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Abstract: Traditional fault diagnosis methods of DC (direct current) motors require establishing
accurate mathematical models, effective state and parameter estimations, and appropriate statistical
decision-making methods. However, these preconditions considerably limit traditional motor fault
diagnosis methods. To address this issue, a new mechanical fault diagnosis method was proposed.
Firstly, the vibration signals of motors were collected by the designed acquisition system. Subsequently,
variational mode decomposition (VMD) was adopted to decompose the signal into a series of intrinsic
mode functions and extract the characteristics of the vibration signals based on sample entropy.
Finally, a united random forest improvement based on a SPRINT algorithm was employed to identify
vibration signals of rotating machinery, and each branch tree was trained by applying different
bootstrap sample sets. As the results reveal, the proposed fault diagnosis method is featured with
good generalization performance, as the recognition rate of samples is more than 90%. Compared
with the traditional neural network, data-heavy parameter optimization processes are avoided in this
method. Therefore, the VMD-SampEn-RF-based method proposed in this paper performs well in
fault diagnosis of DC motors, providing new ideas for future fault diagnoses of rotating machinery.
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1. Introduction

Reliable operation of DC motors is crucial to factories, which has a huge impact not only on
personal safety but also on efficiency of operations [1]. Therefore, it is of great significance to study the
fault diagnosis of motors. As vibration signals generated by mechanical components often provide
various dynamic information about the status of the mechanical system, many studies on DC motor
fault diagnosis have focused on mechanical vibration signals [2,3], which have achieved successful
application to a certain extent in the past decades.

The most commonly employed method of fault diagnosis combines signal processing techniques
with the vibration signals of rotating machinery to extract fault features. Vibration signals obtained from
rotating machinery are periodic and continuous. Thus, time-frequency analysis is the optimal signal
process [4–6]. In recent years, various methods, such as wavelet decomposition (WD), wavelet packet
decomposition (WPD), empirical mode decomposition (EMD), and local mean decomposition (LMD),
have been extensively applied in the field of motor fault diagnosis. However, wavelet decomposition
and wavelet packet decomposition are nonadaptive signal analysis methods, which need to select
the wavelet basis function in advance [7,8]. The eigenmode function of EMD will be submerged
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in the background of hostile noise, which makes it impossible to extract physical characteristic
parameters [9,10]. As an improved method, ensemble empirical mode decomposition (EEMD) has
effectively solved these problems. To provide a unified reference framework in the time-frequency
domain, EEMD adds white noise of finite (rather than infinitesimal) amplitude in the original vibration
signals [11], but the central section of the algorithm is still the EMD method, which still has endpoint
effects and inaccurate calculation problems. EWT (empirical wavelet transform) and LMD are two
adaptive signal decomposition methods that are based on a recursive mode [12–14]. However, LMD and
EWT algorithms are essentially adaptive signal decomposition methods based on a recursive mode,
with endpoint effects and modal aliasing problems [15,16]. In recent years, another important method
for diagnosis-based signals is based on principal component analysis (PCA) of the data. Santos-Ruiz
et al. utilized dynamic PCA and an extended Kalman filter (EKF) to describe, detect, and quantify
fluid leaks. The paper firstly proposed a data-driven system based on PCA for describing, detecting,
and quantifying fluid leaks in the experimental pipelines [17]. Compared with the two approaches of
steady-state estimation and EKF, Santos-Ruiz et al. proposed a method for leak detection and isolation
(LDI) in pipelines based on data fusion [18]. The two methods ensure normal operation of the pipelines
by on-line monitoring of tubing flow through modeling. However, the working environment of the
motor is changeable, making it difficult to model accurately. The two methods both need a lot of data,
but this experiment was simulated to monitor the early fault of the motor and could not produce a lot
of fault data. Thus, the two methods mentioned above are not suitable for early fault diagnosis of
the motor. Variational mode decomposition (VMD) is a novel and adaptive signal decomposition
method proposed by Dragomiretskiy and Zosso in 2014 [19]. As a nonrecursive variational mode
signal decomposition method, it can decompose complex multicomponent signals into different modes.
Compared with former methods, it has obvious advantages in signal decomposition accuracy and
noise robustness. Meanwhile, mode aliasing can also be solved [20].

