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Abstract

:

Pareto type II distribution has been studied from many statisticians due to its important role in reliability modelling and lifetime testing. In this article, we introduce two bivariate Pareto Type II distributions; one is derived from copula and the other is based on mixture and copula. Parameter Estimates of the proposed distribution are obtained using the maximum likelihood method. The performance of the proposed bivariate distributions is examined using a simulation study. Finally, we analyze one data set under the proposed distributions to illustrate their flexibility for real-life applications.
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1. Introduction


The Pareto Type-II distribution or Pearson Type-VI distribution is called Lomax distribution introduced and studied by [1]. This distribution is commonly used in reliability and many lifetime testing studies. It is also used to analyze business data. Let T be a random variable from the Pareto type II (PII) distribution with scale parameter β and shape parameter α, then the probability density function (PDF) and the cumulative density function (CDF) of PII distribution are given respectively by


f(T)=αβ(1+βt)α+1 , t>0



(1)






F(T)=1−(1+βt)−α, t>0



(2)







The survivor function (SF) is given by:


S(T)=(1+βt)−α, t>0



(3)







The hazard rate function (HRF) and the cumulative hazard rate function (CHRF) are


h(T)=αβ1+βt, t>0



(4)






H(T)=αln(1+βt) , t>0



(5)







Dubey [2] showed that Pareto Type II distribution can be derived as a special case of a compound gamma distribution. Bryson [3] discussed that Lomax distribution provides an excellent alternative to classical distributions such as the exponential and Weibull distributions. Ahsanullah [4] studied the record statistics of the Lomax distribution using distributional characteristics. Balakrishnan and Ahsanullah [5] acquired some repeated relations between the moments of record values for the Lomax distribution. The Lomax distribution was used as a mixing distribution for the Poisson parameter to derive the discrete Poisson-Lomax distribution [6]. Petropoulos and Kourouklis [7] considered the estimation of a quintile of the classical marginal distribution of multivariate Lomax distribution in which the location and scale parameters are unknown. ABD [8] obtained an estimation of the Lomax parameters using maximum likelihood and Bayesian methods. Moghadam et al. [9] studied the problem of estimating the parameters of Lomax distribution based on generalization order statistics. Many scientists studied the Lomax distribution as lifetime models to provide estimates for the unknown parameters using different methods such as [10,11,12,13,14,15,16,17]. Tadikamalla [18] linked the Burr family with Lomax distribution. There are many applications for Pareto II distribution in modeling and analyzing the lifetime data in medical, engineering, and biological sciences. Examples of these applications include the mass to energy ratios in nuclear physics, Mendelian inheritance ratios in genetics, target to control precipitation in meteorology, and the stress-strength model in the context of reliability which is widely searched, see [19,20].



Many studies were conducted to obtain a useable multivariate or bivariate distribution for modelling real life applications. There are a number of methods in the literature that have been used successfully in constructing new multivariate distributions [21,22]. Among these, the copula method has been recognized as one of the most popular methods to construct new multivariate or bivariate distributions due to its simplicity. In addition, the dependence property of the copula method between random variables gives researchers a general structure to model multivariate distributions [23,24]. Several studies have lately introduced bivariate distributions using copula and some of these have derived by combining the mixture and copula methods [25,26,27,28,29,30,31,32].



In this article, we aim to propose new bivariate Pareto type II (BPII) distributions using copula due to the usefulness of the Pareto II distribution in many life applications and the simplicity of the copula method. The article is outlined as follows: BPII distribution derived from Gaussian copula and BPII distribution derived from mixture and Gaussian copula are proposed in Section 2. Section 3 illustrates parameter estimates of the proposed distributions. A simulation study is performed to show the flexibility of the new bivariate distributions in Section 4. Section 5 presents an analysis of one real data set to show the usefulness of the bivariate Pareto Type II distributions. The article is concluded in Section 6.




2. Bivariate Pareto Type II Distributions


This section illustrates the construction of Bivariate Pareto Type II distribution derived from Gaussian copula (BPIIG) and derived from the mixture and Gaussian copula (BPIImG).



