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Abstract: Today, eye trackers are extensively used in studying human cognition. However, it is
hard to analyze and interpret eye movement data from the cognitive comprehension perspective of
poster reading. To find quantitative links between eye movements and cognitive comprehension,
we tracked observers’ eye movement for reading scientific poster publications. We model in this
paper eye tracking fixation sequences between content-dependent Areas of Interests (AOIs) as a
Markov chain. Furthermore, we use the fact that a Markov chain is a special case of information
or communication channel. Then, the gaze transition can be modeled as a discrete information
channel, the gaze information channel. Next, some traditional eye tracking metrics, together with
the gaze entropy and mutual information of the gaze information channel are calculated to quantify
cognitive comprehension for every participant. The analysis of the results demonstrate that the gaze
entropy and mutual information from individual gaze information channel are related to participants’
individual differences. This is the first study that eye tracking technology has been used to assess the
cognitive comprehension of poster reading. The present work provides insights into human cognitive
comprehension by using the novel gaze information channel methodology.
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1. Introduction

As we all know, the eye is an important organ of the human being. It is often said that the eyes are
the window of the soul, reflecting the thoughts of us human beings, and revealing the way in which
the participants observe the scene. With more and more researchers using eye tracking technology
as a research tool, eye tracking is a promising method in academic and industrial research. It has the
potential to provide insights into a lots of issues in the visual and cognitive fields: education [1–3],
medicine [4–7], assistive technology for people with a variety of debilitating conditions [8–10], better
interface design [11–13], marketing and media [14–16]. Furthermore, as an important psychological
experiment research method, eye movement provides a new perspective and way for educational
technology research [17–19]. Actually, eye tracking has always been an important human–computer
interaction method for making decisions [20–22].

Importantly, research based on the idea of using eye tracking as an instructional tool is still in its
infancy. There is an urgent need to quantitatively compare eye movement metrics [23]. Several eye
tracking metrics have been developed. The first are scanpaths, represented by an ordered sequence
of fixations, for which vector and string-based editing methods have been developed to compute
similarity [24–27]. The second are heatmaps, represented by Gaussian Mixture Models (GMMs)
indicating the frequency (or probability) of fixation location [28,29]. A third type of sequential fixation
pattern analysis is the transition matrix, which is rarely used as a quantitative measure [30]—see also
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the recent survey by Shiferaw et al. [31]. In this paper, we model eye tracking fixation sequences of
Areas of Interests (AOIs) as a Markov chain. Furthermore, we model the gaze transition as a gaze
information channel, introduced in [32]. We extend here the gaze information channel in [32] with a
more complete description and interpretation of the metrics of the channel, and by showing how it is
well adapted for clustering, allowing thus to analyze collective behavior. We also notice the importance
of normalization of mutual information that was not considered in [32], when comparing different
channels’ data.

While efforts are made to teach the elements of writing a scientific article in many graduate
school curricula, much less attention is paid to teaching those skills necessary to read scientific posters,
even though these arguably are the most common and most rapid ways to disseminate new findings.
Especially for graduate students who are committed to scientific research, reading related research
papers is an extremely important skill, and it is also a reflection of research ability. Actually, posters
provide a coherent and efficient way to convey core ideas expressed in scientific papers, as described
in [33]. Thus, how to quickly grasp the core idea of a scientific paper is also an essential ability for
them. Furthermore, poster as a form of academic expression represents a concise and visual summary
of one’s research. Its purpose is to be accessible and to drive attention to the research, and get the main
point of the research across to as many people as possible through a concise and artistically attractive
manner [34–36]. In other words, poster is one style of the most vivid and short scientific papers,
which can best reflect a reader’s scientific reading skills and thinking process. Qiang et al. [33] used
probabilistic graphical models to learn scientific poster design patterns, from existing posters, and they
proposed an algorithm that considered both information conveyed and aesthetics to generate the poster
layout. They used subjective evaluation of readability, informativeness and aesthetics to compare
different designs of a poster. However, there is to our knowledge no study that has investigated by
using eye tracking the cognitive comprehension of poster reading. Is it possible to use eye tracking
data to quantify cognitive comprehension during reading poster from participants? This article reports
on our efforts to answer this question.

Ten participants’ eye movement data of reading published posters were recorded individually
using an eye tracker under controlled laboratory conditions. The tested posters are divided into
content-dependent Area of Interests (AOIs), following the sections of a poster defined by the authors,
as shown in Figure 1. The gaze information channel was used to analyze and interpret the eye tracking
data. Some traditional eye tracking metrics, together with the gaze entropy and mutual information,
are calculated to quantify cognitive comprehension of poster reading for every participant.
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Figure 1. The poster materials used in our eye tracking experiment. From left to right, in top row,
posters 1,2, and 3, in bottom row, posters 4,5,6, and 7. Marked in red, the Areas of Interests (AOIs) in
which each poster is divided, and that are not displayed to the participants.

2. Background

Ponsoda et al. [37] introduced probability vectors and transition matrices by classifying the
directions of saccade. Interestingly, their matrices were based on transition between the eight main
saccade directions rather than between the Areas of Interests (AOIs), which are now more commonly
used. Although Ponsoda et al. compared the matrices with a statistical method, they did not model
the sequence of saccade directions as a Markov chain.

Ellis and Stark [38] compared the airline pilot transition matrices by dividing cockpit display
traffic information (CDTI) into eight AOIs. They introduced first-order (fixation) transition matrices
and converted them to conditional probability matrices. Then, conditional entropy was calculated
using the conditional probability, or transition, matrices. Its value provided a measure of the statistical
dependency in the spatial pattern of fixations represented by the transition matrix.

Liechty et al. [39] used Hidden Markov Models (HMMs) to distinguish between local and
global visual attention states in eye movement data. Instead of applying the transition matrix
Markov model as we do in this paper, they used HMMs to distinguish between fixations, similar to
Velichkovsky et al. [40], who proposed classifying attention as ambient or focal.