When the operational state of rotating machinery changes, its dynamic characteristics tend
to show nonlinearity and complexity, and its vibration signals also present nonlinearity and
nonstationarity [21,22]. Traditional nonlinear dynamic theories [23], such as fractal dimension [24,25]
and Lyapunov exponent [26], have been employed in the field of fault diagnosis for many years.
However, these methods require a large amount of data in parameter estimation, while early fault data
of motors are generally scarce. Entropy is used to describe the overall statistical characteristics of the
signal, which is strongly generalizable to the overall characteristics of the signal. Jaynes proved in
1957 that thermodynamic entropy was identical with information-theory entropy of the probability
distribution [27]. Based on the research, Basaran and Yan presented a damage metric based on the
second law of thermodynamics and statistical mechanics [28]; verification of the damage model has
been performed by extensive comparisons with laboratory test data of low cycle fatigue. In 2010,
Naderi postulated that the thermodynamic entropy of metals, undergoing repeated cyclic loads and
reaching the point of fracture, is a constant that is independent of geometry, load, and frequency.
Its generation has applications in determining the fatigue life of components that undergo cyclic
bending, torsion, and tension–compression [29]. Furthermore, Sosnovskiy made an attempt to
propose a generalized theory of evolution based on the concept of tribo-fatigue entropy. Meanwhile,
a mechanothermodynamic function was constructed for the specific case of fatigue damage of materials
as a result of temperature variation from 3 K to 80% of the melting temperature based on the
analysis of 136 experimental results [30]. According to the probability of new patterns generated in
signal time series, approximate entropy (ApEn) was proposed [31] by Pincus, which measured the
signal from the aspect of measuring the complexity of the time series. ApEn of the vibration signal
describes the complexity and irregularity of the signal. The ApEn variation of motor equipment
under different operating conditions can characterize the operation status of the machinery during this
period. As an improved algorithm based on ApEn, sample entropy (SampEn) can lower the deviation
introduced by approximation entropy into self-matching entropy. Therefore, this paper employed the
sampEn algorithm to extract feature signals [32].



Entropy 2019, 21, 470 3 of 24

The random forest (RF) algorithm was proposed by Breiman in 2001 [33]. RF is composed of
multiple decision trees [34], which is similar to the bagging algorithm [35]. Based on the bootstrap
method [36], it resamples and generates multiple training sets, and the final results are determined by
the voting principle of multiple decision trees. Different from conventional algorithms, it is a method
that randomly selects and splits attribute sets. Compared with LQV (learning vector quantization) [37],
ELM (extreme learning machine) [38], and the decision tree, it has the advantages of a fast training
speed, powerful approximation ability, and high simulation accuracy. However, when there are
unrecognizable faults, such a fault diagnosis method based on traditional machine learning is still
unable to help engineers find where the fault is, which reduces the efficiency of fault diagnosis [39].
To solve the above problems, a new fault diagnosis method based on the RF algorithm is proposed
in this paper. Through improving the bagging method of decision trees, this method employs a
conditional probability index to split unbiased nodes of the decision tree, and it synthesizes the
classification results of the decision tree according to weighted voting principles.

As indicated above, the main contribution of this paper is to propose a novel mechanical fault
diagnosis method for DC motors based on VMD, SampEn, and RF, during which the optimal RF
classifier is established through the SPRINT algorithm. Firstly, the signal acquisition system was
designed in LabVIEW 2014, and then the acquired signals were de-noised by the translation invariant
of the wavelet. After extracting the physically meaningful modes by the VMD algorithm, the signal
characteristics are calculated by the SampEn method. Finally, the improved RF classifier is employed
to identify the labeled samples.

2. Variational Mode Decomposition (VMD)

2.1. A Brief Description of VMD

VMD extracts different vibration signals from different vibration statuses by continuously updating
eigenmode functions and utilizing an alternating direction multiplier method to constantly update
various intrinsic mode functions and central frequencies [20,21]. Subsequently, it decomposes the
self-adaptive quasi-orthogonal signal f into a discrete quasi-orthogonal band-limited signal Nk with
certain sparsity, and each mode revolves around the center frequency ωt. The estimated K central
angular frequenciesωt are obtained by setting the finite broadband parameter (a) and the central angular
frequency initialization method. Furthermore, the modal functions Uk are obtained according to
different central angular frequencies. Each modal function is a single component AM-FM function [40]:

The band-limited intrinsic mode function (BIMF) is defined as:

Uk = Ak(t) cos[φ(t)]. (1)

In the formula, the phase function φ(t) is a non-monotonic decreasing function, φ(t)′ > 0. The
envelope Ak(t) > 0, and the change rate of Ak(t) as well as the instantaneous angular frequency
Ak(t) > 0 is low, which is much slower than the phase function φ(t).

According to Carson’s rule, the BIMF prior estimate [41] is:

BIMFAM−FM = 2( fAM + fPM + ∆ f ). (2)

where ∆f is maximum deviation of homeopathic frequency, fFM refers to offset rate of instantaneous
frequency, and fPM means the highest frequency of envelope Ak(t). In order to estimate the frequency
bandwidth of IMF (Intrinsic Mode Function) components, the following steps must be taken:

1. For each modal function UK, the marginal spectrum is obtained by a Hilbert transformation.
2. The exponent-modified method is utilized to move the spectrum of modal functions to their

estimated central frequencies.
3. The bandwidth of each modal function is obtained by Gauss smoothing.
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The process of VMD can be considered as the construction and solution of a constrained variational
problem, as described by Equation (3):

min
{uk}, {ωk}

∑K

k=1

∥∥∥∥∥∥∂t

{[
σ(t) +

j
πt

]
∗ uk(t)

}
e− jωkt

∥∥∥∥∥∥2

2

, (3)

wherein uk denotes the subsignals, ωk refers to the center frequencies of the submodes, ∂t indicates
the partial derivative of the function to find time t, σ(t) means the unit pulse function, j indicates the
imaginary unit, and ∗ is the convolution. In order to render the problem unconstrained, a quadratic
penalty term and Lagrangian multipliers are introduced, and the problem is renewed to Equation (4).