2.1. BPIIG Distribution


The construction of BPIIG distribution is derived using the inversion method for the PII distribution using Sklar’s theorem [23]. Therefore, the joint CDF is given by


F(T1 ,T2)=C[F(T1),F(T2)]








where T1, T2 are random variables with PII distribution, and C is the Gaussian copula function with uniform margins and Pearson correlation parameter ρ∈(−1, 1) is given by


C= Φρ(Φ−1(v1), Φ−1(v2),ρ )








Φρ denotes the bivariate standard normal distribution function, Φ−1 is the inverse of univariate standard normal distribution function and v1=F(t1), v2=F(t2) , are the marginal distribution for the random variables T1 and T2, respectively.



Then, the joint PDF of T1 and T2 is given by


f(T1 ,T2)=C′[F(T1),F(T2)]f(T1)f(T2)








where for j=1,2,f(Tj) and F(Tj) are given by (1) and (2), respectively, and C′ is the density of the bivariate Gaussian copula obtained by differentiating C, such that


C′=exp{−12(1−ρ2)(y12−2ρy1y2+y22)}2π1−ρ2



(6)




where  y1=Φ−1(v1) and  y2=Φ−1(v2). For details see, [33,34,35].



Therefore, the joint PDF of BPII distribution with PII marginal can be rewritten as


f(T1,T2)=(α1β1(1+β1t1)α1+1)(α2β2(1+β2t2)α2+1)C′(v1,v2)



(7)




where vj=F(Tj), j=1, 2, given by (1), C′(v1,v2) given by (6). For more details, see [36,37].



Plots of the BPIIG distribution PDF, CDF, and contour for α1=1.5 , α2=2, β1=0.01, β2= 0.03, and two values of the copula parameter ρ are presented in Figure 1.




2.2. BPIImG Distribution


The construction of BPIImG distribution depends on the mixture representation described in [25,38,39]. The idea of mixture representation is to write the density of a random variable T on (0,∞) in the form of compound distribution as follows:


f(t)=∫Ωf(t|u) f(u) du, u∈Ω,








where Ω is a subset of R, U is a non-negative latent random variable following a gamma distribution with shape parameter 2 and scale parameter 1, denoted by gamma (2,1). And fT|U(t|u) can be written as follows


f(t|u)= h(t)u,u>H(t),








where h(t) is the HRF, and H(t) is CHRF.



That is, the mixture and copula methods are combined to obtain bivariate distribution. This is conducted by constructing a bivariate gamma distribution of latent variable U_=(U1,U2) with two marginal gamma (2,1) distributions using Gaussian copula. At first stage, we obtain a bivariate gamma distribution with only unknown correlation parameter ρ such as


f(u1,u2)=f(u1) f(u2)C′(v1,v2)



(8)




where C′(v1,v2) is given by (6), f(uj) is the PDF of gamma (2,1), vj=F(uj) is the CDF of gamma (2,1) given by


F(uj)=∫0ujuje−uj duj



(9)







Then as a second stage, a bivariate gamma distribution in (8) is used as a mixing distribution of T1,T2, assuming that T1,T2 are conditionally independent given U_. The conditional PDF can be written as


f(tj|uj)=αjβj(1+βjtj)e−uj, uj>αj(ln(1+βjtj))



(10)







And then integrate over the latent variables U_ to obtain the joint PDF of BPIImG distribution is as follows


f(t1,t2)=∫H(t2)∞∫H(t1)∞∏j=12[αjβj(1+βjtj) e−uj]C′(v1,v2) du1du2,



(11)




using the above two stages method will help in the model analysis, because we can estimate the correlation parameter ρ from the first stage (i.e., the bivariate gamma distribution). Then, estimate the other parameters from the second stage (i.e., the conditional density functions f(tj|uj)).





