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Abstract: Integrated information theory (IIT) proposes a measure of integrated information, termed
Phi (Φ), to capture the level of consciousness of a physical system in a given state. Unfortunately,
calculating Φ itself is currently possible only for very small model systems and far from computable
for the kinds of system typically associated with consciousness (brains). Here, we considered several
proposed heuristic measures and computational approximations, some of which can be applied to
larger systems, and tested if they correlate well with Φ. While these measures and approximations
capture intuitions underlying IIT and some have had success in practical applications, it has not
been shown that they actually quantify the type of integrated information specified by the latest
version of IIT and, thus, whether they can be used to test the theory. In this study, we evaluated
these approximations and heuristic measures considering how well they estimated the Φ values of
model systems and not on the basis of practical or clinical considerations. To do this, we simulated
networks consisting of 3–6 binary linear threshold nodes randomly connected with excitatory and
inhibitory connections. For each system, we then constructed the system’s state transition probability
matrix (TPM) and generated observed data over time from all possible initial conditions. We then
calculated Φ, approximations to Φ, and measures based on state differentiation, coalition entropy,
state uniqueness, and integrated information. Our findings suggest that Φ can be approximated
closely in small binary systems by using one or more of the readily available approximations (r > 0.95)
but without major reductions in computational demands. Furthermore, the maximum value of Φ
across states (a state-independent quantity) correlated strongly with measures of signal complexity
(LZ, rs = 0.722), decoder-based integrated information (Φ*, rs = 0.816), and state differentiation
(D1, rs = 0.827). These measures could allow for the efficient estimation of a system’s capacity for
high Φ or function as accurate predictors of low- (but not high-)Φ systems. While it is uncertain
whether the results extend to larger systems or systems with other dynamics, we stress the importance
that measures aimed at being practical alternatives to Φ be, at a minimum, rigorously tested in an
environment where the ground truth can be established.

Keywords: integrated information theory; differentiation; integration; complexity; consciousness;
computational; IIT; Phi

1. Introduction

The nature of consciousness, defined as a subjective experience, has been a philosophical topic for
centuries but has only recently become incorporated into mainstream neuroscience [1]. However, as
consciousness is a subjective phenomenon, and thus not directly measurable, it must be operationalized
to allow for empirical investigation of its nature and underlying mechanisms [2]. In other words,

Entropy 2019, 21, 525; doi:10.3390/e21050525 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-2084-6663
https://orcid.org/0000-0003-0550-581X
http://www.mdpi.com/1099-4300/21/5/525?type=check_update&version=1
http://dx.doi.org/10.3390/e21050525
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 525 2 of 23

the scientific study of consciousness requires an objective measure. One such measure has been
developed within the framework of the integrated information theory (IIT), introduced and elaborated
by Giulio Tononi and colleagues [3–5]. The theory has attracted much interest because of its axiomatic
quantitative approach towards illuminating fundamental aspects of consciousness. The theory proposes
that consciousness is identical to a particular type of integrated information (Phi; Φ) which is defined
and quantified within the theory as a measure of a system’s informational irreducibility, or how much
information a system in a definite state specifies about its own past and future above and beyond how
much such information is specified by its parts.

A major practical limitation of IIT is the computational cost of calculating Φ, which, according
to the current formulation (version 3.0 [5]; here referred to as Φ3.0, implemented through PyPhi [6]),
grows as O(n53n) [6] for binary systems where n is the number of elements in the system. In addition,
computing Φ3.0 requires full knowledge of a system’s transition probabilities (the probability of
the system transitioning from any state to any other state). Taken together, these knowledge and
computational requirements place strong constraints on both the system size and the level of possible
precision for which Φ3.0 can be calculated. Therefore, the exact value of Φ3.0 is intractable for most
biological or artificial systems of interest. Currently, the largest systems being investigated are in
the order of 20–30 binary elements [7,8], with a practical limit of ~10–12 elements, unless special
assumptions are made about the system under investigation (e.g., see [9]).

As Φ3.0 quickly becomes computationally intractable as a function of network size, one approach
is to implement approximations (computational shortcuts) within the framework of IIT3.0 that reduce
the computational cost [6]. Another approach is to use heuristic measures that capture central intuitions
of IIT such as information differentiation and integration via more tractable methods [10–15]. While
many heuristics have been applied to electrophysiological data (e.g., [10,13,14,16–18]), simulated
time series of continuous variables (e.g., [11,19]), and discrete variables (e.g., [15,20]), only [15] have
tested a few approximations and heuristics with respect to Φ3.0 in evolved logic-gate-based animats.
Notably, a study [19] compared the behavior of several heuristic measures developed for time-series
data; however, the authors were interested in the consistency among the methods, rather than in a
comparison with Φ3.0.

The lack of direct comparisons with Φ3.0 is a gap in the current literature of integrated information
methods. If an approximation or heuristic is to be used in an attempt to falsify IIT, then the results
are only valid to the extent that the measure accurately estimates Φ3.0 (similarly, for evidence in favor
of IIT). It is not possible to validate the proposed measures in the networks of interest (due to the
computational considerations outlined above); however, we can validate the measures in smaller
systems where Φ3.0 can be calculated directly. We claim that correspondence in smaller systems is a
necessary condition for any measure used to evaluate IIT. Therefore, by using deterministic, isolated,
discrete networks of binary logic gates of similar type as those employed in IIT3.0 [5], this paper aims
to evaluate the accuracy relative to Φ3.0 of (1) approximations that speed up parts of Φ3.0 calculations
and (2) heuristic measures of integrated information.

2. Materials and Methods

2.1. Networks

We randomly generated networks consisting of n ∈ {3, ..., 6} binary linear threshold nodes (state S
∈ {0,1}), with fixed threshold (θ = 1) and weighted connections between nodes (Wij ∈ {1,0,−1}, for i,j
= 1, ..., n). There were no self-connections (Wii = 0). Connections were generated as follows: First,
for all i , j, we set Wij = 1 with a probability p ∈ {0.2, 0.3, . . . , 1.0}, a parameter that was fixed for
each network. Second, we changed the sign of non-zero connections to Wij = −1 with probability
q ∈ {0.0, 0.1, . . . , 0.8}; this parameter was also fixed for each network. The remaining weights were
kept at Wij = 0, i.e., no connection. Altogether, the connections were independent, with Pr(Wij = 1) =

p(1 − q) and Pr(Wij = −1) = pq, and Pr(Wij = 0) = 1 − p. To avoid duplicate network architectures,
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all networks were checked for uniqueness up to an isomorphism of nodes, i.e., two networks were
considered equal if they could be mapped to each other by a relabeling of nodes (using a brute force
algorithm). The networks were isolated (no external inputs or modulators). In sum, we generated
networks with nodes that could take one of two states (St = 0, 1) and would be activated (St+1 = 1)
if the weighted sum of the inputs to the node was equal to or larger than its threshold (θ = 1). If a
node was activated, it would then output to other nodes according to its outgoing connection weights.
Importantly, this allowed for networks with excitatory (Wij = 1), inhibitory (Wij = −1), and no (Wij = 0)
connection between any given pair of nodes (see Figure 1a).
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Figure 1. (A) Networks were randomly generated with n binary linear threshold nodes (Si ∈ {0, 1},
θ ≥ 1.0) and connections (Wij ∈ {−1, 0, 1}). Each network was perturbed into each possible initial state,
and the following state transitions were recorded. (B) The networks’ node mechanism and connection
weights were used to generate a transition probability matrix (TPM), containing the probability of one
state leading to any other state. (C) From the TPM, we generated an “observed” time series using
frequent perturbations of the initial states. The sequence of state transitions following an initial state
perturbation is termed an epoch.