L(uk,ωt,λ) = α
k∑

k=1

∂

∥∥∥∥∥∥
[(
σ(t) +

j
πt

)
× uk(t)e− jωkt

]∥∥∥∥∥∥2

2
+

∥∥∥∥∥∥∥ f (t) −
K∑

k=1

uk

∥∥∥∥∥∥∥
2

2

+

λ(t), f (t)
K∑

k=1

uk(t)

 , (4)

where α is a penalty term (called equilibrium constraint parameter) and λ is a Lagrange multiplicator.
The saddle point is found by using the alternate direction method of multipliers (ADMM) [42].

The decomposition mode number K is determined artificially, and the frequency-domain
expression of mode û1

k , the center frequency of each mode functionω1
k , and the largrangian multiplicator

are initialized. Meanwhile, the mode uk and the center frequency ωk are updated separately by
Equations (5) and (6):

ûk
n+1 =

f̂ −
∑

i<k ûi
n+1
−

∑
i>k ûi

n + λ̂n

2

1 + 2α
(
ω−ωk

n

)2 ; (5)

ω =

∫
∞

0 ω
∣∣∣ûk

n+1(ω)
∣∣∣2dω∫

∞

0

∣∣∣ûk
n+1

∣∣∣2dω
. (6)

The modes uk and the center frequencies ωk can be obtained through each updated equation.
The largrangian multiplier is renewed by the following equation:

λ̂n+1 = λ̂n + τ

 f̂ (ω) −
∑

k

ûk
n+1(ω)

 . (7)

The iteration is updated until it converges to Equation (8).

∑
k

‖ûk
n+1
− ûk

n
‖

2
2

‖ûk
n‖22

< ε (8)

It can be concluded that this algorithm needs to set K, α, τ, and the tolerance convergence criterion
in advance. Compared with the former two parameters, τ and the tolerance convergence criterion
barely have an impact on the decomposed signal. Hence, the default value was adopted in this paper.
Prior experience was required to get K. If the parameter was set without ascertaining, it would be
difficult to ensure the accuracy and efficiency of signal decomposition. Therefore, searching the best
parameters is key to the method, which promotes the following research.

2.2. VMD Algorithm Simulation

The simulated signal was composed of three types of subsets, namely three different harmonics,
x(t) = x1 + x2 + x3, wherein x1 = cos(6 ∗π ∗ t), x2 = 1/9 sin(52 ∗π ∗ t), and x3 = 1/27 cos(600 ∗ π ∗
t) [43]. The simulation signal x(t) is decomposed by VMD. The simulation signal and its decomposition
diagram are shown in Figure 1.
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magnitude and frequency of the modal component and original signal matched well with each other, 
as shown Figure 1. Furthermore, the spectrum distribution of the input signal is shown in Figure 2, 
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Figure 1. Comparison between simulated signal and modal components.

The three modal components (presupposition K = 3) obtained from the decomposing simulation
were signals u1, u2, and u3, which corresponded to the input signals x1, x2 and x3, respectively.
Both magnitude and frequency of the modal component and original signal matched well with each
other, as shown Figure 1. Furthermore, the spectrum distribution of the input signal is shown in
Figure 2, and the obtained spectrum distribution of each modal signal is shown in Figure 3. It can
be observed that the three sums of modal frequency after decomposition can perfectly coincide with
the frequency of the total decomposition signals in the frequency range. Compared with the original
signal, results showed that the three decomposed modal frequencies can coincide with the original
signals in the frequency range.
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2.3. Study of the Parameter Decomposition Modes of the VMD

Simulation Experimental Results

Periodic signals were employed to verify the effect of the VMD modal value on signal
decomposition. The mode number was set as K = 2, 3, 4, and 5, and the penalty factor was set
as a = 2000. As shown in Figure 4 below, when the mode number was set as K = 2, the decomposed
signal frequencies of 4 and 26 Hz were superimposed, which caused modal mixing. Meanwhile,
as shown in Figures 5 and 6 where u1(t), and u2(t) represent the cosines of frequencies 4 and 26 Hz,
respectively, if the K value was higher, a new condition, called false mode, would appear. False mode
u3(t) was rendered when K = 4, while false modes of u3(t), u5(t) were rendered when K = 5. By tracing
different K values, different central frequency curves can be obtained. As is shown in the Figure 7,
when K = 3, the effects of the simulation signal will be better than the others, proving the right choice
of parameters.
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Figure 7. Change of center frequency.

The variation in central frequency of different K values is shown in Table 1. It can be observed
that no sign of similar modal or modal mixing phenomenon appeared, when K = 3. But when K = 2,
decomposition of periodic signals led to modal mixing. Moreover, false modes appeared in the process
of decomposition as the value of K grew.
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Table 1. Change of center frequencies in VMD under different mode values.