Hwang et al. [41] did not construct a transition matrix between AOIs or in a grid, but considered
position translation within a generated saliency map for a given scene, and introduced transitional
semantic guidance calculations to evaluate gaze transition. This method can be seen as a hybrid
between the transformation matrix construction and the scan path comparison where the transition
matrices were replaced by semantic maps. Because the saliency maps generated by each scene may
be different, one drawback of this approach is the comparison between scenes. This problem can be
solved by building content-independent transition matrices.
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Bonev et al. [42] built a Markov chain between the nodes of a regular grid matrix, the elements
of the matrix being the normalized mutual information defined by the covariances of the Gaussian
distribution of the attributes of the image. They obtained the equilibrium distribution of this Markov
chain and defined the entropy of this equilibrium distribution as the complexity of the image. Thus,
this complexity measure was defined independently of any observational task, only depending on
grid and Gaussian distribution of attributes of the image. Then, Bonev et al. studied the correlation of
this complexity with the sequences of long and short saccades. In our case, Markov chain transition
probabilities matrix is defined from the observation trajectories, and thus it depends on the task.

Besag and Mondal [43] verified the feasibility of modeling gaze transition as a first-order Markov
process. According to modeling eye movement transitions between areas of interest (AOIs) as a Markov
chain, Krejtz et al. [44,45] calculated stationary entropy Hs and transition entropy Ht to measure the
complexity of the Markov process. Raptis et al. [46] divided the images into three AOIs and used the
gaze transition entropy proposed by Krejtz et al. [44] as a tool to quantify differences on visual search
patterns among individuals within visual pattern recognition tasks of varying complexity.

3. Information Measures and Information Channel

In this section, we briefly introduce the most basic information measures of information
theory and main elements of the information channel [47]. Since its inception by Shannon [48],
information theoretic measures and concepts, which include as one of the main tools the information
or communication channel, have been successfully used in many fields. For their application in
visualization, image processing, and pattern recognition, see [49,50].

3.1. Basic Information-Theoretic Measures

Let X be a discrete random variable with alphabet X and probability distribution {p(x)}, where
p(x) = Pr{X = x}, x ∈ X. In this paper, {p(x)} will be denoted by p(X).

The entropy H(X) of a discrete random variable X is defined by

H(X) = − ∑
x∈X

p(x) log p(x), (1)

where the summation is over the corresponding alphabet and the convention 0 log 0 = 0 is taken.
In this paper, logarithms are taken in base 2 and, as a consequence, entropy is expressed in bits. The
entropy H(X) gives the average uncertainty (or amount of information) of a random variable X.

The joint entropy H(X, Y) of a pair of discrete random variables X and Y with a joint probability
distribution p(X, Y) = {p(x, y)} is defined by

H(X, Y) = − ∑
x∈X

∑
y∈Y

p(x, y) log p(x, y), (2)

where p(x, y) = Pr[X = x, Y = y] is the joint probability of x and y.
The conditional entropy H(Y|X) of a random variable Y given a random variable X is defined by

H(Y|X) = ∑
x∈X

p(x)H(Y|X = x) = ∑
x∈X

p(x)(− ∑
y∈Y

p(y|x) log p(y|x))

= − ∑
x∈X

∑
y∈Y

p(x, y) log p(y|x),
(3)

where p(y|x) = Pr[Y = y|X = x] is the conditional probability of y given x. H(Y|X) measures the
average uncertainty associated with Y if we know the outcome of X.
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The mutual information I(X; Y) between two random variables X and Y is defined by

I(X; Y) = H(X) + H(Y)− H(X, Y)

= H(X)− H(X|Y) = H(Y)− H(Y|X)

= ∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
.

(4)

Mutual information (MI) represents that knowledge of Y decreases the uncertainty of X, and vice
versa. I(X; Y) is a measure of the shared information or dependence between X and Y.

The relationship between Shannon’s information measures can be illustrated by a Venn diagram,
as shown in Figure 2. The information diagram represents the relationship between Shannon’s
information measures. Observe that I(X; Y) and H(X, Y) are represented, respectively, by the
intersection and the union of the information in X (represented by H(X)) with the information
in Y (represented by H(Y)). H(X|Y) is represented by the difference between the information in X
and the information in Y, and vice versa for H(Y|X).

Figure 2. The information diagram represents the relationship between Shannon’s
information measures.

3.2. Information Channel

Communication or information channel is a system in which the output depends probabilistically
on its input [47,51]. The conditional entropy and mutual information can be thought of in terms of a
communication or information channel X → Y whose output Y depends probabilistically on its input
X. This information channel is characterized by a transition probability matrix which determines the
conditional distribution of the output given the input [47,51]. Given that X and Y are two random
variables, we can establish an information channel between X and Y. The diagram in Figure 3 shows
the main elements of the information channel:

• p(X) and p(Y) represent the probability distributions of input and output variables X and
Y, respectively.

• Probability transition matrix p(Y|X) composed of conditional probabilities p(y|x), which gives
the output distribution p(Y) given the input distribution p(X). Each row of p(Y|X) can be seen
as a probability distribution, denoted by p(Y|x).

All of these elements are connected by the Bayes theorem relating marginal probabilities p(X)

and p(Y), conditional probabilities p(y|x) and p(x|y), and joint probabilities p(x, y): p(x, y) =

p(x)p(y|x) = p(y)p(x|y).
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Figure 3. The main elements of an information channel.

4. Method

In this section, we introduce how to set up the gaze information channel.

4.1. Gaze Information Channel

Gaze information channel has been proposed in our previous work [32]. A Markov chain is a
stochastic model that describes a series of possible events X1, X2, X3, . . ., in which the probability of
each event depends only on the state of the previous event, or Markov property. If the state space
is finite, the transition probability distribution can be represented by a matrix, called the transition
matrix. A time-invariant Markov chain is characterized by its initial state and a probability transition
matrix P = [pij] [52]. A Markov chain {Xi} is fully determined by the initial state X0 and the transition
matrix P = [pij], pij = Pr{Xn+1 = j|Xn = i} , i, j ∈ {1, 2, . . . , s}, where s is the number of states.

