ2

µ2

2c2 wn
j +

∆t
3

sin(un
j − wn

j ).

(35)

At time (n + 1)∆t, u and w are updated as follows:

un+1
j = ∆t

(
f n+1
1,0,j + f n+1

1,1,j + f n+1
1,2,j

)
+ un

j , (36)

and:
wn+1

j = ∆t
(

f n+1
2,0,j + f n+1

2,1,j + f n+1
2,2,j

)
+ wn

j . (37)

The initial local equilibrium distribution functions f 0
s,i,j, (s = 1, 2, i = 0, 1, 2) are:



f 0
1,0,j =

(∂u
∂t

)0

j
− µ1

c2 u0
j ,

f 0
1,1,j = f 0

1,2,j =
µ1

2c2 u0
j ,

f 0
2,0,j =

(∂w
∂t

)0

j
− µ2

c2 w0
j ,

f 0
2,1,j = f 0

2,2,j =
µ2

2c2 w0
j ,

(38)

where u0
j = u(xj, t0), w0

j = w(xj, t0),
(∂u

∂t

)0

j
=

∂u(xj, t0)

∂t
and

(∂w
∂t

)0

j
=

∂w(xj, t0)

∂t
.

The global relative error (GRE) is introduced to measure the present model’s precision, and defined
as follows:

GRE =

N

∑
j=0
|u(xj, t)− u∗(xj, t)|

N

∑
j=0
|u∗(xj, t)|

, (39)

where u(xj, t), u∗(xj, t) represent the numerical solution and analytical one, respectively.
The summation is taken all grid points together. Next, numerical tests are performed for different
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initial conditions of the coupled sine-Gordon equations. It is found that the numerical solutions are in
accordance with the analytical solutions over a relatively long period of time.

Example 1. Consider the two-component system of coupled sine-Gordon equations in the region −5 ≤ x ≤ 5
given as: 

∂2u
∂t2 −

∂2u
∂x2 = −δ2 sin(u− w),

∂2w
∂t2 − α2 ∂2w

∂x2 = sin(u− w),

(40)

with the initial conditions:

u(x, 0) =
δ2

4(b2 − 1)µ2 sin(2µx) + c1µx + c2,

∂u
∂t

(x, 0) = −bc1µ− 2bδ2 cos(2µx)
4µ(b2 − 1)

,

w(x, 0) =
δ2

4(b2 − 1)µ2 sin(2µx) + c1µx + c2 − 2 arctan(tan(µx)),

∂w
∂t

(x, 0) = 2bµ− bc1µ− 2bδ2 cos(2µx)
4µ(b2 − 1)

,

(41)

and the analytical solution for this problem is extracted from Ref. [56] by:
u(x, t) =

δ2

4(b2 − 1)µ2 sin(2ξ) + c1ξ + c2,

w(x, t) =
δ2

4(b2 − 1)µ2 sin(2ξ) + c1ξ + c2 − 2 arctan(tan(ξ)),

ξ = µ(x− bt),

(42)

where b =
√
(1− α2δ2)/(1− δ2). The boundary conditions conform to the analytical solution.

In the proceeding, we adopt α = 0.01, δ = 0.1, µ = 0.3, c1 = c2 = 1.0, τ1 = τ2 = ∆t.
The computational region is fixed on I = [−5, 5]. The global relative errors (GRE) for the solutions
u(x, t) and w(x, t) at t = 0.2 with different resolutions, from ∆x/∆t = 10 to 80, and the space grid N
from 400 to 3200, are listed in Tables 1 and 2. From these two tables, we can see that GREs for u(x, t)
are found to range from 9.9057× 10−7 to 6.3625× 10−5, and GREs for w(x, t) are found to range from
1.8355× 10−2 to 1.8455× 10−2. We can also see that when ∆x/∆t is larger, namely ∆t is relatively
smaller, the global relative error of u(x, t) reduces with the first-order accuracy, while the global relative
error of w(x, t) changes little. The accuracy of the macroscopic variable w(x, t) is not affected by the
resolution in space and time. That is due to the treatment of the items ∂u(x, t)/∂t and ∂w(x, t)/∂t
in Equations (31) and (32), has the first-order accuracy. According to Tables 1 and 2, we adopt
Nx × Nt = 800× 320 in consideration of both the computational accuracy and efficiency. It can be
found that the numerical results in according with the analytical solutions, which are presented as the
spatiotemporal evolution graph of the numerical (left) and analytical (right) solutions for comparison,
see Figures 1 and 2. For clarity of contrast, we also present the two-dimensional visual comparisons of
u(x, t) (left) and w(x, t) (right) at t = 0.2, see Figure 3. It is evident that the numerical results coincide
with the analytical solutions.
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(a) (b)

Figure 1. Spatiotemporal evolution graph of the numerical (a) and analytical (b) solutions up to
t = 0.2 s, with Nx × Nt = 800× 320 for Example 1.