Mode Value
Center Frequency

U1 U2 U3 U4 U5

K = 2 25.76 1884.32

K = 3 25.13 163.36 1884.96

K = 4 25.13 163.36 1884.96 1884.96

K = 5 25.13 163.36 1763.06 1874.27 1885.58

3. Sample Entropy

For a sequence of vectors of dimension m, Xm(1)Xm(N − m − 1) do

1. The distance d[X m(i), Xm( j)] between vector Xm(i) and Xm( j) is defined as the absolute value of
the maximum difference between the two corresponding elements [44,45]

d[Xm(i), Xm( j)] = maxk=0,,m−1

(∣∣∣x(i + k) − x( j + k)
∣∣∣)

2. As for Xm(i), the number of j (1 ≤ j ≤ N − m, j , i) whose distance between Xm(i) and
Xm( j) is less than or equal to r is counted and denoted as Bi. For 1 ≤ i ≤ N −m, there is:

Bm
i =

1
N −m− 1

∗ Bi (9)

3. Define B(m)(r) as

B(m)(r) =
1

N −m

N−m∑
i=1

B(m)
i (r) (10)

For the dimension raised to m + 1, the number of the distance between Xm+1( j) and
Xm+1( j) (1 < j < N −m, j , i) that is less than or equal to r is calculated and denoted as Ai.
Am

i (r) is defined as:

Am
i (r) =

1
N −m− 1

Ai (11)

Define Am(r) as

Am(r) =
1

N −m

N−m∑
i=1

Am
i (r) (12)

End For
Bm(r) is the probability of two sequences to match m points under similar tolerance r, while Am (r)

is the probability of two sequences matching m + 1 points [26].
If N→∞ , sample entropy is defined

SampEn(m, r) = lim
N→∞

{
−ln

[
Am(r)
Bm(r)

]}
(13)

Else if N is a finite value, it is seriated the following Equation:

SampEn(m, r, N) = − ln
[

Am(r)
Bm(r)

]
(14)

End For
It can be observed that the value of sample entropy was related to the values of m and r.

Therefore, it was important to determine the values of the two parameters to calculate sample entropy.
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Based on our research, when m = 1 or 2, or r= 0.25 Std (Std is the standard deviation of initial data
x(i), i = 1, 2→ N ), the obtained sample entropy had the desired statistical properties. In this research
m = 2 and r = 0.2 Std.

4. Random Forest

4.1. Bootstrap Resampling Algorithm

Bootstrap resampling is an integrated learning algorithm to sample the original data, which is
an important component of the random forest algorithm. The algorithm requires extracting a sample
from different samples {x1, x2,→ xn} in set S. A new set S∗ is formed, and the probability of excluding
a sample xi(i = 1, 2,→, n) in set S∗ is [35]:

p =
(
1−

1
n

)n
. (15)

When →∞ ,

lim
n→∞

p = lim
n→∞

(
1−

1
n

)n
= e−1

≈ 0.368 . (16)

Although the total number of samples in the new set S∗ is equal to the original set S (the total is n),
the new set S∗ may contain duplicate samples. After removing the samples, it contains only about
1 − 0.368 × 100% = 63.2% samples in the original set S.

4.2. Bagging Algorithm

A bootstrap algorithm is the earliest learning strategy, and the main idea is shown in Figure 8.
The specific steps can be described as follows [36]:

1. Produce T training sets randomly through the bootstrap method of resampling;
2. Each training set is used to generate the corresponding decision tree;
3. As for the test set sample X, each decision tree is applied to test the corresponding categories;
4. Choose the category that has the most outcomes from the decision tree for testing sample X

through voting.
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4.3. Decision Tree

Decision tree learning is an inductive learning method based on specific examples. Generally,
the recursive method of "from top to bottom, divide and rule" is employed to divide the search
space into several nonoverlapping subsets. The schematic diagram of the decision tree is shown in
Figure 9. Each non-leaf node represents the input attribute of the training set data, and leaf node
represents the value of the target category attribute. "yes" and "no" represent the positive examples
and counterexamples in the instance set [34].
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The purpose of decision tree learning is to generate trees with strong generalization abilities.
There are many categories of decision trees, such as ID3, C4.5, and SPRINT. Although C4.5 overcomes
the shortcomings of ID3 [46], it still has problems such as complex branches, large scales, and low
efficiencies of the decision tree.

The SPRINT algorithm is a scalable, parallel, and inductive decision tree, which operates fast and
allows multiple processors to create a collaborative decision tree model. Compared with the above
two algorithms, it can better build a decision tree in parallel, making it suitable for larger data sets [33].
The SPRINT algorithm is based on the Gini index [47]:

gini(T) = 1−
∑n

j=1
p2

j , (17)

where p j is the frequency of occurrence of class j. If set T is divided into two parts, T1 and T2,
corresponding to M1 and M2 respectively, then the Gini index of this division is:

ginidivision
m1

m
gini(T1) +

m2

m
gini(T2). (18)

The minimum Gini value is selected as the standard of segmentation. If it is a numerical range or
continuous field, the possible segmented points are the midpoint of the two values. As for a discrete
field, they are all subsets of attribute values.

4.4. Random Forest Algorithm

The traditional machine learning model, like a neural network, is accurate in its prediction.
However, the learning speed of a neural network is slow, and simple problems need to be trained
hundreds of thousands of times, which will easily fall into local minimums. Compared with a neural
network, random forest can effectively balance the error when there is imbalance in classification with
high-speed network training. Based on the above statements, a RF approach based on SPRINT was
proposed in this paper.

