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Abstract: The core objective of the present study is to examine entropy generation minimization via
Hall current and Ohmic heating. Carreau fluid considerations interpret the unavailability of systems’
thermal energy (for mechanical work). The magneto hydrodynamic flow is in the channel, which is
not symmetric. We have solved analytically the resulting nonlinear mathematical model. Moreover,
physical exploration of important parameters on total entropy generation, temperature, and Bejan
number is plotted and discussed. We observed that the generation of entropy takes place throughout
the confined flow field y = W1 and y = W2 because of the viscous dissipation effect. In addition,
reducing the operating temperature minimizes the entropy.
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1. Introduction

Currently, scientists have a major concern about finding a way to control the wastage of heat
energy. In thermodynamics, entropy defines thermal irreversibility, often referred to as the destruction
of useful energy. Production of entropy is associated with all real-life process. Entropy generation
analysis is important in exploring the sources and location of irreversibilities, which are responsible for
the destruction of useful energy. The losses in heat energy are mainly due to friction, compression
and expansion, heat transfer, magnetic field, and chemical reactions. Minimizing the loss of heat and
improving the efficiency of the thermal system are possible only through minimization of entropy
generation. Therefore, it is extremely important to study entropy in all real process. Different techniques
are being used to decrease the entropy generation, such as the reduction in size of chip components in
a computer, cooling fans preventing overheating, porous media, and the heat exchanger.

The laws of thermodynamics define the transformation of energy. The quantity of energy in the
heat transfer process is an important factor and is governed by the first law. Hayat et al. [1] studied the
impact of the Cattaneo–Christov heat flux model in the flow of variable thermally-conductive fluid.
Khan et al. [2] explained the homogeneous-heterogeneous reactions in Casson fluid flow. Most of the
engineering problems concern with the quality of energy and the degree of degradation of energy.
The second law of thermodynamics defines the decrease in the quality of energy, such as the reduction
in the quality of energy measured as entropy. In order to minimize the entropy generation within the
fluid flow problem, it is important to learn the distribution of entropy generation. Bejan [3] laid the
foundation of entropy generation and analyzed its minimization. Afridi et al. [4] developed the analysis
of heat and mass transfer in entropy generation. In another study, Afridi et al. [5] analyzed entropy in
hydromagnetic boundary flow. Rashidi et al. [6] studied the entropy generation on peristaltic MHD
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(magnetohydrodynamic) blood flow. In another article, Rashidi and his coworker analyzed the entropy
generation of third-grade fluid over a stretching sheet [7]. Entropy generation in the flow of nano fluids
with silver and copper nanoparticles was studied by Hayat et al. [8]. Khan et al. in his studies [9,10]
also explained the ways of entropy generation minimization. Recently, some research works [11–16]
investigated the entropy production numerically by LBM (Lattice Boltzmann Method).

Flows affected by magnetic field have crucial applications in various fields. MRI (magnetic
resonance imaging), MHD pumps, the petroleum industry, plasma physics, etc., are few of the many
modern applications. Moreover, when the magnetic field is strong, the Hall effect cannot be neglected.
The Hall current and magnetic field have a strong effect on flow and heat transmission characteristics.
Applications include the Hall accelerator, MHD accelerator, power generator, electric transformer, and
refrigeration coils and heating elements. Hall current and the magnetic field are also used in MRA
(magnetic resonance angiography), which scans the images of veins and arteries in order to analyze
abnormalities of blood vessels, specifically arteries of brain, neck, thoracic aorta, and renal arteries.
Abbasi et al. [17] developed numerical analysis for the peristaltic flow in a curved channel. Bhatti and
Rashidi [18] examined the mass and heat transfer through the Hall current and Joule heating effects in
blood flow. Recently, Noreen et al. [19] studied the effects of Joule heating and ion slip. Hayat et al. [20]
studied the MHD viscous fluid flow phenomenon in the rotating channel. Qasim and Noreen [21]
discussed the Hall current and viscous dissipation effect of pseudoplastic fluid. Some supplementary
studies pursuing the same direction can also be found in [22–24].