To investigate various measures and approximations, we needed functional information about
the networks in the form of a probabilistic description of the transitions from any given state to any
other state, i.e., a transition probability matrix (TPM). For each network, a TPM was constructed based
on the node mechanism (linear threshold with θ = 1) and the connection weights Wij. As the generated
networks were deterministic, the TPM contained only a single ‘1’ in each row representing the next
state of the network.

From the TPM, given an initial condition, we were able to generate “observed” time-series data
for each network. From a given initial condition, a network may only explore part of its state space
before reaching an attracting fixed point or periodic sequence. While generating the observed data,
we periodically perturbed the network into a new state, ensuring that our data fully explored the
state space of the network and that the results were not dependent on our choice of initial condition.
This procedure resembles the perturbations applied by transcranial magnetic stimulation (TMS)during
empirical studies of consciousness [14]. The generated time-series data consisted of 2n epochs, where
one epoch was generated by initializing/perturbing a network to an initial state and then was simulated
for a total of α(n)(2n + 1) timesteps. The function α(n) ensured parity of bits between the generated
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time series for networks of different sizes (see Appendix A.1). This perturbation and simulation
process was repeated for all possible network states (2n) sequentially, with each epoch appended
to the last preceding epoch. The resulting simulated time series (sequence of epochs) produced an
α(n)(2n + 1)2n-by-n matrix where each of the n columns reflected the state of a single node over time,
and each row reflected the current state of each network node (0/1) at a given time. In sum, we derived
a TPM from the mechanism and connectivity profile of individual nodes and then, using the TPM
and perturbations, generated a time series of observed data that explored the entire state space of the
network (see Figure 1b,c).

2.2. Integrated Information

For the networks defined above, we calculated Φ3.0 as implemented through PyPhi v1.0 [6]. Here,
we just give a brief summary of how Φ3.0 was defined and calculated, but see reference [5] for a more
detailed account. Generally, IIT proposes that a physical system’s degree of consciousness is identical
to its level of state-dependent causal irreducibility (Φmax), i.e., the amount of information of a system
in a specific state above and beyond the information of the system’s parts.

The calculation of Φ3.0 began with “mechanism-level” computations. For a given candidate system
(subset of a network) in a state, we identified all possible mechanisms (subsets of system nodes in
a state that irreducibly constrained the past and future state of the system). For each mechanism,
we considered all possible purviews (subsets of nodes) that the mechanism constrained. For a given
mechanism–purview combination, we found its cause–effect repertoire (CER; a probability distribution
specifying how the mechanism causally constrained the past and future states of the purview). To find
the irreducibility of the CER, the connections between all permissible bipartitions of elements in the
purview and the mechanism were cut (see [6]); the bipartition producing the least difference is called
the minimum information partition (MIP). Irreducibility, or integrated information, ϕ, is quantified by
the earth mover’s distance (EMD) between the CER of the uncut mechanism and the CER of the
mechanism partitioned by the MIP. A mechanism, together with the purview over which its CER is
maximally irreducible and the associated ϕ value, specifies a concept, which expresses the causal role
played by the mechanism within the system. The set of all concepts is called the cause–effect structure of
the candidate system.

Once all irreducible mechanisms of a candidate system were found, a similar set of operations
was done at the “system level” to understand whether the set of mechanisms specified by the system
were reducible to the mechanisms specified by its parts. The irreducibility of the candidate system was
quantified by its conceptual integrated information, Φ. This process was repeated for all candidate
systems, and the candidate system that was maximally irreducible among all candidate systems was
termed a major complex (MC). According to IIT then, the MC was the substrate that specified a particular
conscious experience for the (physical) system in a state, and Φ3.0 quantified the irreducibility of the
cause–effect structure it specified in that state. As such, Φ3.0 was calculated for every reachable state of
the system, i.e., state-dependently.

As many of the heuristics and approximations outlined below are state-independent, there is
no direct comparison to the state-dependent Φ3.0. To facilitate comparisons with these measures,
we further computed a state-independent quantity, Φpeak

3.0 , as the maximum value of Φ3.0 across all

states of the network. The quantity Φpeak
3.0 can be thought of as a measure of a network capacity for

consciousness, rather than its currently realized level of consciousness. Alternatively, we could also
compute the mean value of Φ3.0, which has some relation to the state-dependent value of Φ3.0 under
certain regularity conditions [15], but the results were similar (see Figure 5d).

2.3. Approximations and Heuristics

To speed up the calculation of Φ3.0, one can implement several shortcuts or approximations
based on assumptions about the system under consideration. Here, we aimed to test six specific
approximations; three approximations that are already implemented in the toolbox for calculating Φ3.0
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(PyPhi; [6]) that reduce the complexity of evaluating information lost during partitioning of a network;
two shortcuts based on estimating the elements included in the MC rather than explicitly testing every
candidate subsystem; and one estimation of a system’s Φpeak

3.0 from the Φ of a few states, rather than
taking the maximum over all possible states. All approximations were likely to compare well against
Φ3.0, but were unlikely to yield significant savings in computational demand.

Another approach is to use heuristics that capture aspects of Φ3.0. These heuristics can be
separated into two classes: those that require the full TPM and discrete dynamics (heuristics on
discrete networks requiring perturbational data) and those that require time-series data (heuristics from
observed data). While these measures may reduce the computational demands, the heuristics based on
discrete dynamics still require full structural and functional knowledge of the system, which reduces
their applicability. On the other hand, measures based on observed data significantly broaden the
potential applicability at the cost of estimating the underlying causal structure by using the observed
time series.

All approximations and heuristics that were tested are listed in Table 1, together with an identifier
(from “A” to “N”) that will be used in the text for ease of reading, as well as a reference and
brief description.

Table 1. Overview of measures.

# S.D. Measure S.I. Measure Description Ref.

Φ3.0 Φpeak
3.0

Integrated information according to IIT 3.0 [5]

A CO Φ3.0 CO Φpeak
3.0

Cut one connection when making partitions [6]

B NN Φ3.0 NNΦpeak
3.0

No new concepts after partitioning [6]

C WS Φ3.0 WSΦpeak
3.0

Whole system as MC

D IC Φ3.0 ICΦpeak
3.0

Elements with recurrent connections as MC

E Est.nΦpeak
3.0 Estimate Φpeak

3.0 from n states (n=1,2,...,15)
F Φ2.0 Φpeak

2.0
Integrated information according to IIT 2.0 [3]

G Φ2.5 Φpeak
2.5

Φ2.0/Φ3.0 hybrid [12]
H D1 Reachable states [15]
I D2 Cumulative variance of elements [15]
J S Coalition sample entropy [13]
K LZ Functional complexity [13]
L Φ* Decoder based integrated information [10]
M SI Integrated stochastic interaction [11]
N MI Mutual information [21]

Abbreviations: S.D.: state-dependent; S.I.: state-independent; Ref: reference; IIT: integrated information theory;
Φ: integrated information; Φpeak: maximum Φ over system states; CO: cut-one approximation; NN: no-new-concepts
approximation; WS: whole-system approximation; MC: major complex; IC: iterative-cut approximation; Est.n:
Φpeak

3.0 estimated from n sample states; D1/2: state differentiation; S: coalition entropy; LZ: Lempel–Ziv complexity;
Φ*: decoder-based Φ; SI: stochastic interaction; MI: mutual information.