Similar to the bagging algorithm, this method was based on a bootstrap method to resample
and generate multiple training sets. Unlike the bagging algorithm, RF chooses split attribute sets
randomly when reconstructing a decision tree. The detailed random forest algorithm flow is shown in
the Figure 10 (Assuming the number of attributes of the sample is M, m is an integer greater than zero
and less than M):

1. Samples are collected by the bootstrap method, and training sets S1, S2, S3 → ST will be
generated randomly;

2. Each training set is employed to generate the corresponding decision tree C1, C2, C3 → CT ;
3. Every tree grows intact without pruning;
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4. As for the test set sample X, it gets the corresponding category by testing each decision number;
5. The category with the most output from T decision tree is taken as the category of test set sample

X by voting.Entropy 2019, 21, x FOR PEER REVIEW  11 of 24 
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4.5. Random Forest-United SPRINT Algorithm

Given the classifiers h1(x), h2(x),→ hk(x) and random vector Y, X, the edge function is defined as:

mg(X, Y) = avkI(hk(x) = Y) −max j,YavkI(hk(x) = j). (19)

In the formula, I( ) is an indicative function, avk(→) is the average value, and, thus,
the generalization error of the classifier is defined as:

PE∗ = Px,y(mg(x, y))

The above conclusions are extended to the random forest hk(X) = H(X,θk). If the number of
trees in the forest is large, the following theorems can be obtained by the law of large numbers and the
structure of trees:

Theorem 1. With the increase of the number of trees, all random vectors θ→ PE∗ trends

Px,y(pθ(h(x,θ) = y) −max j,Ypθ(h(x,θ) = j) < 0). (20)

It has been proven in literature [10] that over-fitting does not occur with the increase of numbers.
In the meantime, the generalization error will converge to an upper bound.

Random forest edge function:

mv(X, Y) = Pϑ(h(X,θ) = Y) −max j,YPϑ(h(X,θ) = j). (21)

Classification strength of classifier
{
h(X,θ)

}
:

S = Ex,ymr(x, y). (22)
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If S ≥ 0, according to Chebyshev inequality:

PE∗ = var(mr)/S2. (23)

Var (mr) is required to have the following form:{
var(mr) = ρ(Eθsd(θ))2

var(mr) < ρ(Eθvar(θ))
. (24)

In the formula, ρ is the mean value of the correlation coefficient, showing the correlation degree
among trees in a random forest.

ρ = Eθ,θ′(ρ(θ,θ′)sd(θ)sd(θ′))/Eθ,θ′(sd(θ)sd(θ′)), (25)

and  Eθvar(θ) ≤ Eθ
(
Ex,ymg(θ, x, y)

)2
− S2

EθVar(θ) ≤ 1− S2
. (26)

The following conclusions are received from Formulas (23), (25), and (26).

Theorem 2. The upper bound of generalization error for random forest is defined as

PE∗ ≤ ρ
(
1− S2

)
/S2. (27)

S is the classification strength of trees. The upper bound of the generalization error is determined by
the classification accuracy of each decision tree and the degree of correlation between trees. It increases
with the degree of correlation between trees, and it is also proportional to the classification intensity of
each tree.

RF employs a classification and decision tree (SPRINT) to grow a single classification tree, which is
different from the traditional SPRINT tree. The specific steps of random forest generation are as follows:

1. The random forest utilizes the bootstrap resampling method to extract 63.2% of the samples from
the original training sample set to generate a subsample set, where each subsample corresponds
to a classification tree. At the same time, the original samples that are not sampled are called
out-of-bag data (OOB). OOB data are used to evaluate the classification accuracy of classifiers.

2. Each sub-sample set becomes a single classification tree. At each tree node, m feature vectors are
picked out of M feature vectors, according to the empirical formula m = int

√
M. According to

the principle of minimum nonpurity of nodes, feature α is chosen as the classification attribute of
the node.

3. According to the feature α, the node is divided into two branches, and then the best feature from
the remaining features is searched. The classification tree can grow sufficiently and the impurity
of each node can be minimized through the above method.

4. In the classification phase, the classification label is a combination of the results of all classification
trees. RF is based on the voting principle.

Cp = argmaxc

(
1
N

∑N

i=1
I
(

nhi,c

nhi

))

In the formula, N is the number of decision trees in the forest, nhi,c is the classification result of
class C for tree hi, and nhi is the number of leaf nodes of the tree.
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5. Experimental Results and Analysis

An INV-1612 data acquisition system from the China Orient Institute of Noise & Vibration (COINV)
Company was used for mechanical vibration signal acquisition. It had the following advantages:
accurate measurement, high sampling rate, and a large number of ports. In this paper, the type of
DC motor was a ZHS-5 multi-function rotor experiment bench. Therefore, before we collected its
vibration signals, we had to consider the frequency range of the vibration signals and the sampling rate
of devices. The SLM-6000 sensor signal conditioner acquired data with six test channels and an ADC
resolution of 16 bits, which can extend external trigger circuits. These advantages were suitable for
continuous signal acquisition in this experiment.