A Markov chain is said to be irreducible if its state space is a single communicating class; in other
words, if it is possible to get to any state from any other state. It is aperiodic if all its states are
aperiodic, that is, the return to any state is not constrained to a number of steps multiple of any
integer >1. An irreducible and aperiodic Markov chain has a positive stationary distribution, the
stationary distribution is unique, and from any starting distribution, the distribution of Xn tends to the
stationary distribution as n→ ∞. The stationary distribution can be calculated by Equation (5):

πP = π. (5)

The stationary distribution represents the frequency of visits of each state.
In this paper, we divide a tested poster into s content-dependent AOIs. The set of AOIs can

be represented as S = {1, 2, . . . , s}, and the gaze switching process can be described as a stochastic
process {Xt} , t = 1, 2, . . . , n, x1, x2, . . . , xn ∈ S. In [44], the Markov property has been tested. Once the
stochastic process is modeled as a Markov process, we obtain the transition matrix P = [pij]s×s and
the stationary or equilibrium probability π.

Similar to the work in [53] in the 3D scene visibility context, and as proposed in [32] to study
Van Gogh’s painting, we extend the Markov chain model [44] for gaze transitions when reading
posters to an information channel, X → Y, where X and Y are discrete random variables with alphabet
X = Y = 1, 2, . . . , s, corresponding to the AOIs. In this case, input variables p(X) and output

variables p(Y) of gaze information channel represent the same regions with the same probabilities π.
The conditional probability p(j|i) in the gaze information channel corresponds to the pij of transition
matrix P in the Markov chain. Contrary to the case in [32], where the AOIs where arbitrarily fixed for
a painting, we consider the AOIs in the posters as being defined by the authors in their poster design,
that is, the different sections that are contained in a poster.

The basic elements of the gaze information channel are thus the following ones:

• The conditional probability p(j|i) is given by pij, which represents the estimated probability of
transitioning from ith AOI to any jth AOI given ith AOI as the starting point. Matrix elements pij
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are set to the number of transitions from ith source AOI to jth destination AOI for each participant
and then the matrix is normalized relative to each source AOI (i.e., per row), pij =

nij
∑j=1 nij

, i, j ∈ S.

Conditional probabilities fulfill ∑j∈Y p(j|i) = 1,∀i ∈ X, that is, ∑s
j=1 pij = 1, ∀i ∈ {1, . . . , s}.

• The marginal probabilities of input X and output Y, p(i) and p(j), are both given by the stationary
probability π, π = (π1, π2, . . . , πs), giving the frequency of visits of each AOI.

4.2. Entropy and Mutual Information in Gaze Information Channel

From the previous definitions and Equations (1)–(4), Shannon’s information measures can be
defined for the gaze information channel. We first introduce the entropy of the input (and also output),
random variables with stationary distribution,

Hs = H(X) = H(Y) = −
s

∑
i=1

πi log πi. (6)

As the equilibrium distribution represents the average number of visits in each AOI, Hs indicates
the average uncertainty of gaze position between the AOIs. Low Hs values of stationary entropy
means that the observer prefers some AOIs over the other ones, while high values mean that visual
attention is balanced between AOIs.

The conditional entropy of ith row, H(Y|i), is defined as

H(Y|i) = −
s

∑
j=1

pij log pij. (7)

It gives the uncertainty that the next fixation would be the jth AOI if it were presently in the
ith AOI.

The conditional entropy Ht of the information channel is the average of row entropies

Ht = H(Y|X) =
s

∑
i=1

πi H(Y|i) = −
s

∑
i=1

πi

s

∑
j=1

pij log pij. (8)

It represents the average uncertainty of a transition between two areas of interest, or average
uncertainty that remains about the destination AOI when the source AOI is known.

The joint entropy H(X, Y) of the information channel is the entropy of the joint distribution of X
and Y

H(X, Y) = H(X) + H(Y|X) = Hs + Ht =
s

∑
i=1

s

∑
j=1

πi pij log πi pij (9)

and gives the total uncertainty of the channel. The mutual information of ith row, I(i; Y), is given by

I(i; Y) =
s

∑
j=1

pij log
pij

πj
(10)

and represents the degree of correlation between AOI i and all the AOIs. The measures I(i; Y) and
H(Y|i) show in general opposite behavior patterns. A high value of H(Y|i) represents a high degree
of uncertainty about next area of interest, while a high value of I(i; Y) indicates the next AOI is known
with high probability.
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The mutual information I(X; Y) is given by

I(X; Y) = H(X) + H(Y)− H(X, Y) =
s

∑
i=1

πi I(i ; Y)

=
s

∑
i=1

s

∑
j=1

πi pij log
pij

πj

(11)

and represents the total correlation, or information shared, between the AOI’s.

5. Experiment and Data Collection

5.1. Materials

To set up the test, we selected, with permission of authors, seven image processing research
posters as the testing materials. All students participating in the experiment had sufficient knowledge
background to understand the tested posters, and confirmed that they had never seen the materials
before. The posters AOIs followed the sections defined by the authors of the posters. For the sake of
display in this paper, we combine all tested posters into one image, Figure 1. In order to make the reader
of this paper more aware of the AOIs, we use the red block diagram to mark them in Figure 1, but in
the eye tracking experiment, the red block diagram will not be displayed to participants. Moreover,
we blurred the author and institutional information.

5.2. Participants

A total of 10 master in computer science students (male: 5, female: 5) from Tianjin University
(Tianjin, China) participated in the eye tracking experiment. Their ages range from 22 to 28 years
(average: 23.75, standard deviation: 1.5). All the participants can understand well English and have
normal color vision. They had enough background to understand the posters, although they had not
seen them before. Before the experiment, all participants signed a consent form.

5.3. Procedure

Equipment calibration was completed prior to the experiment. Then, the participants were
instructed to view the poster as though they were reading papers as usual. These tested materials
were presented for 60 s. Everyone was seated in an office chair, and asked to lean forward to rest
his/her chin comfortably, with his/her head is 60 cm distant from the computer screen. During the
eye tracking, there was no interaction between the operator and the participants. The posters were
presented one after another. After the experiment, each participant was asked to review individually
the poster once again and explain the core idea of the tested poster.

5.4. Apparatus and Site Setting

The SMI iViewETG2.7 eye tracker (Sensomotoric Instruments, Teltow, Germany) and BeGaze
3.7 software (Sensomotoric Instruments, Teltow, Germany) were utilised for data collection and for
computing eye gaze metrics. The participants wore the eye tracker and looked at the high resolution
(1920× 1080) 24 inch LCD monitor that displayed the tested posters. The experiment was conducted
in a quiet room. The curtains of the room were pulled to avoid uncontrollable light and reflection.