2.3.1. Approximations to Φ3.0

We calculated several approximations to Φ3.0. (A) The cut-one approximation (CO) reduced the
number of partitions considered when searching for the MIP. The approximation assumes that the
MIP is achieved by cutting only a single node out of the candidate system; (B) the no-new-concepts
approximation (NN) eliminates the need to rebuild the entire cause–effect structure for every partition
under the assumption that when a partition is made it does not give rise to new concepts. Thus,
one only needs to check for changes to existing mechanisms, rather than reevaluating the entire
powerset of potential mechanisms.

We also tested two approximations based on estimates of which nodes are included in the MC.
These approximations assumed the MC consisted of either (C) all the nodes in the system taken as a
whole (whole system; WS), or (D) the subsystem of the network where all nodes with no recursive
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connectivity (no input and/or output connections) or an unreachable state (nodes that were always “on”
or always “off”, such as a node with only inhibitory inputs) had been removed, iteratively (iterative
cut; IC). Note that by unreachable, we mean there was no state of the network that would lead to a
particular node being “on” (or “off”) in the next time step. This does not mean that we could not use an
external perturbation to set the node into any state (which we did when generating the observed data).
In IIT3.0, such a node (either with no inputs, no outputs, or an unreachable state) can be partitioned
without loss, leading to Φ3.0 = 0. Simply excluding these nodes from the MC is not an approximation
but a computational shortcut, as they will necessarily be outside the MC. However, the approximation
consisted in assuming that the remaining set of recursively connected nodes was the MC.

As with Φ3.0, these measures were calculated in a state-dependent and state-independent manner.
Finally, we tested (E) if the state-independent Φpeak

3.0 could be estimated by randomly sampling the

state-dependent Φ3.0, termed here “Est.nΦpeak
3.0 ”, where n refers to the number of samples (n = 1,2, ...,

15).

2.3.2. Heuristics on Discrete Networks

To estimate Φ3.0, we investigated several heuristic measures defined for discrete networks. While
the latest iteration of IIT takes steps to make the mathematical formalism more in tune with the
intended interpretation of its axioms and postulates, IIT3.0 is more computationally intractable than
previous versions (see S1 of [5]). To compare the results of the two newest versions of the theory,
we tested (F) Φ based on IIT2.0, Φ2.0 [3], and (G) Φ2.0 incorporating minimization over both cause–effect
and not only cause, Φ2.5 [12]. These measures are, however, still limited by the exponential growth in
computational time and are included here because IIT2.0 was used as inspiration for other measures,
and their validity depends on the correspondence between IIT2.0 and IIT3.0.

As Φ3.0 is sensitive to a large state repertoire, i.e., divergent and convergent behavior-weakening
cause/effect constraints (assuming irreducibility), we also included two measures that captured the
dynamical differentiation of states in the system; (H) The number of reachable states, D1, quantifying the
system’s available repertoire of states, and (I) cumulative variance of system elements, D2, indicating
the degree of difference between system states [15]. For D1, we calculated the number of states that
were reachable, i.e., states that had a valid precursor state. Accordingly, D1 was inversely related to
a system’s degeneracy of state transitions. D2 calculated the cumulative variance of activity in each
system node given the maximum entropy distribution of initial conditions. As such, D2 reflected how
different the system’s reachable states were from each other. See [15] for a more thorough account.

Both Φ2.0 and Φ2.5 were calculated in a state-dependent and in a state-independent manner
(Φpeak

2.0 /Φpeak
2.5 ), while both D1 and D2 were only defined state-independently. All the heuristics on

discrete systems were calculated using the system TPM. As such, while these measures were faster
to calculate and flexible in terms of network size, they still required full knowledge of the functional
dynamics of the system (i.e., the full TPM).

2.3.3. Heuristics from Observed Data

To alleviate the full knowledge requirement, we considered heuristic measures that are defined for
observed (time-series) data. Given their relative success in distinguishing conscious from unconscious
states in experiments and clinical populations [13,22,23] and their apparent similarity to central
IIT intuitions, we focused on measures of signal diversity. There are many candidates to choose
from, but here, we included (J) coalition entropy (S), measured by the entropy of the observed state
distribution indicating a system’s average diversity of visited states [22], and (K) signal complexity
measured by algorithmic compressibility through Lempel-Ziv compression (LZ), indicating the degree
of order or patterns in the observed state sequences of a system [22]. Both entropy and complexity
measures have been used in EEG to distinguish between states of consciousness [13,24].
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In addition, several measures have been developed that share many of IITs underlying intuitions,
such as capturing integrated information of a system above and beyond its parts while staying
computationally tractable [10,11,19,21,25]. Although these measures can be applied to continuous
data in the time domain such as EEG, here, we focused on a selection of these measures that can be
applied to discrete, binary data. Specifically, we tested: (L) decoder-based integrated information
(Φ*) based on IIT2.0 [21], (M) integrated stochastic interaction (SI) based on IIT2.0 [11], and (N) mutual
information (MI) based on IIT1.0 [21]. The integrated information measures were implemented using
the “Practical PHI toolbox for integrated information analysis” [26] with the discrete forms of the
formulae, employing a MIP exhaustive search with a bipartition scheme (powerset; 2n−1

−1) and a
normalization factor according to IIT2.0 [3]. All heuristics were calculated in a state-independent
manner, using the time-series data generated for the whole network (no searching through subsystems).

2.4. Analysis

Comparisons between Φ3.0 and approximate measures (CO, NN, WS, IC) were analyzed
using Pearson correlations (r) and separate ordinary least-squares linear regression models as the
approximations were expected to be closely related to Φ3.0. Statistics of linear fits are reported.
For comparisons between Φ3.0 and all other measures we used Spearman’s correlation (rs) to
investigate the monotonicity of the relationship, as a linear relationship was not necessarily expected.
All state-dependent measures were compared to Φ3.0, while all state-independent measures were
compared to Φpeak

3.0 . Metrics of significance (p values) are not reported because of our large sample size;
for our sample (n > 1981), correlations as small as |r| = 0.044 were statistically significant at the 0.05
level, but such small correlations were not meaningful in the context of the study. As we focused on
high correspondence, we instead report correlations as weak, 0.5 < r < 0.7, medium 0.7 < r < 0.8, strong
0.8 < r < 0.9, and very strong, r > 0.9 (for both r and rs).

2.5. Setup

Calculation of measurements was performed in Python (v3.6) with PyPhi (v1.0) [6] for Φ3.0, CO,
NN, WS, and IC; Matlab (v2016b) with “Practical PHI toolbox for integrated information analysis”
(v1.0) [26] for Φ*, SI, MI; custom code in Python (v3.6) for Φ2.0, Φ2.5, D1, D2; and Python (v3.6) with
scripts from [13] for LZ, and S. Statistics were done with custom code in Python (v3.6) and Statsmodels
(v.0.8.0). Everything else was done with custom code in Python (v3.6), Numpy (v1.13.1), SciPy (v0.19.1),
and Pandas (v0.20.3).