Owing to real-life applications, peristaltic fluid motion has received considerable attention in the
last few years. Peristaltic flow is a transport phenomenon in which fluid is carried forward through
contractions and expansions. Significant industrial applications include the peristaltic pump, roller
pump, blood pump, sanitary and sterile transport, etc. Physiologically, movement of food in esophagus,
urine in ureter, blood in arteries, bile in bile ducts, etc., are based on this mode. Latham [25] laid a
strong foundation for theoretical development in this area. He first addressed the peristaltic flow
of viscous fluid. Shapiro et al. [26] extended the generalized concept under certain assumptions on
peristaltic pumping. Asghar et al. [27] examined the variable viscosity of a viscous fluid. Vajravelu et
al. [28] studied the peristaltically-flowing Phan-Thien–Tanner fluid of porous media in an asymmetric
channel. Numerous examinations dealing with peristaltic fluid flows under different assumptions
and flow geometry were reported with experimental, numerical, and analytical approaches. Some
remarkable decisive studies were mentioned in [29–33].

The non-linear relationship between stress and strain rate is explored by selecting the Carreau
fluid model, where the viscosity is dependent on the shear rate. This model is a blend of the power law
and Newtonian models, competent for describing the flow behavior of shear thickening, as well as
shear thinning fluids. Noreen et al. [34] analyzed peristaltic transport of Carreau fluid in a curved
channel. In another article Hayat et al. [35] studied it with different boundary conditions.

In present study, the non-linear relationship between stress and strain rate is explored by selecting
the Carreau fluid model, where the viscosity is dependent on the shear rate. This model is a blend of
the power law and Newtonian models, competent for describing the flow behavior of shear thickening,
as well as shear thinning fluids. Noreen et al. [34] analyzed peristaltic transport of Carreau fluid
in a curved channel. In another article, Hayat et al. [35] studied the same model with different
boundary conditions.

No study is available in the literature that explores the entropy generation of Carreau fluid flow.
We present the state-of-the-art present entropy analysis of flow augmented by Hall current and Joule
heating. Flow is in a two-dimensional channel with convective boundaries. The study is organized
into five sections:
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2. Mathematical Model and Analysis

2.1. Flow Characteristics

The Carreau fluid of constant density, moving in a channel, which is asymmetric in nature, is
considered here. The rectangular coordinates are

(
X, Y

)
with U as the axial velocity component.

Channel walls are maintained at temperatures T0 and T1. The velocity field is mathematically defined
by

(
U, V, 0

)
. The walls of the geometry are given as:

W1 = b1 cos
(

2π
λ

(
X − st

))
+ d1

W2 = −b2 cos
(

2π
λ

(
X − st

)
+ φ

)
− d2

(1)

where W1 and W2 represent the lower and upper walls, b1, b2 the amplitudes, φ the phase difference,
s the wave speed, λ the wavelength, and t the time. The geometry of the flow problem is given in
Figure 1.
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The Lorentz body force and Joule heat affecting the flow are determined by:

F = J × B (2)

Joule heating effect =
1
σ

J · J (3)

Here, J shows the current density B for the magnetic field, and σ represents the electric conductivity of
the fluid. The constitutive laws of mass, momentum, and energy via the Joule heating, Hall current,
and viscous dissipation are:

dρ

dt
+∇ ·V = 0, (4)

ρ
dV
dt

= div S− J × B, (5)

ρCp
dT
dt

= κ ∇2T + τ ·
(
gradV

)
+

1
σ

J · J, (6)

where S = −pI + τ, ρ shows density, κ is the thermal conductivity, Cp the specific heat, and τ the extra
stress tensor.
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2.2. Fluid Model

The stress-strain relationship of the Carreau fluid model is:

τ =

η∞ + (η∞ − η0)
(
1 +

(
Γ

.
γ
)2

) n−1
2

 .
γ, (7)

and here, η∞, η0 are infinite and initial shear rate viscosities and
.
γ =

√
1
2 traceA1

2. The components of
extra stress tensors τi j are:

τXX = −2η0

(1 + (
Γ

.
γ
)2

) n−1
2

 ∂U

∂X
, (8)

τXY = −η0

(1 + (
Γ

.
γ
)2

) n−1
2

 (
∂U

∂Y
+
∂V

∂X

)
, (9)

τYY = −η0

(1 + (
Γ

.
γ
)2

) n−1
2

 2
∂V

∂Y
. (10)

2.3. Development Problem

The transformation:

x = X − ct, v = V
(
X, Y, t

)
, y = Y, t = T

(
X, Y, t

)
, u = U

(
X, Y, t

)
− c, (11)

convert Equations (4)–(6) to:
∂u
∂x

+
∂v
∂y

= 0 (12)

ρ

(
(u + c)

∂u
∂x

+ v
∂u
∂y

)
=
∂τxx

∂x
+
∂τxy

∂y
−

σB0
2

1 + me2
((u + c) −mv) −

∂p
∂x

, (13)

ρ

(
(u + c)

∂v
∂x

+ v
∂v
∂y

)
=
∂τxy

∂x
+
∂τyy

∂y
−

σB0
2

1 + me2
(v−m(u + c)) −

∂p
∂y

, (14)

ρ Cp

(
(u + c) ∂∂x + v ∂

∂y

)
T = − σB0

2

1+me2

(
(u + c)2

− v2
)
+ ∂u

∂xτxx +
∂v
∂yτxy +

∂u
∂xτxy +

∂v
∂yτyy

+κ
(
∂2

∂x2 +
∂2

∂y2

)
T.

(15)

Introducing dimensionless variables and parameters:

u = u
c , x = x

λ , t = ct
λ , y =

y
d1

, v = v
cδ , M f =

σB0
2d1

2

η0
, p =

d1
2p

cλη0
, τxx = λ

cη0
τxx,

τxy = d1
cη0
τxx,

.
γ =

.
γd1

c , τyy = d1
cη0
τyy, θ = T−T0

T1−T0
, Pr =

µCp
κ , Ec = c2

(T1−T0)Cp

W1 = W1
d1

, We =
Γc
d1

, W2 = W2
d2

, δ = d1
λ , Re =

ρcd1
η0

, u =
∂ψ
∂y , v = −

∂ψ
∂x .

(16)

Equations (12)–(15), along with low Reynold number and long wavelength assumptions, yield:

∂p
∂x

=
∂
∂y

1 + (n− 1
2

)
We

2
(
∂2ψ

∂y2

)2∂2ψ

∂y2 −
M f

1 + me2

(
1 +

∂ψ

∂y

)
, (17)

∂p
∂y

= 0, (18)

∂2θ

∂y2 + Br

(
∂2ψ

∂y2

)21 + (n− 1
2

)
We

2
(
∂2ψ

∂y2

)2− M f

1 + me2

(
1 +

∂ψ

∂y

)2

= 0 (19)
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As p , p(y), therefore Equation (17) yields:1 + 3(n− 1)
2

We
2
(
∂2ψ

∂y2

)2∂4ψ

∂y4
+ 3(n− 1)We

2
(
∂2ψ

∂y2

)2(
∂3ψ

∂y3

)2

−
M f

1 + me2

(
1 +

∂ψ

∂y

)
= 0, (20)

In the above equations, Br, We, M f , me, ψ, and θ are the notations for the Brinkman number,
Weissenberg number, Hartman number, Hall parameter, stream function, and temperature, respectively.
The associated non-dimensional boundary conditions are:

ψ = −F
2 , ∂ψ∂y = −1, ∂θ∂y + Bi1(θ− 1) = 0, at y = W1,

ψ = F
2 , ∂ψ∂y = −1, ∂θ∂y + Bi2θ = 0, at y = W2,

(21)

where F =
W2∫

W1

∂ψ
∂y dy is related to the fixed frame by F = Q− 1− d.