5.5. Data Collection

Eye movements were recorded with an SMI iViewETG2.7 eye tracking system. The raw video
data was produced by the iViewETG2.7, and then video data was input to the eye tracking analysis
software BeGaze 3.7 to edit AOIs, produce some visualizations (scanpath, heatmap and the bin charts
of AOIs), and generate a series of fixations. Each fixation contains four parameters: the start time, the



Entropy 2019, 21, 444 9 of 24

duration, and the X and Y position on the screen. The following analysis is based on this format of eye
tracking data.

6. Results Analysis

6.1. Traditional Metrics

We first applied some traditional metrics and visualizations on the collected eye tracking data.
These include: scanpaths with fixation count, heatmaps, bin charts, and the bin charts of AOIs. Since
the limited space of this article, we just take participants 2 and 5, selected at random, as an example to
present the result analysis for the convenience of display. Figure 4 shows the scanpaths of the tested
posters from participant 2 and participant 5, respectively. The diameter of fixations, for all scanpaths,
is set as 80 px = 500 ms. For the sake of space, in this section, we focus on only two participants and
three posters based on the different number of AOIs to show the analysis of the results. Figure 4
left shows the scanpaths of participant 2; we can observe that the participant 2 is more focused on
the result section of these posters because there are more fixations and duration in the image and
table section. In contrast, the scanpaths of Figure 4 right of the participant 5 is free and more random.
We can observe that this participant is not interested in the image and table area of the results section.
Participant 5 is more focused on the overall reading and understanding.

Figures 5 and 6 present the heatmaps, from participant 2 and participant 5, respectively. Obviously,
the result of the heatmap is similar to the result of the scanpath, as it is another representation of
the same data. We can compare in Figures 5 and 6 the participants’ attention distribution within the
poster. Observe that ranges are not unified, thus the fixation times should be compared in Figure 4.
The heatmap of the participant 2 shows that the participant 2 is more focused on the result section
of the posters. In contrast, the heat map of Figure 6 of the participant 5 is free and more discrete,
and focused on the text. We can see that participant 5 is not interested in the image and table detail
area of the posters.

Figure 7 presents the bin charts of AOIs from participant 2 and participant 5, respectively. It shows
the relative visual intake time of which AOI the observer falls on at each time. We can find that
participant 2 prefers AOI 3 (results section) for posters 2 and 4, and AOI 5 (results section) for poster
7. The left bin charts show a large number of red areas for posters 2 and 4 (AOI 3) and blue areas for
poster 7 (AOI 5), which are the AOIs corresponding to the result part in the test posters. Participant 5
is more focused too on AOI 3 for posters 2 and 4 (results section), as the red area from AOI bin chart is
large in Figure 7 right, but it is focused on AOI 3 (method section) and AOI 6 (conclusions section) for
poster 7 because the red area and cyan area from AOI bin chart is very large. This shows there can be
individual differences between participants in reading the same poster.
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Figure 4. The scanpaths for participant 2 (left) and participant 5 (right) for posters 2, 4 and 7.
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Figure 5. The heatmaps for participant 2 for posters 2, 4 and 7.

Figure 6. The heatmaps for participant 5 for posters 2, 4 and 7.
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Figure 7. The AOI bin charts for participant 2 (left) and participant 5 (right) for posters 2, 4 and 7.

6.2. Entropy and Mutual Information in Gaze Information Channel

We consider each poster divided into content-dependent AOIs. As described in Section 4,
we compute the entropy and mutual information of the gaze information channel to quantify cognitive
comprehension for each participant.

6.2.1. Transition Matrices

In order to better understand the process of participant’s eye movement, we first analyze the
gaze transition matrix when the participant views the tested posters. Table 1 provides the transition
matrix before normalization of three tested posters (posters 1,2,3, with 3 AOIs) for all participants.
That is, we accumulate in a single matrix all the transitions by all participants for these three posters.
It can be observed that there are about 1200 fixations in total in the transition matrix, and the numbers
(bold gray value in table) on the diagonal of the transition matrix are larger. This is consistent with
a common sense interpretation, as the participant, before shifting to another area, will explore the
area it is in until he/she has an understanding of it. Thus, participants’ cognitive process creates
these transition matrix data shown in Table 1. Similarly, Table 2 shows the transition matrix before
normalization of three tested poster (posters 4,5,6, with four AOIs) by all participants.
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Table 1. Transition matrix before normalization of three tested poster (posters 1,2,3, with three Areas of
Interests (AOIs)) by all participants observed. The highest values of each row, in bold, correspond to
transitions within the same AOI.

Tested Posters Tested Poster 1 Tested Poster 2 Tested Poster 3

AOI1 AOI2 AOI3 AOI1 AOI2 AOI3 AOI1 AOI2 AOI3
AOI1 419 25 0 AOI1 337 42 4 AOI1 241 54 1

Transition matrix AOI2 24 518 19 AOI2 41 138 42 AOI2 45 537 50
AOI3 2 19 64 AOI3 6 41 506 AOI3 10 45 269

Table 2. Transition matrix before normalization of three tested poster (posters 4,5,6 with four AOIs) by
all participants observed. The highest values of each row, in bold, correspond to transitions within the
same AOI.

Tested Posters Tested Poster 4 Tested Poster 5 Tested Poster 6

AOI1 AOI2 AOI3 AOI4 AOI1 AOI2 AOI3 AOI4 AOI1 AOI2 AOI3 AOI4
AOI1 50 32 2 1 AOI1 71 23 1 0 AOI1 56 32 1 0

Transition matrix AOI2 31 253 52 0 AOI2 19 149 45 0 AOI2 25 159 49 0
AOI3 4 50 636 21 AOI3 5 43 690 29 AOI3 8 38 700 38
AOI4 0 1 21 38 AOI4 1 0 31 63 AOI4 1 4 36 52

6.2.2. Comparison between Two Participants for Poster 7

Here, we show first in Figure 8 the results for poster 7 for all participants and then we compare
more finely for participants 2 and 5. Observe from Figure 8a that the AOIs more visited by all
participants are AOI5 (results section), AOI6 (conclusions section), and AOI3 (method section),
although the most visited area depends on the participant. The majority of participants prefer, or visit
it often, AOI5 (results section), others AOI6 (conclusions section), and finally others AOI3 (method
section). Figure 8b shows the main measures of the channel for each participant, some of them are
similar for several participants, although from Figure 8c,d, we can conclude that the exploration
strategy can be in general different for each participant.