3. Results

We analyzed 2032 randomly generated networks, with 131 three-node, 675 four-node, 866
five-node, and 360 six-node networks. In total, 61,224 states were analyzed. Note that the heuristic
measures were only analyzed in 309 of the six-node networks due to time constraints. See Table 2 for
an overview of the main results and Figure 2 for four example networks.
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Table 2. Overview of results.

# S.D. Measure r S.I. Measure r

Φ3.0 Φpeak
3.0

A CO Φ3.0 0.999 CO Φpeak
3.0

0.999

B NN Φ3.0 0.999 NNΦpeak
3.0

0.999

C WS Φ3.0 0.936 WSΦpeak
3.0

0.977

D IC Φ3.0 0.955 ICΦpeak
3.0

0.987
E Est5Φ3.0 0.859
F Φ2.0 0.622 Φpeak

2.0
0.838

G Φ2.5 0.473 Φpeak
2.5

0.832
H D1 0.827
I D2 0.718
J S 0.711
K LZ 0.722
L Φ* 0.816
M SI 0.537
N MI 0.306

Abbreviations: r: correlation values, with measures A–F using Pearson’s r, and G–O using Spearman’s rs; S.D.:
state-dependent; S.I.: state-independent; Φ: integrated information; Φpeak: maximum Φ over system states; CO:
cut-one approximation; NN: no-new-concepts approximation; WS; whole-system approximation; IC: iterative-cut
approximation; Est5: Φpeak

3.0 estimated from five sample states; D1/2: state differentiation; S: coalition entropy; LZ:
Lempel–Ziv complexity; Φ*: decoder-based Φ; SI: stochastic interaction; MI: mutual information.
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E   Est5Φ3.0 0.859 

F Φ2.0 0.622 𝛷ଶ.଴௣௘௔௞ 0.838 

G Φ2.5 0.473 𝛷ଶ.ହ௣௘௔௞ 0.832 

H   D1 0.827 

I   D2 0.718 

J   S 0.711 

K   LZ 0.722 

L   Φ* 0.816 

M   SI 0.537 

N   MI 0.306 

Abbreviations: r: correlation values, with measures A–F using Pearson’s r, and G–O using Spearman’s rs; S.D.: 
state-dependent; S.I.: state-independent; Φ: integrated information; Φpeak: maximum Φ over system states; CO: 
cut-one approximation; NN: no-new-concepts approximation; WS; whole-system approximation; IC: iterative-
cut approximation; Est5: 𝛷ଷ.଴௣௘௔௞ estimated from five sample states; D1/2: state differentiation; S: coalition entropy; 
LZ: Lempel–Ziv complexity; Φ*: decoder-based Φ; SI: stochastic interaction; MI: mutual information. 

 
Figure 2. Four example networks with connection matrices (CM) and TPMs, with Φpeak

3.0 and
corresponding values for selected state-independent heuristics. Note that network #1 does not
consist of a feedforward network if you consider all connections in the CM but is a feedforward network
if only excitatory (yellow) connections are considered, which is consistent with Φpeak

3.0 = 0. Network
#2 consists of a simple ring-shaped network only if excitatory connections are considered, which is
consistent with Φpeak

3.0 = 1.

3.1. Descriptive Statistics

Mean and variance of Φ3.0 grew as a function of network elements (n = 3: M = 0.015 ± 0.121SD
to n = 6: M = 0.386 ± 0.487SD). As the systems increased in size, the fraction of Φpeak

3.0 = 0 networks
(indicating a completely reducible system, e.g., a feedforward network) decreased. We also monitored a
class of networks with Φpeak

3.0 = 1, as this typically indicated that the MC was a stereotyped unidirectional
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“loop”. The fraction of these stereotyped networks stayed relatively stable as n increased, while the
fraction of networks with Φpeak

3.0 > 1 increased. See Figure 3.
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3.2. Approximations

Both the no-new-concepts (NN) and the cut-one (CO) approximations were nearly perfectly
correlated with state-dependent (S.D.) Φ3.0 and state-independent (S.I.) Φpeak

3.0 (r > 0.996). Regression
analysis showed that both no-new-concepts and cut-one approximations were strong linear predictors;
S.I.: R2 > 0.999, NNΦpeak

3.0 = 0.00 + 1.00Φpeak
3.0 . S.D.: R2 > 0.999, NNΦ3.0 = 1.00Φ3.0, and, S.I.: R2 = 0.994,

COΦpeak
3.0 = 0.00 + 1.04Φpeak

3.0 ). S.D.: R2 = 0.995, COΦ3.0 = 1.02Φ3.0, respectively. See Figure 4a,b.Entropy 2019, 21, x FOR PEER REVIEW 10 of 24 
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Figure 4. Results of the comparison between Φ3.0 and approximations, with plotted linear fit (blue) and
one-to-one relationship (dotted, gray); (A) Φ3.0 of the state-dependent CO approximation, (B) Φpeak

3.0

of the state-independent CO, (C) Φ3.0 of the state-dependent NN approximation, (D) Φpeak
3.0 of the

state-independent NN. (E) Φ3.0 of the state-dependent WS estimated main complex, (F) Φpeak
3.0 of the

state-independent WS, (G) Φ3.0 of the state-dependent IC estimated main complex, (H) Φpeak
3.0 of the

state-independent IC.

In regard to estimating Φpeak
3.0 , we took samples from n = 1, 2, ..., 15 states with results ranging from

weak correlation (n = 1, r = 0.688) to strong correlation (n = 15, r = 0.893) as the number of samples
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increased (for n = 5; R2 = 0.738, SSΦpeak
3.0 = 0.097 + 0.262Φ3.0). This was in accordance with a very strong

correlation between Φpeak
3.0 and Φmean

3.0 (R2 > 0.846, Φmean
3.0 = 0.087 + 0.274Φpeak

3.0 ). These strong correlations

suggest that a network with a high value of Φpeak
3.0 typically has several states with high Φ3.0 values, not

just a single state of high Φ3.0. See Figure 5g,h.Entropy 2019, 21, x FOR PEER REVIEW 11 of 24 
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Figure 5. Results of comparison between state-independent Φpeak
3.0 and heuristics and estimates of

Φpeak
3.0 . (A) Φ2.5 modified from Φ2.0, (B) Φ2.0 based on IIT2.0, (C) LZ complexity (non-normalized),

(D) decoder-based Φ, based on Φ2.0, (E) state differentiation D1, (F) cumulative variance of
system elements D, (G) estimated state-independent Φpeak

3.0 using five randomly sampled states (H)
state-independent Φmean

3.0 . G and H are plotted with linear fit (blue) and one-to-one relationship
(dotted, gray).