(a) (b)

Figure 2. Spatiotemporal evolution graph of the numerical (a) and analytical (b) solutions up to
t = 0.2 s, with Nx × Nt = 800× 320 for Example 1.
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Numerical solution
Analytical solution
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Numerical solution
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(a) (b)

Figure 3. Comparison between numerical and analytical solutions of u(x, t) (a) and w(x, t) (b) at t = 0.2
with Nx × Nt = 800× 320 for Example 1. The blue circle symbol represents the numerical solution,
and the solid red line represents the analytical solution given by Equation (42).
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Table 1. The global relative error (GRE) for u(x, 0.2) with different ∆x/∆t.

Grid N (x) ∆x/∆t = 10 ∆x/∆t = 20 ∆x/∆t = 40 ∆x/∆t = 80

400 6.3625× 10−5 3.1754× 10−5 1.5831× 10−5 7.8660× 10−6

800 3.1872× 10−5 1.5919× 10−5 7.9393× 10−6 3.9580× 10−6

1600 1.5946× 10−5 7.9671× 10−6 3.9798× 10−6 1.9898× 10−6

3200 7.9738× 10−6 3.9847× 10−6 1.9927× 10−6 9.9057× 10−7

Table 2. The global relative error (GRE) for w(x, 0.2) with different ∆x/∆t.

Grid N (x) ∆x/∆t = 10 ∆x/∆t = 20 ∆x/∆t = 40 ∆x/∆t = 80

400 1.8455× 10−2 1.8398× 10−2 1.8369× 10−2 1.8355× 10−2

800 1.8425× 10−2 1.8397× 10−2 1.8382× 10−2 1.8375× 10−2

1600 1.8410× 10−2 1.8396× 10−2 1.8389× 10−2 1.8385× 10−2

3200 1.8403× 10−2 1.8395× 10−2 1.8392× 10−2 1.8390× 10−2

Example 2. Consider the two-component system of coupled sine-Gordon equations in the region−10 ≤ x ≤ 10
given by: 

∂2u
∂t2 −

∂2u
∂x2 = −δ2 sin(u− w),

∂2w
∂t2 − α2 ∂2w

∂x2 = sin(u− w),

(43)

with the discontinuous initial conditions:

u(x, 0) =
δ2

4(b2 − 1)µ2 sin(2µx) + c1µx + c2,

∂u
∂t

(x, 0) = −bc1µ− 2bδ2 cos(2µx)
4µ(b2 − 1)

,

w(x, 0) =
δ2

4(b2 − 1)µ2 sin(2µx) + c1µx + c2 − 2 arctan(cot(µx)),

∂w
∂t

(x, 0) = −2bµ− bc1µ− 2bδ2 cos(2µx)
4µ(b2 − 1)

,

(44)

and the analytical solution for this problem is extracted from Reference [56] by:
u(x, t) =

δ2

4(b2 − 1)µ2 sin(2ξ) + c1ξ + c2,

w(x, t) =
δ2

4(b2 − 1)µ2 sin(2ξ) + c1ξ + c2 − 2 arctan(cot(ξ)),

ξ = µ(x− bt),

(45)

where b =
√
(1− α2δ2)/(1− δ2). The boundary conditions conform to the analytical solution.

In the proceeding, we adopt α = 0.01, δ = 0.05, µ = 0.2, c1 = c2 = 1.0, τ1 = τ2 = ∆t.
The computational region is fixed within I = [−10, 10]. The GREs for the solutions u(x, t) and w(x, t)
at t = 0.2 in different resolutions, from ∆x/∆t = 10 to 80 and the space grid N from 400 to 3200,
are listed in Tables 3 and 4. From these two tables, we can see that the GREs for u(x, t) range from
1.0980× 10−6 to 7.0536× 10−5, and the GREs for w(x, t) range from 2.8141× 10−2 to 3.2528× 10−2.
When ∆x/∆t is larger, namely ∆t is relatively small, the GREs of u(x, t) reduces with first-order
accuracy, the GREs of u(x, t) change little. At the same time, we present the spatiotemporal evolution
graph of the numerical (left) and analytical (right) solutions of u(x, t) and w(x, t) for comparison,
see Figures 4 and 5. For clarity of contrast, we also present the two-dimensional visual comparisons of
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u(x, t) (left) and w(x, t) (right) at t = 0.2, see Figure 6. It can be found that the numerical results in
according with the analytical solutions.