Next, Table 3 shows the transition probabilities of the participants 2 and 5 for the poster with
more areas of interest, poster 7 with six AOIs. See Figure 9 for an illustration of the gaze channel for
participant 5. Observe that, in Table 3, the values of pii are the highest transition probabilities, which is
consistent with the above transition matrix analysis. This is similar to The tempest painting example
presented in [44]. As observed before, this means that, before switching to another AOI, the observer
firstly moves the gaze within the current AOI. As shown in Table 3, we can clearly find that there is
no direct transition between AOI 2 and AOI 6 when viewing the tested poster. The reason might be
that the AOI 2 (introduction section of the poster) is far apart from AOI 6 (the conclusion section of
the poster).

Table 4 and Figure 10 show the values for the equilibrium distribution, Hs, Ht, H(Y|x), H(X, Y),
I(X; Y) and I(x; Y), for the gaze information channel for participants 2 and 5. The gaze entropy Hs

is the entropy of the equilibrium distribution π, which indicates how frequently each AOI is visited.
Note that currently in our gaze channel model, as in Markov chain model, we do not support fixation
time, thus number of visits does not directly translate into spent time, although it can be considered
as an approximation. From Table 4 and Figure 10, we can find that the AOIs that the participants
prefer, AOI 5 (results section) for participant 2, and AOI 3 (method section) and AOI 6 (conclusions
section) for participant 5, have the larger equilibrium distribution πi value. This is consistent with
Figure 7 charts for poster 7. A higher value of Hs means that the participant visited more equally each
AOI. A lower value of Hs is obtained when the number of visits in each AOI is not balanced, possibly
because the participant spent more time concentrated on a certain region. It can be seen from Table 4
and Figure 10 that the entropy Hs of the participant 5 is greater than for the participant 2. This means
that the participant 5 pays more attention to overall reading and spent time more equally among AOIs
than the participant 2. This conclusion is consistent with the previous scanpath analysis from Figure 4.
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(a) The π value of poster 7 from all participants (b) The entropy and MI of poster 7 from all participants

(c) The H(Y|x) of poster 7 from all participants (d) The I(x; Y) of poster 7 from all participants

Figure 8. The channel measures for all participants and poster 7. From left to right and top to down,
the equilibrium distribution π (a), Hs, Ht, H(X, Y), I(X; Y) (b), H(Y|x) (c), and I(x; Y)(d). AOI1 is the
title section, AOI2 is the intro section, AOI3 is the method section, AOI4 is the algorithm section, AOI5
is the results section, and AOI6 is the conclusions section.

Table 3. Transition probability of tested poster 7 (with 6 AOIs) by participants 2 and 5.

Observers Participant 2 Participant 5

AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI1 AOI2 AOI3 AOI4 AOI5 AOI6

AOI1 0.750 0.125 0.000 0.000 0.125 0.000 AOI1 0.000 1.000 0.000 0.000 0.000 0.000
AOI2 0.000 0.818 0.182 0.000 0.000 0.000 AOI2 0.111 0.333 0.556 0.000 0.000 0.000

Transition probability AOI3 0.000 0.125 0.813 0.063 0.000 0.000 AOI3 0.000 0.111 0.806 0.083 0.000 0.000
AOI4 0.000 0.000 0.000 0.750 0.000 0.250 AOI4 0.000 0.000 0.133 0.800 0.067 0.000
AOI5 0.000 0.000 0.000 0.000 0.894 0.106 AOI5 0.000 0.000 0.000 0.000 0.778 0.222
AOI6 0.026 0.000 0.000 0.026 0.180 0.769 AOI6 0.000 0.031 0.000 0.000 0.031 0.934
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Table 4. Equilibrium distribution, Hs, Ht, H(Y|x), H(X, Y), I(X; Y) and I(x; Y) in gaze information
channel of participants 2 and 5 for poster 7.

Observers Participant 2 Participant 5

π (0.056, 0.076, 0.11, 0.028, 0.458, 0.271) (0.010, 0.088, 0.353, 0.147, 0.088, 0.314)
Hs 1.412 1.487
Ht 0.504 0.529

H(Y|x) (0.736, 0.474, 0.602, 0.562, 0.338, 0.698) (0.000, 0.937, 0.625, 0.628, 0.529, 0.277)
H(X, Y) 1.916 2.016
I(X; Y) 0.908 0.958
I(x; Y) (1.851, 2.030, 1.729, 2.452, 0.498, 0.613) (2.428, 0.965, 0.643, 1.207, 1.616, 0.961)

Figure 9. The gaze channel for participant 5 and poster 7, between the AOIs with equilibrium
distribution p(AOI) (a) and (c), and with conditional probabilities (b). The probability distributions
values are found in Tables 3 and 4.