3. Estimation


3.1. Estimation for BPIIG Parameters


If Ti=(T1i,T2i), is a bivariate random sample from BPII distribution with probability function in (7), then the likelihood function is


L(θ|T1,T2)=∏i=1nf(t1i,t2i)=∏j=12∏i=1n[(αjβj(1+βjtji)αj+1) ]C′(v1,v2)








where θ=(β1,α1,β2,α2, ρ). The log-likelihood function is given by


ℓ=∑j=12nlnαj+n lnβj−(αj+1)∑i=1nln(1+βjtji)+∑i=1n[ln(C′(v1,v2))]



(12)







The maximum likelihood (ML) estimates are obtained by differentiating (12) with respect to β1,α1,β2,α2, and ρ. Then, the first partial derivatives are as follows:


∂ℓ∂αj=nαj−∑i=1nln(1+βjtji)=0,∂ℓ∂βj=nβj−(αj+1)∑i=1ntji(1+βjtji)=0∂ℓ∂ρ=0⇒ρ^=∑i=1ny1i y2in}



(13)







The ML estimates of β1,α1,β2,α2, and ρ can be obtained by solving (13) numerically.



In addition, we can obtain approximate confidence interval (CI) of the parameters β1,α1,β2,α2, and ρ by using large sample theory and ML estimates of asymptotic distribution. That is, θ=(β1,α1,β2,α2, ρ)~multivariate normal(θ,I−1(θ)), where I−1 is the inverse of the observed information matrix given by


I−1(θ)=(∂2ℓ∂α12∂2ℓ∂α1∂α2∂2ℓ∂α1∂β1∂2ℓ∂α1∂β2∂2ℓ∂α1∂ρ∂2ℓ∂α2∂α1∂2ℓ∂α22∂2ℓ∂α2∂β1∂2ℓ∂α2∂β2∂2ℓ∂α2∂ρ∂2ℓ∂β1∂α1∂2ℓ∂β1∂α2∂2ℓ∂β12∂2ℓ∂β1∂β2∂2ℓ∂β1∂ρ∂2ℓ∂β2∂α1∂2ℓ∂β2∂α2∂2ℓ∂β2∂β1∂2ℓ∂β22∂2ℓ∂β2∂ρ∂2ℓ∂ρ∂α1∂2ℓ∂ρ∂α2∂2ℓ∂ρ∂β1∂2ℓ∂ρ∂β2∂2ℓ∂p2)−1











The second derivative of (13) with respect to the parameters are provided in the Appendix A. Therefore, 100(1−γ)% approximate CI for the parameters  β1,α1,β2,α2, and ρ for j=1,2 are given by


α^j∓zγ/2var(α^j)










β^j∓zγ/2var(β^j)










ρ^∓zγ/2var(ρ^)








where: zγ/2 is the upper (γ/2)% of the standard normal distribution. The CI of the parameters could be adjusted for the lower bound using the method in [40].




3.2. Estimation for BPIImG Parameters


If Ti=(T1i,T2i) is a bivariate random sample of size n from BPII distribution, and U_=(U1i,U2i), i=1,…, n is a random sample from bivariate gamma distribution, then the log-likelihood function can be written as


ℓ(θ|T1,T2,U1,U2)=∑j=12nlnαj+n lnβj−∑i=1nuji−∑i=1nln(1+βjtji)+∑i=1n[ln(C′(v1,v2))]



(14)




where uj>αj(ln(1+βjtj)), and vj=F(uj) given by (9).



The ML estimates of θ=(β1,α1,β2,α2,ρ) can be obtained by differentiating (14) with respect to β1,α1,β2,α2, and ρ and solving the following equations:


∂ℓ∂αj=nαj−∂∑i=1nuji∂αj=0,∂ℓ∂βj=nβj−∑i=1ntji(1+βjtji)−∂∑i=1nuji∂βj=0∂ℓ∂ρ=0⇒ρ^=∑i=1ny1i y2in}



(15)







The nonlinear system of equations in (15) can be solved numerically to obtain the ML estimates of β1,α1,β2,α2, and ρ.