Finally, we tested whether the estimated MCs could predict Φ3.0. WSΦpeak
3.0 was very strongly

correlated with S.I.Φpeak
3.0 (R2 > 0.954, with WSΦpeak

3.0 = −0.255 + 0.986Φpeak
3.0 ) and with S.D. Φ3.0 (R2 >

0.876, with WSΦ3.0 = -0.163 + 0.899Φ3.0). ICΦ3.0 was very strongly correlated with S.I.Φpeak
3.0 (R2 > 0.974,

with ICΦpeak
3.0 = −0.167 + 0.995Φpeak

3.0 ) and very strongly correlated with Φ3.0 (R2 > 0.912, with ICΦ3.0 =

−0.119 + 0.927Φ3.0). See Figure 4e–h.
Together, these results suggest that the tested approximations can be used as strong predictors of

Φ; however, these approximations still require knowledge of the systems TPM, and their computational
cost grows exponentially, leading to only a marginal increase in the size of networks that can be
analyzed (see Appendix A.4).

3.3. Heuristics

The state differentiation measures D1 and D2 showed strong (rs = 0.827) and medium (rs = 0.718)
rank order correlations with S.I.Φpeak

3.0 , respectively (see Figure 5e,f).
S.D. Φ2.0 and Φ2.5 were weakly or less correlated with Φ3.0 (rs = 0.622 and rs = 0.473, respectively),

while S.I. variants of Φ2.0 and Φ2.5 were strongly rank-order correlated with Φpeak
3.0 (rs = 0.838 and rs =

0.832, respectively) (Figure 5a,b).
The state-independent heuristic LZ and S were medium correlated with Φpeak

3.0 (0.71 < rs < 0.72)
(Figure 5c, only LZ shown). The state-independent measures SI and MI were weakly or less correlated
with Φpeak

3.0 (rs < 0.54), while Φ* was strongly rank-order correlated with Φpeak
3.0 , (rs = 0.82) (Figure 5d,
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only Φ* shown). For Φ*, the results showed two clusters of values, one seemingly linearly related to
Φpeak

3.0 , and one non-correlated cluster consisting of low Φpeak
3.0 /high Φ* outliers. A post-hoc analysis

removing outliers above two standard deviations of the mean negligibly influenced the results (see
Appendix A.2).

Together, these results suggest that the tested heuristics might be accurate predictors of Φpeak
3.0 on a

group level however not necessarily for individual networks; they also drastically reduce computational
demands (see Appendix A.4). In addition, all heuristics showed an increased variance of Φpeak

3.0 with
higher values, suggesting reduced correspondence for higher values.

3.4. Post-hoc Tests

For all measures, removing non-integrated (Φpeak
3.0 = 0) or irreducible circular networks (Φpeak

3.0 = 1)
reduced the correlational values. This was true for all heuristics, while the approximations were
minimally affected. After this adjustment, S.I. D1 and Φ* were the heuristics highest correlated with
Φpeak

3.0 (rs = 0.703 and rs = 0.698, respectively), with LZ the third (rs = 0.616). This indicates that the
results were influenced by a large cluster of non-integrated and circular networks and that the measures
were sensitive to the difference between them (see Appendix A.3).

4. Discussion

We randomly generated a population of small networks (three to six nodes) with linear threshold
logic and both excitatory and inhibitory connections. We evaluated several approximations and
heuristic measures of integrated information based on how well they corresponded to the Φ3.0,
according to the definition proposed by integrated information theory. The purpose of the work was
to determine which methods, if any, might be used to test the theory. Since the accuracy of these
methods cannot be evaluated for large networks of the size typically of interest for consciousness
studies, we considered success in the current study—correspondence in small networks where Φ3.0

can be computed—as a minimal requirement for any such measure. In summary, we observed that
the computational approximations were strong predictors (as defined in Section 2.4) of both Φ3.0 and
Φpeak

3.0 , while heuristic measures were only able to capture Φpeak
3.0 . The approximation measures were

still computationally intensive and required full knowledge of the systems TPM, meaning they only
provided a marginal increase to the size of the systems that can be studied. Heuristic measures on
the other hand, provided greater reductions in computation and knowledge requirements and can be
applied to much larger systems, but only in a coarser state-independent manner.

4.1. Approximation Measures

The approximation measures we tested were developed by starting from the definition of Φ3.0 and
then making assumptions to simplify the computations. Although they did not reduce computation
enough to substantially increase the applicability of Φ3.0, their success provides a blueprint for future
approximations. We discuss two aspects of Φ3.0 computation that should be investigated in future
work: finding the MC of a network and finding the MIP of a mechanism–purview combination.

Regarding the estimates of the MC, the Φ3.0 value of any subsystem within a network is a lower
bound on the Φ3.0 of the MC of that network. Moreover, the WS approximation (assuming the MC is
the whole system) and the IC approximation (assuming the MC is the whole system after removing
nodes without inputs or without outputs and inactive nodes) were both highly predictive of Φ3.0 (and
of Φpeak

3.0 ). Estimating the MC provided computational savings by eliminating the need to compute
Φ3.0 for all possible subsets of elements. However, the computational cost of computing Φ3.0 for an
individual subsystem still grows exponentially with the size of the subsystem. Any MC estimate
close to the full size of the network will still require substantial computation. Therefore, finding a
minimal MC that still accurately estimates Φ3.0 would be most efficient for reducing the computational
demands. While this may limit the usability of MC estimates (for highly integrated systems, the MC is
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more likely to be the whole system), such methods could be used to investigate questions regarding
which part of a system is conscious (e.g., cortical location of consciousness [27]).

Using the CO approximation (assuming that at the system level, the MIP results from partitioning
a single node), we observed very strong correlations with Φ3.0 (and Φpeak

3.0 ). Usually, the number of
partitions to check grows exponentially with the number of nodes in the system, but with the CO
approximation it grew linearly, providing a substantial computational savings. Extending the CO
approximation (or some variant of it, see [28–30]) from the system-level MIP to the mechanism-level
MIPs could provide even greater computational savings. While only a single system-level MIP needs
to be found to compute Φ3.0, a mechanism-level MIP must be found for every mechanism–purview
combination (the number of which grows exponentially with the system size).

As an aside, the IIT3.0 formalism only considers bipartitions of nodes when searching for the MIP,
presumably on the basis that further partitioning a mechanism (or system) could cause additional
information loss (and, thus, never be a minimum information partition). To explore this, we employed
an alternative definition of the MIP requiring a search over all partitions (AP, as opposed to bipartitions)
for a subset of our networks. While we observed a very high correlation between all the partitions and
bipartitions schemes (S.I. Φpeak

3.0 R2 = 0.966; S.D. Φ3.0 R2 = 0.921; see Appendix A.7), the correspondence
was not exact. Note that the definition of a partition used for the ‘all partitions’ option is slightly
different than the definition for ‘bipartitions’, so the set of partitions in the AP option is not strictly a
superset of the set of bipartitions (see PyPhi v1.0 and its documentation [6] or Appendix A.7 for more
details). Despite this difference, we saw a very strong correlation between the methods, suggesting
that different rules for permissible cuts could be considered as potential approximations.

4.2. Heuristic Measures

Although heuristic measures did not capture state-dependent Φ3.0, most were rank-correlated
with state-independent Φpeak

3.0 . However, all heuristic measures were negatively impacted by removing

networks with Φpeak
3.0 = 0‖1, indicating that reducible (Φpeak

3.0 = 0) or circular (Φpeak
3.0 = 1) networks can

confound comparisons, as a majority of networks fall in this range. The heuristics that showed the
strongest correlation after removal of Φpeak

3.0 = 0‖1 networks were measures of state differentiation (D1),
integrated information (Φ*), and complexity (LZ). Together, these results suggest that D1, Φ*, and,
to a lesser degree, LZ could be useful heuristics for Φpeak

3.0 at the group level, although unreliable at the
individual level.