Ht reflects the randomness of gaze transition among the different AOIs. Higher Ht values mean
that there are frequent transition among AOIs, while lower Ht values indicate more careful observation
of AOIs [44]. H(Y|i) measures the randomness of the gaze transfer from the i-th AOI. A lower value of
H(Y|i) indicates that the observer is more clear about the next AOI in the following view. It may also
represent that the i-th AOI provides the observer with significant clues to understand the test poster.
From Table 4 and Figure 10, we can find that, for participant 2, H(Y|1) has the highest value, which
means that when in AOI1 (title section of the poster), the observer moves randomly (or evenly) towards
any of the other neighbour AOIs. For participant 5, H(Y|2) has the highest value, which indicates that
this participant moves evenly from AOI 2 (intro section) to any AOI of the poster. Moreover, we can
also see that I(3; Y) has the lowest value, which represents that the information shared between AOI3
(method section) and all the AOIs is minimum. H(X, Y) = Hs + Ht measures the total uncertainty,
or total randomness of fixations distribution and gaze transition. The lowest value of H(X, Y) is
obtained when the participant 2 views the poster. Compared with the participant 5’s scanpath in
Figure 4, the scanpath with lowest H(X, Y) has higher fixation length and less gaze transitions.
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As expected, we can observe in Table 4 and Figure 10 that I(i; Y) and H(Y|i) show in general
opposite behavior. Higher values of I(i; Y) correspond to lower values of H(Y|i) and viceversa. The
values of I(4; Y) for participant 2 and I(1; Y) for participant 5 are higher than the other values of I(i; Y).
This indicates that next AOIs when leaving AOI4 (algorithm section) for the participant 2, and leaving
AOI1 (title section) for participant 5, were well defined, as a high value of I(i; Y) means that the next
AOI is known with high probability. This behavior can be re-confirmed in the corresponding scanpaths
in Figure 4. Furthermore, from Table 4 and Figure 10 we can see that participant 5 has the highest
I(X; Y) value. Mutual information I(X; Y) expresses the degree of dependence between the AOIs.
It might mean that participant 5 has a more precise strategy or more clues in exploring the tested poster.
However, this is in apparent contradiction to the fact that total uncertainty of participant 5 is higher
than for participant 2. To be able to compare the mutual information between the two participants,
we should first normalize it. Several normalization proposals exist in the literature [54]. If we consider
for instance the one defined in [47] as a correlation coefficient ρ = I(X;Y)

H(X)
= I(X;Y)

Hs
, the value of ρ for

participant 2 is 0.643, and for participant 5 is 0.644, practically the same. Thus, in this case, we can not
discover any difference based on mutual information.

(a) π (b) Hs, Ht,H(X, Y) and I(X; Y)

(c) H(Y|x) (d) I(x; Y)

Figure 10. From left to right and top to down, the equilibrium distribution π (a), Hs, Ht, H(X, Y),
I(X; Y) (b), H(Y|x) (c), and I(x; Y) (d) in gaze information channel of participants 2 and 5 for poster 7.
The numerical values are found in Table 4.

6.2.3. Averaging Results for All Posters and Participants

We can find in the Appendix the Tables A1–A6, with the values for all participants and posters of
I(X; Y), Hs, Ht and H(X, Y), and I(X; Y) normalized by Hs and H(X, Y), respectively. For instance,
Table A1 lists the mutual information I(X; Y) of all participants when they view all tested posters,
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the average value and standard deviation for each poster is given in the last two rows. It can
be observed clearly that the MI values for tested poster 7 (with six AOIs) are much larger for all
participants in general than for the other posters, which may indicate that the degree of dependence or
correlation between AOIs of poster 7 is much stronger. We observe also that, although values of MI for
different posters might be significantly different, the differences are reduced when considering the
average MI value. These facts are confirmed looking at the normalized MI (see Tables A5 and A6).

We have summarized Tables A1–A4 in Figures 11 and 12. This allows readers to more intuitively
observe the quantitative gaze collection of all participants. Figure 11 shows the stacked Ht, Hs, H(X, Y)
and I(X; Y) in the gaze information channel from all participants when they view all tested posters.
From the stacked Hs and Ht bar chart in Figure 11a, we see that, for every participant, the values of
joint entropy H(X, Y) (marked in gray color) approximately equal the total of Hs and Ht. Their total is
equal for each separated transition matrix, Figure 11 shows that using averages is a valid approach.
The joint entropy H(X, Y) measures the total uncertainty, which gives the uncertainty when every
participant views the tested poster. At the same time, we can find that the values of the conditional
entropy or transfer entropy Ht (given by the crimson color bar) are close for all participants. This
phenomenon illustrates, for all participants, when they begin to reading the test poster, they always like
to switch between the different AOIs to better understand the context of the poster. This is consistent
with the property of Ht which reflects the randomness of gaze transition among the different AOIs.

From the right stacked Ht and I(X; Y) chart in Figure 11, we can see that Hs (as marked
in blue color) is approximately equal to the Ht plus I(X; Y) (see previous remark about totals).
Mutual information (MI) I(X; Y) in gaze information channel represents the degree of dependence
or correlation between the set of AOIs. Furthermore, Hs, which is the entropy of the equilibrium
distribution π, measures how much equally the AOIs have been visited. From the blue bars in
Figure 11a, it is clear that the participants 3, 5, 8, 9 spent more balanced time in each AOI when they
read the tested poster since their Hs is larger compared with the participants 1, 7, 10. This means that
the participants 1, 7, 10 possibly spent more time concentrated on certain regions of the tested poster.

(a) The stacked Ht, Hs (b) The stacked Ht, I(X; Y)

Figure 11. The stacked Ht, Hs (a), and Ht, I(X; Y) (b), for all participants.

Figure 12 also shows the stacked Ht, Hs, H(X, Y) and I(X; Y) in gaze information channel for
all tested posters. According to Figure 12, we could consider the posters into three groups, the first
one with poster 1, with the lowest value of H(X, Y) and Hs, a second group with posters 2–6, with
similar value of H(X, Y) and Hs, and a third one with poster 7, with highest value of H(X, Y) and Hs.
Looking at Figure 1, we observe that poster 1 has one AOI that does not practically include relevant
information, AOI3, this explains the lower values for this poster, as this AOI will be mostly ignored by
participants. On the other extreme, poster 7 with six areas of interest is the more complex of all them.
It also has the highest mutual information, and also, from Tables A5 and A6, the highest normalized
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mutual information. It might mean that, although it is a more complex poster than the other ones, it is
well structured and readers establish a coherent reading strategy.

(a) The stacked Ht, Hs (b) The stacked Ht, I(X; Y)

Figure 12. The stacked Ht, Hs (a), and Ht, I(X; Y) (b), for all tested posters.

Looking now at Figure 12b, we can observe the differences between the posters in the second
group, from 2 to 6. All of them have similar Hs value, but, in poster 2, the distribution is different.
For poster 2, the mutual information I(X; Y) is higher (and correspondingly the entropy Ht is lower)
than for posters 3–6. This is further checked by taking a look at Table A1. It means that this poster is
easier to read or to interpret than posters 3–6. It can also be seen from Table 5, where we have classed
the results of the explaining the core idea stage after the experiment into two groups: expressing the
core ideas basically (called basic group), and saying only some keywords (called keywords group),
Table 5 gives the participants from both groups for all tested posters. Although due to the low number
of participants we can not draw any conclusive result, it seems that higher mutual information in
posters 2 and 7 is related to a higher cognitive comprehension. It might work in an indirect way, that is,
higher MI means more coherent exploration strategies that facilitate the comprehension of the poster.