(a) (b)

Figure 4. Spatiotemporal evolution graph of the numerical (a) and analytical (b) solutions up to t = 0.2
s, with Nx × Nt = 800× 320 for Example 2.

(a) (b)

Figure 5. Spatiotemporal evolution graph of the numerical (a) and analytical (b) solutions up to t = 0.2 s,
with Nx × Nt = 800× 320 for Example 2.

Table 3. The global relative error (GRE) for u(x, 0.2) with different ∆x/∆t.

Grid N (x) ∆x/∆t = 10 ∆x/∆t = 20 ∆x/∆t = 40 ∆x/∆t = 80

400 7.0536× 10−5 3.5222× 10−5 1.7555× 10−5 8.7270× 10−6

800 3.5327× 10−5 1.7652× 10−5 8.8120× 10−6 4.3904× 10−6

1600 1.7674× 10−5 8.8345× 10−6 4.4097× 10−6 2.1992× 10−6

3200 8.8383× 10−6 4.4151× 10−6 2.2029× 10−6 1.0980× 10−6

Table 4. The global relative error (GRE) for w(x, 0.2) with different ∆x/∆t.

Grid N (x) ∆x/∆t = 10 ∆x/∆t = 20 ∆x/∆t = 40 ∆x/∆t = 80

400 3.2528× 10−2 3.2482× 10−2 3.2459× 10−2 3.2447× 10−2

800 3.0029× 10−2 3.0006× 10−2 2.9994× 10−2 2.9988× 10−2

1600 2.8777× 10−2 2.8766× 10−2 2.8760× 10−2 2.8757× 10−2

3200 2.8151× 10−2 2.8145× 10−2 2.8142× 10−2 2.8141× 10−2
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Figure 6. Comparison between numerical and analytical solutions of u(x, t) (a) and w(x, t) (b) at t = 0.2
with Nx × Nt = 800× 320 for Example 2. The blue circle symbol represents the numerical solution,
and the solid red line represents the analytical solution given by Equation (45).

Example 3. Consider the two-component system of coupled sine-Gordon equations in the region−10 ≤ x ≤ 10
given by: 

∂2u
∂t2 −

∂2u
∂x2 = −δ2 sin(u− w),

∂2w
∂t2 − α2 ∂2w

∂x2 = sin(u− w),

(46)

with the initial conditions:

u(x, 0) = − 4δ2

(b2 − 1)µ2 arccot(2k exp(−µx)) + c1µx + c2,

∂u
∂t

(x, 0) =
8bδ2k exp(µx)

µ(b2 − 1)(4k2 + exp(2µx))
− bc1µ,

w(x, 0) = − 4δ2

(b2 − 1)µ2 arccot(2k exp(−µx)) + c1µx + c2 + 2 arctan
( 1

4k
(

exp(µx)− 4k2 exp(−µx)
))

,

∂w
∂t

(x, 0) = − 8k2 exp(µx)(4bµk2 + bµ exp(2µx))
(exp(2µx)− 4k2)2 + 16k2 exp(2µx)

+
8bδ2k exp(µx)

µ(b2 − 1)(4k2 + exp(2µx))
− bc1µ,

(47)

and the analytical solution for this problem is extracted from Reference [56] by:

u(x, t) = − 4δ2

(b2 − 1)µ2 arccot(2k exp(−ξ)) + c1ξ + c2,

w(x, t) = − 4δ2

(b2 − 1)µ2 arccot(2k exp(−ξ)) + c1ξ + c2 + 2 arctan
( 1

4k
(

exp(ξ)− 4k2 exp(−ξ)
))

,

ξ = µ(x− bt),

(48)

where µ =

√
b2(δ2 − 1) + (1− α2δ2)

(b2 − 1)(b2 − α2)
. The boundary conditions conform to the analytical solution.