4. Simulation Study


Monte Carlo simulation studies were conducted to estimates the parameters for BPIIG and BPIImG distributions. In addition, we investigated and compared the performance of the ML estimates at different sample sizes; n = (80, 150, 300, 350, 400) with the selected values of the parameters, (β1=2.1,α1=1.1,β2=2.5,α2=1.5),  keeping the copula parameter ρ=(0.3, 0.70, 0.80).



4.1. ML Estimates of BPIIG


ML parameter estimates of the BPIIG distribution are shown in Table 1 along with the corresponding relative mean square error (RMSE).



The results in Table 1 show that as the sample size increases, the RMSE of the parameters estimates become smaller. In addition, most parameters have better estimates and smaller RMSEs when the copula parameter equal to 0.80.




4.2. ML Estimates of BPIImG


Parameter estimates of BPIImG distribution using ML methods are illustrated in Table 2. In addition, the average estimates along with their RMSE over 1000 replication are reported.



The results reported in Table 2 indicate that the RMSE of the parameter estimates decreases as the sample size increases. Also, we obtained better estimates of the parameters with smaller RMSE especially the estimate of ρ when the copula parameter is equal to 0.80 and the sample size is more than 150.




4.3. Models Comparison


We compared the flexibility of the BPIIG and BPIImG distributions based on RMSE, Akaike information criterion (AIC), and Bayesian information criterion (BIC) values. The results in Table 3 indicate that the BPIImG distribution has lower values of AIC and BIC. Therefore, we conclude that BPIImG distribution is more flexible and perform better than BPIIG.





5. Data Analysis


The American football league data obtained from the matches played on three consecutive weekends in 1986 have two variables T1 and T2 where; T1 is the game time the first fields scored when the ball kicks between goalposts and T2 is the game time the first touchdown is scored, see [41]. The histogram and the scatter plots of T1 and T2 are right skewed and positively correlated [29]. The sample Spearman correlation coefficient between T1 and T2 is 0.804 which allows using the proposed BPII distribution to model this bivariate data. Also, we conducted goodness of fit test by fitting the marginals only, see [42].



That is, the PII distribution is fitted to the marginals and the ML estimates of the parameters are: β^1=0.011,α^1=9.519,β^2=0.0141,α^2=5.3778. The plots of the fitted and the empirical CDF for the two marginals based on ML estimates are illustrated in Figure 2. The Kolmogorov-Smirnov (K-S) test values and the associated p-values (reported in brackets) for T1 and T2 are 0.1521(0.2855) and 0.1355(0.3884).



Hence, the K-S test along with the plots of the fitted and the empirical CDF in Figure 2 indicate that the BPII distribution has an appropriate fit for this bivariate data. In addition, the Gaussian copula is appropriate for this data as indicated in [29]. For more details, see [43].



Table 4 reports the ML estimates of the parameters along with the standard error (SE) of the BPIIG and BPIImG parameters. It can be seen from Table 4 that the AIC of BPIImG distribution is smaller compared to BPIIG distribution. This indicates that BPIImG distribution is more appropriate for this data.



The model’s comparison illustrated in [29] is re-conducted to compare BPIIG and BPIImG with Bivariate expatiated Pareto derived from the mixture and Gaussian copula (BEPmG), bivariate exponentiated generalized Weibull-Gompertz distribution (BEGWG) studied by [44], and bivariate exponentiated Gompertez distribution (BEG) using the same real data set.



The results in Table 5 show that BPIImG distribution has the lowest AIC, and BIC values compared the BEPmG, BEGWG, BEG and BPIIG distributions. Therefore, BPIImG provides a more appropriate and flexible fit for this data set.