Having a look at Figure 1, we see that poster 2 contains just text in the middle AOI, being probably
easier the flow from graphics to text and graphics again than in the other posters. In addition, we see
that posters 4–6, although they contain four areas of interest, one of them contains very little relevant
information to understand the posters, thus, although we should in principle expect more information
and uncertainty with four areas than with three, the results are similar. Observe that, for the analysis
of posters 2–6, we do not need to consider the normalized mutual information, as we had to do in
Section 6.2.2, as we compare posters with similar values of Hs.

Table 5. The number of participants classed in two groups according to their answer after experiment,
together with mutual information (MI), MI normalized by Hs, and MI normalized by H(X, Y).

Tested Poster Tested
Poster 1

Tested
Poster 2

Tested
Poster 3

Tested
Poster 4

Tested
Poster 5

Tested
Poster 6

Tested
Poster7

Basic Group 4 7 6 6 4 4 5
Keywords Group 6 3 4 4 6 6 5

MI 0.580 0.559 0.483 0.446 0.474 0.428 0.873
MI normalized by Hs 0.668 0.569 0.484 0.464 0.480 0.443 0.679

MI normalized by H(X, Y) 0.507 0.410 0.324 0.303 0.318 0.289 0.523

7. Discussion

We consider the information channel metrics as complementary to classic metrics for eye tracking.
Actually, the information channel models the eye tracking process from an information theoretic
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perspective, extending the Markov chain model introduced by Krejtz et al. [44,45], and reviewed in [31].
The information channel interpretation of data communication has been successful in many areas
of science, and specifically in visual computing, and we believe it also has a place in understanding
eye tracking.

In particular, as already observed for Markov chain model, for stationary entropy Hs and transition
entropy Ht, greater stationary entropy Hs means that the participant visited more equally the AOIs,
while higher transition entropy Ht denotes more uncertainty and more frequent transition between
AOIs. In terms of reading a poster, it can give information on the strategy of an observer. With only
Hs and Ht , which are the metrics for the Markov channel, it is difficult to discriminate the behaviour
of observers. Our model introduces the additional metrics H(X, Y), H(Y|x), I(X; Y), and I(x; Y),
interpreted as the total uncertainty, the uncertainty from a given AOI, the total information shared
between the AOIs, and the information shared between an AOI and all AOIs, respectively. For instance,
observe from Figure 10 how we can clearly differentiate the behaviour of two observers, by using
H(Y|x) and I(x; Y), and in less amount using H(X, Y), metrics that are only available once you extend
the Markov chain model of eye tracking to gaze information channel.

The information channel paradigm also has the advantage of easily clustering or classification,
see Tables A1–A4, and its visualization in Figures 11 and 12. Given a group of observers and a poster,
the transition matrices in the information channels corresponding to one class can be averaged to
obtain the information channel of the class, to help understand the behaviour of that class. However,
we can also obtain the average of a single observer for the different posters, by averaging the measure
values obtained. The averaged results give us hints about the behaviour of observers for poster reading,
and the different difficulty of reading each poster for all the observers. We believe that, in addition
to help understand the cognitive process of poster reading, clues can be gathered for improving the
poster design.

One weak point of the information channel model for eye tracking trajectories is that, as in the
Markov chain model, the channel depends on the AOIs defined, so that changing the areas of interest
the information channel measures values change. This is the same situation encountered in [53].
However, changing AOIs does not need repeating the observations, but just recomputing to which
AOI belong the hit points of gaze trajectories; thus, computing the channel for different configurations
of AOIs could be straightforward. The criterion of maximizing mutual information I(X; Y) gain,
or minimizing its loss, for optimal subdivision or clustering [53,55], could also be used in the gaze
information channel. In this paper, we have used the sections of a poster, as defined by the poster
authors, as AOIs, which we thus consider semantically meaningful, although the maximization of
I(X; Y) could help further in the design of the poster sections.

8. Conclusions and Future Work

To find quantitative links between eye movements and cognitive comprehension, we tracked 10
observers’ eye movements for reading published posters. We model eye tracking fixation sequences
between content-dependent Areas of Interests (AOIs) as a Markov chain. Furthermore, we use the
fact that an irreducible and aperiodic Markov chain is a special case of information or communication
channel, where input and output are the same random variable, and equal to the equilibrium
distribution. Thus, the gaze transition can be modeled as a discrete information channel, the gaze
information channel. Next, some traditional eye tracking metrics, together with the gaze entropy and
mutual information of the gaze information channel are calculated to quantify cognitive comprehension
for every participant. As far as we know, this is the first study to use the eye tracking technology to
assess cognitive comprehension when reading a scientific poster. The present work provides insights
into quantitative cognitive comprehension. Although promising, there are limitations (such as a limited
number of participants) to this paper that need to be addressed in continuing work. In the future,
we will continue to explore the unique significance of human visual search patterns, which need to be
paired with behavioral or cognitive metrics. As MI seems to be related to coherent strategies in reading
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a poster, we will check the difference in the gaze channel measurements for different poster design for
the same content, similar to [33]. We will study the best division in AOIs, driven by the maximum
transfer of information, or MI. We will also extend the information channel paradigm to the work of
Ponsoda et al. [37], that is, the Markov chain of gaze displacement directions will be extended to an
information channel, as we have done here with the trajectories. In addition, our current gaze channel
model does not support fixation time, thus although the number of visits given by the equilibrium
distribution can be a rough approximation of spent time in each AOI, for a more complete analysis we
plan to integrate the fixation time into the model.
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Appendix A

Table A1. Mutual information, I(X; Y), values in gaze information channel for all posters and
all participants.