The heuristic D1 measures the number of states accessible by a system [15], and the strong
correlation we observed indicates that systems with a large repertoire of available states are also likely
to have high Φpeak

3.0 (assuming the systems are irreducible, i.e., Φpeak
3.0 > 0). This finding is interesting

because clinical results also corroborate state differentiation as a factor in unconsciousness, where
it has been observed that the state repertoire of the brain is reduced during anesthesia [31]. While
D1 is computationally tractable, it requires full knowledge of the system (i.e., a TPM with 22n bits
of information), that the system is integrated, and that transitions are relatively noise-free. As such,
unfortunately, D1 cannot be applied to larger artificial or biological systems of interest (such as
the brain). The second measure that correlated well with Φpeak

3.0 can also be seen to quantify state
differentiation to some extent. LZ is a measure of signal complexity [32], offering a concrete algorithm
to quantify the number of unique patterns in a signal. While LZ has been used to differentiate conscious
and unconscious states [13,33], it cannot distinguish between a noisy system and an integrated but
complex one from observed data alone. Thus, some knowledge of the structure of the system in
question is required for its interpretation. In addition, while LZ allows for analysis of real systems
based on time-series data, it is also the measure that is the furthest removed from IIT (but see [14]). It is
highly dependent on the size of the input and is hard to interpret without normalization, which makes
it difficult to compare systems of varying size. Finally, the measure Φ* is aimed at providing a tractable
measure of integrated information using mismatched decoding and is applicable to time-series data,
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both discrete and continuous [10]. Φ* is relatively fast to compute and can also be applied to continuous
time series like EEG. However, while we observed a high correlation with Φpeak

3.0 , a cluster of high Φ*

values with corresponding low Φpeak
3.0 values limited the interpretation. This suggests that Φ* might not

be reliable for low Φpeak
3.0 networks, but the analysis of larger networks is needed to draw a conclusion.

While the results did not suggest a clear tractable alternative to Φ3.0, several of the measures could be
useful in statistical comparisons of groups of networks.

Prior work directly comparing Φ3.0 with measures of differentiation (e.g., D1, LZ) reported
lower correlations than those observed here for Φ3.0 [15]. There are at least three possible reasons
for this: (a) the current work considered only linear nodes instead of nodes implementing general
logic, (b) we compared against Φpeak

3.0 and not Φmean
3.0 , and (c) we considered only the whole system as a

basis for the heuristics, and not the subset of elements that constitutes the MC. For (b), we reran the
analysis replacing Φpeak

3.0 with Φmean
3.0 , producing negligible deviances in the results (see Appendix A.5).

For (c), the results of the WS (whole-system approximation) suggested that using the whole system
to approximate the MC does not make a substantial difference (at least for networks of this size).
This leaves (a), the types of network studied, as the likely reason for the differences in the strength of
the correlations.

All heuristic measures’ rank correlations with Φpeak
3.0 were negatively impacted by removing

networks with Φpeak
3.0 = 0‖1. This suggests that such networks are indeed relevant to consider and that

finding a tractable measure that seperates Φpeak
3.0 = 0 and Φpeak

3.0 ≥ 0 networks would be useful in its own
right. Evident in the results was that all heuristics, except S, SI, and MI, showed an inverse predictability
with Φpeak

3.0 , i.e., low scores on a given heuristic corresponded to a low score on Φpeak
3.0 , but the higher the

scores, the larger the spread of Φpeak
3.0 (see Figure 5). This could explain why the correlations drop when

removing networks with Φpeak
3.0 = 0‖1. This inverse predictability indicates two things. First, that the

tested measures could be useful as negative markers, that is, low scores on measures can indicate low
Φpeak

3.0 networks, but not the converse. Secondly, it suggests Φpeak
3.0 has dependencies on aspects of the

underlying network that are not captured by any of the heuristic measures.

4.3. Future Outlook

Finally, we discuss several topics that we consider to be relevant for future work. First,
there are several conceptual aspects of Φ3.0 that are worth considering when developing future
methods. Composition: One of the major changes in IIT3.0 from previous iterations of the theory
is the role of all possible mechanisms (subsets of nodes) in the integration of the system as a
whole. To our knowledge, all existing heuristic measures of integrated information are wholistic,
always looking at the system as a whole. Future heuristics could take a compositional approach,
combining integration values from subsets of measurements, rather than using all measurements at
once. State dependence: We report that heuristic measures do not correlate with state-dependent Φ3.0

(see Appendix A.6 for a perturbation-based approach), but a more accurate statement is that there
are no (data-based) state-dependent heuristics; the nature of heuristic measures does not naturally
accommodate state-dependence. Cut directionality: Φ3.0 uses unidirectional cuts, i.e., separating
one directed connection, while other heuristics use bidirectional cuts (Φ2.0, Φ2.5) or even total cuts,
separating system elements (Φ*, SI, MI). This leads, in effect, to an overestimation of integrated
information, even for feedforward and ring-shaped networks (see Figure 2). This could potentially
partially explain the inverse predictability noted above.

Secondly, there are differences in the data used for the different measures. Only the approximations
(and D1/D2/Φ2.0/Φ2.5) were calculated on the full TPM, the other heuristics were calculated on the basis
of the generated time-series data. However, while deterministic networks such as those considered
here can be fully described by both time-series data and TPM, given that the system was initialized
to all possible states at least once, data from deterministic systems might be “insufficient” as a time
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series, as they often converge on a few cyclical states and, as such, need to be regularly perturbed.
One solution to this could be to add noise to the system to avoid fixed points. In addition, as all
heuristics considered here (except D1/D2/Φ2.0/Φ2.5) were dependent on the size of the generated time
series (see Appendix A.1), future work should control for the number of samples and discuss the
impact of non-self-sustainable activity (convergence on a set of attractor states).

Thirdly, studies comparing measures of information integration, differentiation, and complexity,
have also observed both qualitative and quantitative differences between the measures, even for
simple systems [19,20]. Thus, there might be a large number of networks where the tested heuristics
would correspond to Φ3.0 if only certain prerequisites are met, such as a certain degree of irreducibility
or small-worldness. One could, for example, imagine systems that have evolved to become highly
integrated through interacting with an environment [34]. Such evolved networks might have further
qualities than being integrated, such as state differentiation that serves distinctive roles for the system,
i.e., differences that make a behavioral difference to an organism, which is an important concept in IIT
(although considered from an internal perspective in the theory) [5]. While it is still an open question
what Φ3.0 captures of the underlying network above that of the heuristics considered here, investigation
into structural and functional aspects that lead to systems with high Φ3.0 could point to avenues for
developing new measures inspired by IIT. Further, while estimates of the upper bound of Φ3.0, given a
system size, have been proposed (e.g., see [15]), not much is known about the actual distribution of Φ3.0

over different network types and topologies. Here, we explored a variety of network topologies, but the
system properties, such as weight, noise, thresholds, element types, and so on, were omitted because
of the limited scope of the paper. Investigating the relation between such network properties and Φ3.0

would be an interesting research project moving forward. This could be useful as a testbed for future
IIT-inspired measures and be informative about what kind of properties could be important for high
Φ3.0 in biological systems and the properties to aim for in artificial systems to produce “consciousness”.