6. Conclusions


In this article, we introduced BPIIG and BPIImG distributions. Parameter estimates of the proposed bivariate distributions are obtained using the ML method. A simulation study is carried out to show the performance of the proposed bivariate distributions. We concluded that the BPIImG distribution is more flexible and performs better than the BPIIG distribution. A real lifetime data is analyzed, and the results showed that the BPIImG distribution provides a more suitable fit than the BPIIG, BEPmG, BEG, and BEGWG distributions.
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Appendix A


The second partial derivatives will be simplified as follows:


I11=I22=−E[∂2ℓ∂αj2]=nαj2I12=I21=−E[∂2ℓ∂α1∂α2]=0










I13=I31=−E[∂2ℓ∂α1∂β1]=−∑i=1nt1i(1+β1t1j) 










I33=I44=−E[∂2ℓ∂βj2]=nβj2+(αj+1)∑i=1ntji(1+βjtji)2










I14=I41=−E[∂2ℓ∂α1∂β2]=−E[∂2ℓ∂β2∂α1]=0I24=I42=−E[∂2ℓ∂α2∂β1]=−E[∂2ℓ∂β1∂α2]=0










I34=I43=−E[∂2ℓ∂β1∂β2]=0










I15=I51=I25=I52=−E[∂2ℓ∂αj∂ρ]=0 I35=I53=I45=I54=−E[∂2ℓ∂βj∂ρ]=0I55=−E[∂2ℓ∂ρ2]
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Figure 1. Probability density function (PDF), cumulative density function (CDF) and contour plots of the bivariate Pareto Type II models for (a) α1=1.5 , α2=2, β1=0.01, β2=0.03, ρ=0.70, (b) α1=1.5 , α2=2, β1=0.01, β2=0.03, ρ=0.80. 
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Figure 2. The plots of the fitted and the empirical CDF for the two marginals based on maximum likelihood (ML) estimate respectively. 
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Table 1. Maximum likelihood (ML) average estimates for the parameters of bivariate Pareto Type II distribution based on Gaussian copula (BPIIG) and the corresponding relative mean square error (RMSE).






Table 1. Maximum likelihood (ML) average estimates for the parameters of bivariate Pareto Type II distribution based on Gaussian copula (BPIIG) and the corresponding relative mean square error (RMSE).