In the proceeding, we adopt α = 1.6, δ = 2.0, b = 2.5, c1 = c2 = 1.0, τ1 = τ2 = ∆t.
The computational region is fixed within I = [−10, 10]. The GREs for the solutions u(x, t) and
w(x, t) at t = 0.2 in different resolutions, from ∆x/∆t = 10 to 80 and the space grid N from 400 to
3200, which are listed in Tables 5 and 6. From these two tables, we can see that the GREs for u(x, t) are
found to range from 3.2169× 10−5 to 2.3832× 10−4, and the GREs for w(x, t) are found to range from
2.9026× 10−3 to 2.9126× 10−3. When ∆x/∆t is larger, namely ∆t is relatively small, the global relative
error of u(x, t) reduces with first-order accuracy, the GREs of u(x, t) changes little. At the same time,
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we present the spatiotemporal evolution graph of the numerical (left) and analytical (right) solutions
for comparison, see Figures 7 and 8. For clarity of contrast, we also present the two-dimensional
visual comparisons of u(x, t) (left) and w(x, t) (right) at t = 0.2, see Figure 9. It can be found that the
numerical results in according with the analytical solutions.

(a) (b)

Figure 7. Spatiotemporal evolution graph of the numerical (a) and analytical (b) solutions up to
t = 0.2 s, with Nx × Nt = 800× 320 for Example 3.

(a) (b)

Figure 8. Spatiotemporal evolution graph of the numerical (a) and analytical (b) solutions up to
t = 0.2 s, with Nx × Nt = 800× 320 for Example 3.

Table 5. The global relative error (GRE) for u(x, 0.2) with different ∆x/∆t.

Grid N (x) ∆x/∆t = 10 ∆x/∆t = 20 ∆x/∆t = 40 ∆x/∆t = 80

400 2.3832× 10−4 1.2610× 10−4 7.0571× 10−5 4.7861× 10−5

800 1.2849× 10−4 7.2477× 10−5 4.7318× 10−5 3.8168× 10−5

1600 7.3027× 10−5 4.7296× 10−5 3.7867× 10−5 3.3993× 10−5

3200 4.7310× 10−5 3.7804× 10−5 3.3898× 10−5 3.2169× 10−5
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Figure 9. Comparison between numerical and analytical solutions of u(x, t) (a) and w(x, t) (b) at t = 0.2
with Nx × Nt = 800× 320 for Example 3. The blue circle symbol represents the numerical solution,
and the solid red line represents the analytical solution given by Equation (48).

Table 6. The global relative error (GRE) for w(x, 0.2) with different ∆x/∆t.

Grid N (x) ∆x/∆t = 10 ∆x/∆t = 20 ∆x/∆t = 40 ∆x/∆t = 80

400 2.9126× 10−3 2.9069× 10−3 2.9040× 10−3 2.9026× 10−3

800 2.9124× 10−3 2.9095× 10−3 2.9081× 10−3 2.9073× 10−3

1600 2.9121× 10−3 2.9107× 10−3 2.9099× 10−3 2.9096× 10−3

3200 2.9119× 10−3 2.9112× 10−3 2.9108× 10−3 2.9107× 10−3

4. Conclusions

In conclusion, we have researched the application of the LB method for the solution of the
two-component system of coupled sine-Gordon equations. By choosing the equilibrium distribution
function and an amending function suitably, according to our proposed model, the governing
evolution equations can be recovered accurately, in which the Chapman-Enskog multiscale expansion
is employed. Numerical simulation for three test problems has been conducted to validate the LB
model. The numerical results are in good agreement with the analytical solutions. While we take
different initial conditions, we can get unique numerical solutions. We can also see that when ∆x/∆t is
larger, ∆t is relatively smaller, and the global relative error of u(x, t) reduces with first-order accuracy;
nevertheless, the global relative error of w(x, t) changes little. It is found that the accuracy of the
macroscopic variable w(x, t) is not affected by the resolution in space and time. That is due to the
treatment of the items ∂u(x, t)/∂t and ∂w(x, t)/∂t in Equations (31) and (32), which have first-order
accuracy. For the purpose of attaining better computational accuracy and efficiency, the LB method for
the test problems needs relatively small time step and space step. The present model can be developed
to research more different types of the nonlinear system problems. There are still many problems
worth studying to develop the present method, such as how to improve the accuracy and stability;
we will continue these study in the near feature.
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