3. Analysis of Entropy Generation

Fluid irreversibilities in the current problem are due to heat diffusion, viscous dissipation, and the
magnetic field, respectively. Based on these, the dimensional entropy generation is defined as:

SG =
κ

T
2

( ∂T

∂X

)2

+

(
∂T

∂Y

)2+ 1

T

[
σB0

2

1 + me2

(
U

2
+ V

)]
+

1

T

[
τ ·

(
gradV

)]
. (22)

The characteristic entropy is defined as S0 = d1
2

κ . The total entropy generation rate, denoted by Nts, is
the relation between the actual entropy to the characteristic entropy. In dimensional form, entropy
generation via stream function presentation:

Nts =
SG
S0

, (23)

Nts =
1

(θ+ ξ)2

(
∂θ
∂y

)2

︸             ︷︷             ︸
NH

+
Br

(θ+ ξ)

(∂2ψ

∂y2

)2

+
(n− 1

2

)
We

2
(
∂2ψ

∂y2

)4︸                                             ︷︷                                             ︸
NF

+
Br

(θ+ ξ)

M f

1 + me2

(
1 +

∂ψ

∂y

)2

︸                             ︷︷                             ︸
NM

(24)

Here, the temperature difference parameter is labelled by ξ = T0
T1−T0

, and Nts = NH + NF + NM.
The Bejan number identified by Be is the proportion of heat irreducibility to the total entropy

generation. Basically, the Be number comprehends the mechanism of the production of entropy.

Be =

1
(θ+ξ)2

(
∂θ
∂y

)2

1
(θ+ξ)2

(
∂θ
∂y

)2
+ Br

(θ+ξ)

[(
∂2ψ
∂y2

)2
+

(
n−1

2

)
We2

(
∂2ψ
∂y2

)4
]
+ Br

(θ+ξ)

M f

1+me2

(
1 + ∂ψ

∂y

)2
(25)

Be =
1
2 defines equal irreversibility, due to heat and other contributing factors. For dominating heat

irreversibilities, Be = 1, while Be = 0 implies that the contributing factors of fluid friction and magnetic
field are noteworthy. The Bejan number ranges between zero and one.

4. Solution Methodology

Our problem is non-linear and coupled in nature. The computation of the exact solution is not
possible; therefore, perturbation techniques are employed to solve the resulting governing equations.
We apply regular perturbation of the fluid parameter, the Weissenberg number We

2 as:



Entropy 2019, 21, 529 6 of 15

ψ = ψ0 + We
2ψ1 + O

(
We

2
)2

,

p = p0 + We
2p1 + O

(
We

2
)2

,

F = F0 + We
2F1 + O

(
We

2
)2

,

θ = θ0 + We
2θ1 + O

(
We

2
)2

.

(26)

Substituting these into Equations (19) and (20), we construct the zeroth order and first order systems
with reference to the fluid parameter.

4.1. Zeroth Order System and Boundary Conditions

−
M f

1 + me2

(
∂2ψ0

∂y2

)
+

(
∂4ψ0

∂y4

)
= 0 (27)

M f

1 + me2 Br + 2Br
M f

1 + me2

(
∂ψ0

∂y

)
+ Br

M f

1 + me2

(
∂ψ0

∂y

)2

+
∂2θ0

∂y2 + Br

(
∂2θ0

∂y2

)
= 0 (28)

ψ0 = −F0
2 , ∂ψ0

∂y = −1, ∂θ0
∂y + Bi1(θ0 − 1) = 0, at y = W1

ψ0 = F0
2 , ∂ψ0

∂y = −1, ∂θ0
∂y + Bi2θ0 = 0, at y = W2

(29)