Besides the rotor experiment bench and signal conditioner, an LC0159 piezoelectric acceleration
sensor (LANCE TECHNOLOGIES INC., Hebei, China), a DC stabilized voltage source, and an AFT-0931
signal conditioner (Electronic Technology Co., Ltd., Shijiazhuang, Hebei, China) were applied to
build the vibration signal acquisition system for the DC motor. The frequency range of the LC0159
piezoelectric acceleration sensor was 1–12,000 Hz, and the range and sensitivity were 500 g and 10 mV/g,
respectively, while the frequency response and gain of the AFT-0931 signal conditioner were 0.5–45
and 5 kHz, respectively.

In this paper, vibration signals were collected by the INV-1612 fault data acquisition system,
as shown in Figures 11 and 12. Firstly, the vibration sensor LC0159 was employed to transform the
vibration signals into analog electrical signals. Secondly, the analog electrical signals were inputted
into the SLM-6000 sensor signal conditioner, and the filtering and amplification processes of the analog
electrical signals were then completed in the signal conditioner. In addition, the signal conditioner
could prevent shock signals with big amplitudes from damaging the host computer. Finally, the analog
electrical signal was inputted into the SLM-6000 for AD conversion. The design framework of the
entire signal acquisition system block diagram is shown in Figure 13.
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Figure 13. Design framework of the entire signal acquisition system.

In this paper, 50 samples were collected for each mechanical state by the acquisition system,
and there was a total of 200 samples. Figure 14 shows the time domain waveform of the normal
signal and three types of fault signals (rotor asymmetry, load-shafting misalignment, and rotor system
misalignment-rubbing coupling faults). The sampling frequency was 10 Ks/s, and the sampling time
was 0.7 s. The three kinds of faults were more different from normal conditions. These differences
were mainly caused by the impact or friction of each mechanical component of the operating
mechanism—when the mechanical fault occurred, the impact or friction process changed to a certain
extent; therefore, the instantaneous frequency, instantaneous amplitude, and occurrence time of each
vibration event must be different.
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Figure 14. Time domain waveform of each mechanical state.

As mentioned previously, after signal acquisition work was completed, signals needed to
be de-noised. Utilizing a variable time window and frequency window to analyze the signal,
a wavelet transform was very suitable for vibration signal de-noising of rotating machinery based
on a nonstationary wavelet threshold function. Meanwhile, the smoothness of the de-noised signal
was considered. A wavelet transform method was applied in signal de-noising in this paper. It was
an effective method to extract the vibration signal through the wavelet threshold de-noising method.
Daubechies-9 wavelet was employed after experimental comparison. The de-noised signals of four
types of original signals are shown in Figure 15.
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5.1. Signal Decomposition and Feature Extraction

The measured signals were more complicated and different from simulation signals. Here, seven
components have been decomposed from measured signals. As shown in Figure 16, each mode
component was a narrow band AM-FM signal. The frequency distribution of the vibration signals
changed because of the mechanical component.
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Figure 16. Vibration Components of the four types of signals obtained by the EWT method. (a) Normal
type; (b) Fault I; (c) Fault II; and (d) Fault III.
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The key was to determine the modal value K. When the signal was over-decomposed, the central
frequency of the mode was identical. In the meantime, the correlation coefficients of each mode
with different K values were compared with the original signals to verify the practicability of the
method (center frequency). Based on the formula, the center frequency of the fault was calculated, as is
shown in Table 2. It was proved that the center frequencies were greatly different when K = 3 and 4.
When K = 8, a similar number of modalities appeared, thus, the best modal value was seven [38].

Table 2. Change of center frequencies in VMD under different K values (Fault III).

Model Value
Center Frequency

U1 U2 U3 U4 U5 U6 U7 U8

K = 3 95.86 456.25 554.80

K = 4 89.69 200.74 462.75 554.80

K = 5 87.17 198.56 372.27 464.10 554.96

K = 6 83.56 117.50 283.25 384.21 463.85 645.28

K = 7 83.56 117.49 283.21 382.64 464.32 553.70 645.28

K = 8 21.67 98.64 183.31 285.25 382.27 464.32 553.70 554.88

For further proof, the correlation coefficients between each mode and the original signal were
obtained by formulas. In Table 3, the correlation coefficient increased at first and then decreased.
However, when K = 8, it shows that over-decomposition occurred. When K = 3, 4, and 5, modal mixing
appeared. The optimum mode number was obtained when K = 7, which further proved the accuracy
of the center frequency method.

Table 3. Change of Correlation Coefficients in VMD under different K values (Fault III).