	
Sample Size

	
Parameters

	
ML

ρ=0.30

	
ML

ρ=0.70

	
ML

ρ=0.80




	
Mean

	
RMSE

	
Mean

	
RMSE

	
Mean

	
RMSE






	
80

	
α^1

	
1.2137

	
0.1321

	
1.2076

	
0.1114

	
1.1923

	
0.0881




	
α^2

	
1.7906

	
0.4042

	
1.6979

	
0.2457

	
1.6937

	
0.4678




	
β^1

	
2.1038

	
0.3529

	
2.0866

	
0.2779

	
2.1132

	
0.3038




	
β^2

	
2.4345

	
0.4989

	
2.4847

	
0.3783

	
2.5225

	
0.3113




	
ρ^

	
0.2945

	
0.0369

	
0.6900

	
0.0161

	
0.7995

	
0.0019




	
150

	
α^1

	
1.1626

	
0.0508

	
1.1519

	
0.0451

	
1.15828

	
0.0450




	
α^2

	
1.6207

	
0.1151

	
1.6233

	
0.1085

	
1.5980

	
0.0952




	
β^1

	
2.0828

	
0.1743

	
2.0986

	
0.1627

	
2.0909

	
0.1625




	
β^2

	
2.4643

	
0.2409

	
2.4629

	
0.2282

	
2.5114

	
0.2267




	
ρ^

	
0.3001

	
0.0187

	
0.6975

	
0.0022

	
0.8002

	
0.0009




	
300

	
α^1

	
1.1238

	
0.0172

	
1.1281

	
0.0159

	
1.1155

	
0.0162




	
α^2

	
1.5469

	
0.0406

	
1.5494

	
0.0364

	
1.5320

	
0.0316




	
β^1

	
2.0901

	
0.0825

	
2.1004

	
0.0749

	
2.1075

	
0.0777




	
β^2

	
2.4974

	
0.1193

	
2.5087

	
0.1134

	
2.4988

	
0.1020




	
ρ^

	
0.2983

	
0.0091

	
0.6987

	
0.0010

	
0.8001

	
0.0004




	
350

	
α^1

	
1.1268

	
0.0178

	
1.1244

	
0.0147

	
1.1145

	
0.0129




	
α^2

	
1.5393

	
0.0315

	
1.5396

	
0.0309

	
1.5304

	
0.0265




	
β^1

	
2.0989

	
0.0760

	
2.1006

	
0.0670

	
2.1023

	
0.0610




	
β^2

	
2.5078

	
0.1044

	
2.5116

	
0.0973

	
2.4911

	
0.0852




	
ρ^

	
0.2985

	
0.0073

	
0.6988

	
0.0009

	
0.7998

	
0.0003




	
400

	
α^1

	
1.1134

	
0.0131

	
1.1222

	
0.0128

	
1.1135

	
0.0111




	
α^2

	
1.5338

	
0.0264

	
1.5346

	
0.0260

	
1.5241

	
0.0221




	
β^1

	
2.1221

	
0.0673

	
2.0982

	
0.0581

	
2.1012

	
0.0532




	
β^2

	
2.4999

	
0.0867

	
2.5073

	
0.0846

	
2.4989

	
0.0721




	
ρ^

	
0.3009

	
0.0066

	
0.6988

	
0.0008

	
0.7995

	
0.0003
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Table 2. ML average estimates for the parameters of bivariate Pareto Type II distribution based on mixture and Gaussian copula (BPIImG) and the corresponding RMSE.






Table 2. ML average estimates for the parameters of bivariate Pareto Type II distribution based on mixture and Gaussian copula (BPIImG) and the corresponding RMSE.