Finally, there are several approximations and heuristics not included in the present study [11,12,19,
28,35–40], some of which are specifically applicable to time-series data [10–12,19,21,28,40]. Accordingly,
the present work should not be considered an exhaustive exploration of Φ3.0 correlates.
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Appendix A.

Appendix A.1. Input Size

For each network N with n ∈ {3, 4, 5, 6} elements, we generated an observed time series as a matrix
AN, consisting of n columns and m rows. To cover the full state space of N, we perturbed each N into
2n possible initial conditions Si. For each initial condition Si we simulated 2n + 1 observations (referred
to as an epoch) to ensure that we explored the full behavior of the network. Thus, AN was a matrix of
at least size n × m(n), where

m(n) = (2n + 1)2n
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However, as the LZ compression is dependent on the amount of data to compress, we wanted the
size of AN to be equal for all n. Hence, we needed to adjust the number of timesteps that we ran the
simulation for, so that the size of AN would always be the same as the largest network in the set, ň.
Thus, for the specific case of ň = 6, the size of AN is given by

ň × m(ň) = 6 × m(6) = 24,960

To get the same size of AN for a network N of size n ∈ {3, 4, 5, 6}, we needed an adjusted number
of timesteps m’(n) ≈ α(n) × m(n) (rounded to the nearest integer) where the adjustment factor α(n) is
given by

n × α(n) × m(n) = 24960

α(n) = 24960/n(2n + 1)2n

For the general case, the shape of AN is n - by - m’(n) where

m’(n) ≈ α(n) × m(n)

m(n) = (2n + 1)2n

α(n) = ň(2ň + 1)2ň/n(2n + 1)2n

where n ∈ {a, a+1, ..., ň}, for some a, ň ∈ N, with ň > a.
To test the effect of varying the amount of data, i.e., the size of AN, we generated data based on

two networks with n = 6: one with high Φpeak
3.0 , and one with low Φpeak

3.0 , with number of timesteps in
one epoch, E ≈ α(n)(2n + 1) = {10, 11, ..., 425}. See Figure A1 for results.

Evident in the results is that all heuristics on generated data were affected by the number of
timesteps (i.e., the size of AN). This indicated that various measures were dependent on the amount of
data they were calculated on.

However, as we forced each generated time series to have the same size, the networks with
fewer elements generated longer time series, i.e., fewer columns required more rows. As this could
potentially confound the observed results, we reanalyzed Spearman’s rs between the heuristics on
the observed data and Φ3.0 for each network size class separately. Except for the heuristic SI, which
increased relative to the results presented in the main text, the other measures were less affected
(See Table A1).
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Figure A1. Heuristics on generated time-series data, over varying number of timesteps, for two
different six-node networks. (A) a high Φpeak

3.0 network with highly connected CM and complex TPM,

(B) a low Φpeak
3.0 network with sparse connected CM and simple TPM, (C) normed values for different

heuristics over timesteps between sampled timepoints for network A, (D) normed values for network
B. The values for the two networks (B,D) were normalized between 0 and 1. In the original analysis,
64 timesteps were used (dashed line).

Table A1. rs between Φpeak
3.0 and heuristics on the observed data, for different network sizes.

n LZ S Φ* SI MI

3 0.776 0.747 0.696 0.625 0.032
4 0.799 0.778 0.794 0.717 0.078
5 0.786 0.753 0.825 0.772 0.162
6 0.756 0.668 0.848 0.833 0.276
x 0.777 0.743 0.791 0.738 0.137

Note: Each correlation value reflects the rs between the state-independent heuristic and Φpeak
3.0 . n: size of the network

in number of nodes.

Appendix A.2. Φ* Post-hoc Analysis

To investigate the distribution of Φ* relative to Φpeak
3.0 after removing a cluster of high Φ* and

low Φpeak
3.0 values, we removed the outliers above two standard deviations of the mean. This did not

improve the results drastically, as the bulk of observations lay within a narrow band of low Φ* values
(see Figure A2).
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Appendix A.3. Post-hoc Analysis of Networks not Totally Reducible or Reducible to Circular Systems

Systems that are completely reducible (Φpeak
3.0 = 0) or reducible to a circular or ring-shaped

(sub)network (Φpeak
3.0 = 1) might not be representative for candidate heuristics, as these networks

can be considered “special” cases in terms of IIT3.0. The absolute difference in correlation values
can be seen in Table A2, and the corresponding scatter plots of some select measures are shown in
Figure A3. Note that we have here included the bipartitioning versus the all-partitioning comparison
(AP) (see Appendix A.7). Most measures dropped in correlational values, while those that increased
were low to begin with. Only measures A to D had an r > 0.8, while measure H and L stayed
close to rs = 0.7. The other measures had rs < 0.65. This suggests that the reported correlational
values for most heuristics (F to N) were primarily driven by a cluster of non or trivially integrated
networks (Φpeak

3.0 = 0‖1). For measures F to N, Spearman’s rank order correlation was used, Pearson’s
correlation otherwise.
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Figure A3. Results of the comparison between state-independent Φpeak
3.0 and heuristics of Φpeak

3.0 after all

networks with = Φpeak
3.0 0‖1 were removed; (A) Φ based on Φ2.5, (B) Φ based on Φ2.0, (C) LZ complexity

(non-normalized), (D) Φ*, (E) state differentiation D1, (F) cumulative variance of system elements D2.
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Table A2. Difference in the results after removing networks and states with Φpeak
3.0 = 0‖1.

# S.D. Measure ∆r S.I. Measure ∆r

Φ3.0 Φpeak
3.0

A CO Φ3.0 −0.004 CO Φpeak
3.0

−0.004

B NN Φ3.0 0.000 NNΦpeak
3.0

0.000

C WS Φ3.0 0.027 WSΦpeak
3.0

0.006

D IC Φ3.0 0.021 ICΦpeak
3.0

0.006
E Est5Φ3.0 −0.080
F Φ2.0 −0.396 Φpeak

2.0
−0.289

G Φ2.5 −0.491 Φpeak
2.5

−0.266
H D1 −0.124
I D2 −0.172
J S −0.405
K LZ −0.106
L Φ* −0.118
M SI 0.063
N MI 0.010
O AP Φ3.0 −0.029 APΦpeak

3.0
0.014

Abbreviations: ∆r: change in correlation values with measures A–F using Pearson’s r, and G–O using Spearman’s
rs; SEst5: Φpeak

3.0 estimated from five sample states.