Model Value
Correlation Coefficient

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8

K = 3 0.3366 0.5512 0.5930

K = 4 0.3029 0.3213 0.5485 0.5916

K = 5 0.2945 0.3055 0.3417 0.5324 0.5876

K = 6 0.2928 0.3029 0.3355 0.5258 0.5669 0.3570

K = 7 0.2824 0.2825 0.2844 0.3191 0.5202 0.5650 0.3553

K = 8 0.1996 0.2681 0.2720 0.2808 0.3176 0.5467 0.5176 0.3548

Modal mixing does not easily happen in the VMD algorithm. The first six envelop spectrums were
compared in this paper. Figure 17 schematically illustrated the envelope spectrums of all modes that
were decomposed by VMD (take Fault I for example). It can be seen from the diagram that the envelope
spectrum of each component of decomposed signal can clearly reflect fault information. The envelope
spectrum of decomposed signal components by EMD is shown in Figure 18. The phenomenon of
modal mixing appeared in mode 4. When the number of modes was six, the envelope spectrum could
not accurately reflect fault information, which proved that the decomposition signal effect of the VMD
algorithm was better than that of EMD.
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Envelope entropy processed the envelope signals obtained after demodulation operations into
a probability distribution sequence, and its calculated entropy reflected the sparse characteristics of the
original signals. If the IMF component contained more fault characteristic information, the envelope
diagram would be relatively dense. As shown in Figure 17, compared with EMD, the envelope
spectrum generated by VMD decomposition was very dense, which included much of the fault
information of the physical system. The IMF 1 envelope spectrum indicated it was an optimum
component by EMD decomposition, as shown in Figure 18. However, the IMF 1 envelope spectrum
was too messy, and it was hard to extract valid fault information.

Meanwhile, the envelope spectrums of EWT, LMD, and VMD were compared. LMD and EWT
were new nonstationary signal processing methods. They could adaptively decompose the signal
according to the characteristics of the signal itself. They were superior to the EMD method in terms of
restraining the endpoint effect, reducing iteration times, and preserving signal information integrity.
However, LMD and EWT had lots of shortcomings. When the number of smoothing times was
large, hysteresis occurred, and the step size could not optimally be determined in smoothing. Finally,
compared with other methods, the VMD algorithm could extract all the information of the fault
signal accurately in the field of signal decomposition, which ensured that modal mixing could be
thoroughly solved.
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5.2. Feature Extraction

When M was one, characteristics of the random forest algorithm could not be shown, for the
random forest algorithm required selecting m eigenvectors from M eigenvectors. In addition, in order
to prove that random forest could show better performance under relatively simple eigenvector
conditions, the time domain characteristics of motor vibration signals were extracted in this paper,
and the feature vectors of each signal were extracted by using sample entropy, which were denoted
as C = [C 1, C2, C3, C4, C5, C6, C7]. The entropy value of samples under different fault conditions is
shown in Table 4.

Table 4. The Entropy Value of Samples Under Different Fault Conditions.

Motor Types Label SampEn
I

SampEn
II

SampEn
III

SampEn
IV

SampEn
V

SampEn
VI

SampEn
VII

Desired
Output

Normal 1
0.3241 0.4299 0.3757 0.2647 0.1455 0.2659 0.4664 1

0.3091 0.4368 0.3818 0.2506 0.1338 0.2599 0.4445 1

0.2914 0.4567 0.3811 0.2742 0.1630 0.2888 0.4837 1

Fault I 2
0.2239 0.5127 0.2319 0.1434 0.1818 -0.5116 0.3566 2

0.2854 0.2787 0.2934 0.2787 0.2018 0.8924 0.4550 2

0.3838 0.4191 0.4041 0.3033 0.1318 -0.8236 0.6149 2
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Table 4. Cont.

Motor Types Label SampEn
I

SampEn
II

SampEn
III

SampEn
IV

SampEn
V

SampEn
VI

SampEn
VII

Desired
Output

Fault II 3
0.3084 0.3857 0.5754 0.2425 0.7845 0.3938 0.6215 3

0.0684 0.5457 0.5754 0.2625 1.5645 0.4307 0.2915 3

0.2384 0.5557 0.5130 0.2225 1.4085 0.4553 0.5515 3

Fault III 4
0.2749 0.6835 0.1855 0.1931 0.1958 0.3765 0.5568 4

0.4348 0.3811 0.1955 0.5119 0.2458 0.3519 0.4968 4

0.4840 0.5323 0.1755 0.2435 0.3758 0.3273 0.4568 4

Firstly, sample entropy was calculated by Formulas (9)–(14) and regarded as the feature vector.
At the same time, the corresponding four states were labeled D = [1,2,3,4] for the expected input of
the classifier. Table 4 shows that the eigenvectors of each state were similar, and the eigenvectors of
different states were distinct. Subsequently, according to the process of classifier design, 200 feature
vectors were randomly divided into testing sets and training sets. For each type, 30 feature vectors
were randomly selected as training samples, and 20 other feature vectors were used as testing samples.
In addition, 10-fold cross-validation was employed in the paper, and 120 training samples were equally
divided into two data sets again, one for training, where cross validation was performed 10 times.
Besides, the loop traversal interval was [0.1, 2], and traversing step length TL was 0.1. Feature vectors
were inputted into the optimal classifier (RF with “tree = 500”) for testing. Finally, the classifier was
evaluated by the testing set.

5.3. Fault Diagnosis of the DC Motor

There are many classifiers (decision tree) in random forest. The parameters of each classifier are
different, and the training sample sets of each classifier are also different. Therefore, different classifiers
were generated to make the diagnosis results of each classifier diverse. Finally, final classification
results were generated by voting. It effectively improved the accuracy of diagnosis.