	
Sample Size

	
Parameters

	
ML

ρ=0.30

	
ML

ρ=0.70

	
ML

ρ=0.80




	
Mean

	
RMSE

	
Mean

	
RMSE

	
Mean

	
RMSE






	
80

	
α^1

	
1.2204

	
0.1456

	
1.2036

	
0.0532

	
1.1812

	
0.1163




	
α^2

	
1.8343

	
0.7488

	
1.6036

	
0.0419

	
1.6125

	
0.2962




	
β^1

	
2.0930

	
0.3395

	
2.1039

	
0.1772

	
2.1818

	
0.3749




	
β^2

	
2.4204

	
0.2852

	
2.5019

	
0.1168

	
2.5054

	
0.3149




	
ρ^

	
0.3018

	
0.0326

	
0.7024

	
0.0043

	
0.7987

	
0.0019




	
150

	
α^1

	
1.1460

	
0.0440

	
1.1551

	
0.0461

	
1.1523

	
0.0476




	
α^2

	
1.5988

	
0.1096

	
1.5901

	
0.0412

	
1.5909

	
0.2826




	
β^1

	
2.1260

	
0.1941

	
2.1152

	
0.0923

	
2.1291

	
0.1871




	
β^2

	
2.5215

	
0.1630

	
2.4963

	
0.1161

	
2.5292

	
0.1572




	
ρ^

	
0.2998

	
0.0184

	
0.7022

	
0.0025

	
0.7998

	
0.0010




	
300

	
α^1

	
1.1329

	
0.0213

	
1.1319

	
0.0214

	
1.1235

	
0.0193




	
α^2

	
1.5480

	
0.0484

	
1.5620

	
0.0478

	
1.5400

	
0.0384




	
β^1

	
2.0869

	
0.0926

	
2.1035

	
0.0914

	
2.1037

	
0.0891




	
β^2

	
2.4916

	
0.0778

	
2.4976

	
0.0767

	
2.5059

	
0.0748




	
ρ^

	
0.3018

	
0.0089

	
0.6997

	
0.0013

	
0.7992

	
0.0005




	
350

	
α^1

	
1.1217

	
0.0169

	
1.1158

	
0.0154

	
1.1145

	
0.0151




	
α^2

	
1.5374

	
0.0335

	
1.5263

	
0.0307

	
1.5368

	
0.0295




	
β^1

	
2.1065

	
0.0844

	
2.1318

	
0.0795

	
2.1181

	
0.0743




	
β^2

	
2.5030

	
0.0701

	
2.5450

	
0.0668

	
2.5022

	
0.0624




	
ρ^

	
0.3024

	
0.0077

	
0.7003

	
0.0011

	
0.7984

	
0.0005




	
400

	
α^1

	
1.1247

	
0.0150

	
1.1156

	
0.0130

	
1.1177

	
0.0136




	
α^2

	
1.5421

	
0.0287

	
1.5416

	
0.0332

	
1.5345

	
0.0286




	
β^1

	
2.0948

	
0.0699

	
2.1012

	
0.0676

	
2.1013

	
0.0634




	
β^2

	
2.4936

	
0.0587

	
2.4825

	
0.0568

	
2.5035

	
0.0533




	
ρ^

	
0.2983

	
0.0064

	
0.6993

	
0.0009

	
0.7998

	
0.0004











[image: Table]





Table 3. RMSE, Akaike information criterion (AIC), and Bayesian information criterion (BIC) for BPIIG and BPIImG distributions with ρ=0.80.






Table 3. RMSE, Akaike information criterion (AIC), and Bayesian information criterion (BIC) for BPIIG and BPIImG distributions with ρ=0.80.





	
Model

	
n

	
AIC

	
BIC






	
BPIIG

	
300

	
1054.0

	
1072.5




	
400

	
1402.6

	
1422.6




	
BPIImG

	
300

	
672.0

	
690.5




	
400

	
876.6

	
896.6
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Table 4. ML estimates, standard error and AIC for BPIIG and BPIImG distributions.






Table 4. ML estimates, standard error and AIC for BPIIG and BPIImG distributions.





	
Model

	
Par.

	
ML Estimate

	
SE

	
AIC






	
BPIIG

	
β^1

	
0.0117

	
0.01

	
526.8




	
α^1

	
9.9106

	
5.15




	
β^2

	
0.0457

	
0.02




	
α^2

	
2.2948

	
0.95




	
ρ^

	
0.9236

	
0.02




	
BPIImG

	
β^1

	
0.0122

	
0.01

	
264.1




	
α^1

	
9.5197

	
5.68




	
β^2

	
0.0159

	
0.01




	
α^2

	
4.7856

	
2.97




	
ρ^

	
0.8781

	
0.03











[image: Table]





Table 5. Reports the ML estimates, the maximized log likelihood values (ℓ), Akaike information criterion (AIC) for the bivariate exponentiated Gompertez (BEG), bivariate exponentiated generalized Weibull-Gompertz (BEGWG), Bivariate expatiated Pareto derived from the mixture and Gaussian copula (BEPmG) and BPIIG and BPIImG distributions.






Table 5. Reports the ML estimates, the maximized log likelihood values (ℓ), Akaike information criterion (AIC) for the bivariate exponentiated Gompertez (BEG), bivariate exponentiated generalized Weibull-Gompertz (BEGWG), Bivariate expatiated Pareto derived from the mixture and Gaussian copula (BEPmG) and BPIIG and BPIImG distributions.





	
Models

	
ML Estimates

	
ℓ

	
AIC

	
BIC






	
BEG

	
α^1 = 0.04

	
α^2 = 0.53

	
α^3 = 1.04

	
λ^=0.79

	

	
370.41

	
748.82

	
755.77




	
BEGWG

	
α^1=0.04

	
α^2 = 0.19

	
α^3 = 0.41

	

	

	
354.03

	
714.06

	
719.80




	
BEPmG

	
θ^1=9.95

	
λ^1=1.38

	
θ^2=8.01

	
λ^2=1.14

	
ρ^ = 0.927

	
252.27

	
514.56

	
523.25




	
BPIIG

	
α^1=9.91

	
β^1=0.01

	
α^2=2.30

	
β^2=0.05

	
ρ^ = 0.924

	
286.71

	
526.83

	
535.52




	
BPIImG

	
α^1=9.52

	
β^1=0.01

	
α^2=4.79

	
β^2=0.02

	
ρ^ = 0.878

	
218.32

	
446.63

	
455.32
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