4.2. First-Order System and Boundary Conditions

−
M f

1 + me2

(
∂ψ1

∂y

)
+ 3(n− 1)

(
∂2ψ0

∂y2

)(
∂3ψ0

∂y3

)2

+
3
2
(n− 1)

(
∂2ψ0

∂y2

)(
∂4ψ0

∂y4

)
+

(
∂4ψ1

∂y4

)
= 0 (30)

2Br
M f

1+me2

(
∂ψ1
∂y

)
+ 2Br

M f

1+me2

(
∂ψ0
∂y

)(
∂ψ1
∂y

)
+ ∂2θ1

∂y2 + 1
2 (n− 1)Br

(
∂2ψ0
∂y2

)4

+2Br

(
∂2ψ0
∂y2

)4
+ 2Br

(
∂2ψ0
∂y2

)(
∂2ψ1
∂y2

)
= 0

(31)

ψ1 = −F1
2 , ∂ψ1

∂y = 0, ∂θ1
∂y + Bi1θ1 = 0, at y = W1

ψ1 = F1
2 , ∂ψ1

∂y = 0, ∂θ1
∂y + Bi2θ1 = 0, at y = W2

(32)

5. Discussion and Results

The impact of different physical parameters, i.e., Br, We, M f , me, Bi1, Bi2, and φ, on total entropy
generation, entropy production due to the friction and heat diffusion, temperature, Bejan number, heat
transfer rate, pressure gradient, streams lines, and velocity profile are discussed in this section.

5.1. Analysis of Entropy Generation (Nts) and Bejan Number (Be)

The entropy generation Nts and Bejan number Be are plotted in Figures 2a–d and 3a–d to depict
the effects of the Hartman number, Hall parameter, Brinkman number, and temperature difference
parameter. Figure 2a,c portrays that Nts was gradually enhancing for increasing values of the Hartman
and Bejan numbers. With the application of the magnetic field, the temperature increased. Joule
heating produced more heat, so entropy production increased. At the lower wall, entropy generation
was maximum as compared to the other wall (due to temperature gradient). It can also be noticed
that at the lower wall, fluid friction irreducibility was dominant, whereas at the upper wall, heat
transfer reduced the entropy generation. Figure 2b shows the effect of the Hall parameter me, which
reduced the entropy generation. In Figure 2c, as we increased the Brinkman number (the conduction of
energy that was produced by viscous dissipation), entropy generation increased. Figure 2d depicts that
with an increment in temperature difference, the entropy generation gradually decreased. Figure 3a
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indicates the Bejan number for the variation of the Hartman number. It reveals that heat irreversibility
at the bulk fluid region was dominant, while at the edges, magnetic and viscous irreversibility were
dominating. Figure 3b presents that Bejan number decreased with the Hall parameter me at y = 0.
Figure 3c,d show that with the increase in the Brickman number and temperature difference parameter,
the Bejan number decreased.
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5.2. Analysis of Temperature

Figure 4a–f shows the behavior of temperature for different physical parameters, particularly the
Hartman number

(
M f

)
, Hall parameter (me), Brinkman number (Br), power law index (n), and Biot

numbers (Bi1, Bi2). Figure 4a depicts that the temperature profile gradually rose for increasing values
of the Hartman number M f . Basically, magnetic field lines interacted electrically with the fluid and
produced Lorentz force. Lorentz force retarded the fluid motion (transforming the kinetic energy of the
electrically conducting fluid to heat energy), and fluid temperature rose. It is found from Figure 4b that
the temperature is lowered because of the increase in the electrical conductivity of the fluid. Figure 4c
elucidates that under the influence of the Brinkman number, the temperature rose. The reason behind
this is that for a large value of the Brickman number, the frictional force increased (due to the collision
of fluid molecules with each other), and as a result, kinetic energy converted into thermal energy,
implying a rise in total fluid temperature. The influence of the Biot number on the temperature is
presented in Figure 4d,e. Temperature decreased at the upper wall by the increase of Bi1, and it had
no visible effect on the lower wall. In contrast, the temperature escalated at the lower wall with the
increase of Bi2, and a negligible difference was observed on the upper wall. In most of the cases, for
small Biot numbers, temperature uniformly distributed inside the fluid, whereas for Biot numbers
greater than 0.1, irregularity resulted. Therefore, we tool a special case for a large value of the Biot
number. Figure 4f elucidates that temperature increased for increasing values of the power law index.
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5.3. Analysis of Velocity