From the figure below, the recognition rates of four conditions were demonstrated. Blue circles
represented correct recognition samples, and red stars represented wrong recognition samples.
The result shows that, in the 80 samples set in the testing set, the normal state was not misidentified,
and there was one sample recognition error in the other three faults. The vibration signal recognition
rates were: Normal 100%, Fault I 95%, Fault II 90%, and Fault III 90%. This paper also discussed
the effect of random forest generalization. In Figure 19, the abscissa represented all decision trees
(500 trees) of random forest and the training set samples; the ordinate represented the test set samples.
The abscissa and longitudinal coordinates satisfied X + Y = 500.

If the error classification sample was close to the center of the graph (the intersection of line y = x
and X + Y = 500, P (250, 250)), and the training set was the same as the decision tree of the test set in
the implementation of the algorithm, the error recognition of the sample was acceptable (Figure 19b),
verifying good performance of sample generalization.

Conversely, if the misclassified samples deviated from the center, as shown in Figure 19c,d,
there was a gap between the decision tree of the training set and the test set in the whole algorithm
process, and the samples would be misclassified. This was unreasonable and errors were not allowed,
revealing that the generalization performance of the classifier was slightly poor.

Random forest contains different decision trees, which also exerts a certain impact on their
generalization performance. Many experiments were conducted in this paper for detailed discussion
and research. In order to reduce the impact of randomness, 100 random forest models were established
after the decision tree was determined, and then the average of the accuracy was taken as the
classification accuracy under the current decision tree. As shown in Figure 20, it was ideal to select
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400–500 decision trees in random forest in the case of fault identification of rotating machinery, taking
the speed of the decision tree and modeling in random forest into consideration.
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LQV, ELM, and decision trees are widely employed classifiers in rotating machinery fault diagnosis,
and they all work perfectly to a certain extent. In order to prove the ability to differentiate normal and
fault types of these classification methods, the LQV, ELM, decision tree, and random forest classifiers
were compared in this paper, as shown in Table 5.
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Table 5. Final Recognition Results.

Classifier Experimental Parameters
Recognition Rate

Normal Fault I Fault II Fault III All Test Samples

LQV

Hidden Layer = 5; 75% 75% 80% 80% 77.5%

Hidden Layer = 20; 85% 90% 90% 90% 88.75%

Hidden Layer = 40 80% 85% 85% 85% 83.75%

ELM

Activation Function (Sin); 80% 80% 85% 85% 82.5%

Activation Function (Sig); 85% 90% 90% 90% 88.75%

Activation Function (Hardlim) 80% 85% 85% 85% 84.5%

Decision
Tree

Decision Tree (100); 85% 80% 80% 85% 83.75%

Decision Tree (500) 95% 90% 85% 85% 88.75%

Decision Tree (800) 90% 85% 80% 80% 83.5%

Random
Forest

Decision Tree (100); 100% 90% 90% 90% 92.5%

Decision Tree (500) 100% 95% 90% 90% 93.75%

Decision Tree (800) 95% 90% 90% 90% 91.25%

The value of the hidden layer neurons played a crucial role in the prediction results of the neural
network. As for the ELM classifier, the value of the hidden layer neurons was the number of samples
in the training set, and the activation function of hidden layer neurons was ‘sig’. Regarding the
LQV classifier, we followed the literature [3] to design the LQV into a three-layer neural network,
which included an input layer, a competition layer, and a linear output layer, and the number of hidden
layer neurons was 20.

The parameters of the decision tree are listed in the above Table 5, which also shows the final
recognition results of these three classifiers and recognition rates for different parameters. Optimal
parameters for each method can be found in this table. Because of the similar fault patterns,
the recognition rates of fault II and fault III showed little difference, indicating that the vibration signals
of the fault I condition were very different from the vibration signals of the other three conditions.
The optimized random forest classifier was compared with LQV, ELM, and decision tree classifiers.
The result revealed that with the same feature extraction method, the decision tree method was better
than other two neural networks, and the recognition rate of the improved RF classifier was higher than
other methods.

6. Conclusions

This paper presents a new method for mechanical fault diagnosis of DC motors. Firstly,
the original vibration signals were collected by the designed acquisition system, which was designed
by Labview2014. Secondly, VMD was employed to decompose the vibration signals into a series of
physically meaningful modes. Thirdly, the SampEn method was used for feature extraction. Finally,
the improved random forest method was adopted to identify four mechanical conditions, where the
parameter “tree” of RF was optimized by a loop traversal method. The simulation and practical test
results demonstrate the following advantages of the new method:

1. Compared with EMD, LMD, and EWT methods, the VMD method can better decompose the
signals into a series of physically meaningful modes, and it also can solve the mode aliasing well.

2. The proposed SampEn method is more superior in feature extraction. The feature curves of
different types of signals obtained by the SampEn method are more dispersed than approximate
entropy method, which is good for classification.

3. The parameter “tree” of RF needs to be determined, which usually depends on human choice.
Combined with SPRINT, the loop traversal method can effectively find the best parameter of the
decision tree.
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4. According to the final recognition rates, the VMD-SampEn feature extraction method and the
optimal RF classifier are more suitable for mechanical fault diagnosis of DC motors. The proposed
RF-SPRINT method provides a new idea for mechanical feature extraction of DC motors.
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