Appendix A.4. Estimated Computational Demands

To estimate the computational demands, seven networks of each n ∈ {3, 4, 5, 6} were randomly
generated, with p(Wij = 1) ∈ {0.7, 0.8, 0.9, 1.0}, and p(Wij = −1) ∈ {0.3, 0.4, 0.5}. The average times were
recorded for each measure, then fitted to a logarithmic regression with reported exponent x, in the form
of time = bnx, where b is a constant, and n is the system size in nodes. In essence, x > 1 indicates an
exponential (more than linear) increase, while x < 1 indicates a less than linear increase. The reported
exponents, especially for the measures of Φ, were likely underestimated. However, these estimates
were highly dependent on underlying computational power, parallelization, efficiency of algorithmic
implementation, as well as utilization of shortcuts. As such, the estimated computational demands
are guiding at best. Here, we used a 32 gb, 16-core (Intel Xeon E5-1660 v4 @ 3.20 GHz, 20480 KB),
parallelized on the level of states for Φ2.0/2.5/3.0, at the level of partitions (MIP search) for Φ*, SI, and
MI1, and non-parallelized for LZ, S, D1, and D2. See Table A3 for the average time taken to compute
the measures (in seconds) for each network size and fitted logarithmic regression, and Figure A4 for an
overview of the relationship between computational time and correlation with Φpeak

3.0 . Note that we
have here included the all-partitioning (AP) “approximation” (see Appendix A.7).
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Table A3. Estimated computational demands.

# Measure t(n = 3) t(n = 4) t(n = 5) t(n = 6) x

Φpeak
3.0

0.40 1.51 102.67 9397.08 31.13

A CO Φpeak
3.0

0.39 1.22 26.61 874.54 13.74

B NNΦpeak
3.0

0.35 1.27 68.61 7070.00 29.06

C WSΦpeak
3.0

0.32 1.41 91.57 8379.66 32.33

D ICΦpeak
3.0

0.31 1.18 74.64 8175.50 31.56
E Est5Φ3.0 0.08 0.30 20.53 1879.41 31.13
F Φpeak

2.0
0.39 1.49 27.60 691.91 12.59

G Φpeak
2.5

0.37 1.90 33.12 850.35 13.47
H D1 0.00003 0.00003 0.00004 0.0001 1.43
I D2 0.000 0.001 0.001 0.002 1.64
J S 0.005 0.005 0.006 0.007 1.14
K LZ 0.03 0.02 0.02 0.02 0.99
L Φ* 0.23 0.29 0.43 0.60 1.38
M SI 0.20 0.29 0.38 0.38 1.24
N MI 0.17 0.22 0.18 0.06 0.71
O APΦpeak

3.0
0.44 3.98 2021.79 - 67.73

Abbreviations: t(n = i): time in seconds to calculate the relevant measure for a system of size n = 3, 4, 5, 6; x:
exponent in a logarithmic regression fit of the form time = bnx, where n is the system size in nodes, and b is a constant
(not reported); Est5: Φpeak

3.0 estimated from five sample states.
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Appendix A.5. Comparisons versus Φmean
3.0

We investigated to what extent replacing Φpeak
3.0 with Φmean

3.0 (similarly for measures A–D, F, G, O)
affected the overall results. Analysis and statistical comparisons were performed as in Sections 2.3
and 2.4. All the approximations and heuristics were negligibly affected, suggesting that for small
networks of n ∈ {3, 4, 5, 6}, the mean and peak state-dependent Φ3.0 were estimated with similar
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accuracy (Table A4). Note that we have here included the bipartitioning versus the all-partitioning
(AP) comparison (see Appendix A.7).

Table A4. Results after replacing Φpeak
3.0 with Φmean

3.0 .

# S.I. Measure r ∆r

A CO Φmean
3.0 0.999 .

B NNΦmean
3.0 0.999 .

C WSΦmean
3.0 0.947 −0.03

D ICΦmean
3.0 0.946 −0.041

E Est5Φ3.0 0.922 0.063
F Φmean

2.0 0.839 0.001
G Φmean

2.5 0.787 −0.045
H D1 0.812 −0.015
I D2 0.774 0.056
J S 0.744 0.033
K LZ 0.716 −0.006
L Φ* 0.801 −0.015
M SI 0.499 −0.038
N MI 0.304 −0.002
O APΦmean

3.0 0.979 0.02

Abbreviations: r: correlation values with measures; ∆r: change in correlation values; A–F using Pearson’s r, and
G–O using Spearman’s rs.

Appendix A.6. Initial-state-dependent Heuristics

All heuristics on generated time-series data were calculated in a state-independent manner, using
the time-series data generated for the whole network. However, while generating the time-series data,
we periodically perturbed the network into a new state, ensuring that our data fully explored the state
space of the network. This procedure resembles the perturbations applied by TMS during empirical
studies of consciousness [14]. As such, we aimed to test whether the sequence of states following an
initial state (i.e., an epoch) can be useful when estimating Φ3.0. In other words, we calculated LZ, S,
Φ*, SI, and MI on the basis of each of 2n epochs separately (e.g., t1 to t257 in Figure 1c) rather than
for all epochs appended together. Since each epoch varied in length based on n, we correlated the
“initial-state-dependent heuristics” with Φ3.0 for each network size separately. Statistical comparisons
were otherwise performed as in Section 2.4. See Table A5 for results. As each epoch was α(n)-timesteps
long, they contained large swathes of cyclical state repetitions (one network could at most visit 2n

unique states before repeating); one should be careful in drawing conclusions from this approach.
However, further tests exploring this topic in particular could be informative for the future use of a
perturbational approach [14,16].

Table A5. rs between Φ3.0 and “initial-state-dependent heuristics” for varying network sizes.

n LZ S Φ* SI MI

3 0.391 −0.032 0.146 0.232 0.248
4 0.405 −0.072 −0.126 0.182 0.080
5 0.442 −0.079 −0.101 0.192 0.099
6 0.453 −0.040 −0.092 0.129 0.252
x 0.423 −0.056 −0.043 0.184 0.169

Note: Each correlation value reflects the rs between the initial-state-dependent heuristics and Φ3.0; n: size of the
network in number of nodes.

Appendix A.7. All Partitions

Bipartitioning (BP) when finding the MIP is the only partitioning scheme considered in IIT3.0.
However, it is not clear how partitioning a mechanism in more than two parts would affect Φ3.0,
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nor how it would be affected by different rules for cutting. While IIT3.0 is defined using BP, a criticism
against the theory is that one could use tripartitioning, or more, and that BP should be considered an
approximation in its own right with respect to more extensive partitioning schemes. As such, we tested
the default BP versus that of all possible partitions (AP) [6] to investigate how well they corresponded
(on networks with n ∈ {3, 4, 5}). While a superset of BP should result in less than or equal Φ3.0 due to
usually increased information loss with increased number of partitions, the way AP is implemented in
PyPhi v1.0 [6] requires that any partition includes at least a mechanism element. As such, AP is not
a superset of BP, but the results might be informative in terms of other more expedient partitioning
schemes based on other requirements for permissible cuts. Statistical comparisons were performed as
defined in Section 2.4.

Bipartitioning was a very strong linear predictor of all partitioning, both with S.I. Φpeak
3.0 (R2 = 0.966,

APΦpeak
3.0 = −0.134 + 1.438BPΦpeak

3.0 ) and with S.D. Φ3.0 (R2 = 0.921, APΦ3.0 = −0.033 + 1.541BPΦ3.0).
We also observed significantly higher Φ3.0 values for all partitioning, with relative increases of S.D.
(M = 32.29 ± 150.11%, t = −5.77, p < 0.0001) and S.I.: (M = 16.21 ± 28.60, t = −21.16, p < 0.0001)
(Figure A5).
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