Axial velocity serves to provide salient feature of flow behavior. Figure 5a–c portrays the impact
velocity profile in a channel with convective boundaries. We observed that the velocity formed a
parabolic trajectory for physical parameters, and maximum velocity occurred at y = 0. Figure 5a
portrays that the axial velocity decreased for the increasing value of the Hartman number. Since the
Hartman number directly relates the magnetic force and this force is resistive in nature, therefore the
velocity decreased. Figure 5b demonstrates the influence of the Hall parameter me. Here, the velocity
accelerated at the center of the channel while it reduced at the edges, the reasons behind this being that
me caused an upsurge of the electrical conductivity of the fluid; hence, the velocity increased. Figure 5c
shows the comparison of viscous and Carreau fluids. It gained maximum velocity for a Newtonian
fluid, while it reduced for the non-Newtonian Carreau fluid. Furthermore, it restored the symmetry
about the center line.Entropy 2017, 19, x  10 of 16 
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5.4. Analysis of the Pressure Gradient and the Rate of Heat Transfer

The influence of M f , me, We, and Br is analyzed through Figures 6a–c and 7a–d to peruse the
pressure gradient and rate of heat transfer. Figure 6a reveals that for the increasing value of the
Hartman number, the pressure gradient decreased at the narrow part, whereas it increased at the wider
region. Figure 6b depicts the influence of the Hall parameter. dp/dx decreased at the wider region,
and a negligible difference was observed at the narrow part. Figure 6c portrays that with the increase
of the Weissenberg number, the pressure gradient dp/dx increased at the narrow and wider region.
Figure 7a,d presents that for higher values of the Biot number and Hall parameter, the heat transfer
rate reduced; whereas the heat transfer rate increased for the Brinkman number and Hartman number
(Figure 7b,c).
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Figure 7. (a–d) Rate of heat transfer for different values of M f , me, Br and Bi2.

5.5. Trapping Phenomenon

Streams lines were plotted to depict the flow pattern. The trapping phenomenon for fluid
parameters M f (Hartman number), me (Hall parameter) and We (Weissenberg number) was described
through plotting the streams lines. Figures 8–10 show that the bolus size decreased for increasing
values of the Hartman number and Weissenberg number. Figure 10a–c depict the opposite trend that is
for higher values of hall parameter bolus size not only increases but number of closed stream lines also
increases in count.
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5.6. Analysis of Entropy Generation Due to Heat Diffusion and Viscous Dissipation

The thermal entropy generation rate and viscous entropy generation are very important in entropy
generation. The influence of the Hartman number (M f ) and Weissenberg number (We) was studied to
configure the entropy generation due to the heat diffusion and viscous dissipation effect. Figure 11a
elucidates that for the increasing value of the Hartman number, the heat diffusion rate increased.
This physically happens due to the strong magnetic field, which boosts the temperature. Therefore,
the diffusion rate increased. Figure 11b illustrates that for higher values of We, the heat diffusion rate
decreased. Variation in the entropy generation rate due to viscous dissipation for different values of
the Hartman number is observed through Figure 12a,b. The increase in the thermal entropy generation
rate at the walls was observed due to resistive forces, while heat production dropped off due to low
viscosity at the center of the channel.
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We analyzed the entropy generation via the Ohmic heating and Hall current in
peristaltically-flowing Carreau fluid. The conclusions are stated below.
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