MI Tested
Poster1

Tested
Poster2

Tested
Poster3

Tested
Poster4

Tested
Poster5

Tested
Poster6

Tested
Poster7

Average
Value

Standard
Deviation

Participant 1 0.422 0.489 0.584 0.474 0.548 0.474 0.716 0.530 0.091
Participant 2 0.469 0.608 0.377 0.545 0.411 0.398 0.908 0.531 0.172
Participant 3 0.782 0.557 0.533 0.394 0.512 0.428 0.969 0.596 0.191
Participant 4 0.664 0.641 0.582 0.411 0.351 0.587 1.043 0.611 0.207
Participant 5 0.655 0.542 0.422 0.415 0.671 0.449 0.958 0.587 0.180
Participant 6 0.497 0.786 0.301 0.429 0.544 0.481 0.956 0.571 0.208
Participant 7 0.575 0.508 0.512 0.439 0.464 0.294 0.609 0.486 0.095
Participant 8 0.638 0.544 0.611 0.412 0.452 0.406 1.062 0.589 0.211
Participant 9 0.512 0.498 0.470 0.427 0.497 0.397 1.023 0.546 0.198
Participant 10 0.581 0.415 0.437 0.514 0.288 0.370 0.484 0.441 0.089
Average Value 0.580 0.559 0.483 0.446 0.474 0.428 0.873 – –

Standard Deviation 0.103 0.097 0.095 0.047 0.103 0.074 0.189 – –

Table A2. Hs values in gaze information channel for all posters and all participants.

Hs
Tested
Poster1

Tested
Poster2

Tested
Poster3

Tested
Poster4

Tested
Poster5

Tested
Poster6

Tested
Poster7

Average
Value

Standard
Deviation

Participant 1 0.711 0.833 0.939 0.930 1.021 0.924 0.948 0.901 0.093
Participant 2 0.889 0.942 0.744 1.15 0.755 0.88 1.412 0.967 0.221
Participant 3 1.008 1.051 1.077 1.087 1.022 1.115 1.293 1.093 0.088
Participant 4 0.904 0.936 1.061 0.903 0.930 0.980 1.323 1.005 0.139
Participant 5 0.851 1.025 1.050 0.970 1.229 0.915 1.487 1.075 0.201
Participant 6 0.919 0.918 0.941 0.930 1.023 1.128 1.360 1.031 0.152
Participant 7 0.836 0.998 1.030 0.918 0.929 0.999 1.004 0.959 0.063
Participant 8 0.914 1.066 1.011 0.808 1.184 1.120 1.386 1.070 0.174
Participant 9 0.798 1.092 1.055 0.996 1.015 0.780 1.569 1.044 0.242
Participant 10 0.822 1.093 1.094 0.959 0.727 0.934 1.009 0.948 0.126
Average Value 0.865 0.995 1.000 0.965 0.984 0.978 1.279 – –

Standard Deviation 0.077 0.082 0.099 0.091 0.152 0.109 0.206 – –
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Table A3. Ht values in gaze information channel for all posters and all participants.

Ht
Tested
Poster1

Tested
Poster2

Tested
Poster3

Tested
Poster4

Tested
Poster5

Tested
Poster6

Tested
Poster7

Average
Value

Standard
Deviation

Participant 1 0.289 0.344 0.355 0.456 0.473 0.467 0.232 0.374 0.088
Participant 2 0.420 0.333 0.367 0.616 0.344 0.466 0.504 0.436 0.094
Participant 3 0.226 0.494 0.543 0.693 0.509 0.687 0.324 0.497 0.160
Participant 4 0.240 0.295 0.478 0.492 0.580 0.393 0.280 0.394 0.118
Participant 5 0.196 0.483 0.627 0.555 0.558 0.453 0.529 0.486 0.129
Participant 6 0.422 0.132 0.639 0.505 0.479 0.647 0.404 0.461 0.161
Participant 7 0.261 0.491 0.518 0.480 0.465 0.704 0.396 0.474 0.123
Participant 8 0.276 0.523 0.398 0.396 0.732 0.714 0.324 0.480 0.169
Participant 9 0.286 0.592 0.582 0.569 0.518 0.383 0.537 0.495 0.108
Participant 10 0.238 0.678 0.658 0.445 0.439 0.557 0.525 0.506 0.139
Average Value 0.285 0.437 0.517 0.521 0.510 0.547 0.406 – –

Standard Deviation 0.073 0.152 0.108 0.084 0.097 0.124 0.108 – –

Table A4. H(X, Y) values in gaze information channel of all posters and all participants.

H(X,Y) Tested
Poster1

Tested
Poster2

Tested
Poster3

Tested
Poster4

Tested
Poster5

Tested
Poster6

Tested
Poster7

Average
Value

Standard
Deviation

Participant 1 1.000 1.176 1.293 1.385 1.494 1.391 1.180 1.274 0.155
Participant 2 1.310 1.275 1.111 1.765 1.099 1.346 1.916 1.403 0.293
Participant 3 1.234 1.544 1.620 1.781 1.532 1.802 1.617 1.590 0.175
Participant 4 1.144 1.231 1.539 1.395 1.510 1.373 1.603 1.399 0.155
Participant 5 1.047 1.508 1.678 1.526 1.787 1.367 2.016 1.561 0.287
Participant 6 1.341 1.050 1.580 1.435 1.502 1.775 1.764 1.492 0.234
Participant 7 1.097 1.489 1.548 1.398 1.393 1.703 1.400 1.433 0.172
Participant 8 1.190 1.589 1.409 1.204 1.915 1.835 1.710 1.550 0.270
Participant 9 1.083 1.683 1.637 1.566 1.532 1.164 2.015 1.539 0.316
Participant 10 1.060 1.771 1.752 1.404 1.166 1.492 1.534 1.454 0.250
Average Value 1.151 1.432 1.517 1.486 1.493 1.525 1.685 – –

Standard Deviation 0.109 0.224 0.184 0.170 0.232 0.223 0.268 – –

Table A5. Normalized mutual information by Hs in gaze information channel of all posters and all
participants.

Normalized MI Tested
Poster1

Tested
Poster2

Tested
Poster3

Tested
Poster4

Tested
Poster5

Tested
Poster6

Tested
Poster7

Average
Value

Standard
Deviation

Participant 1 0.594 0.587 0.622 0.510 0.537 0.513 0.755 0.588 0.079
Participant 2 0.528 0.645 0.507 0.474 0.544 0.452 0.643 0.542 0.071
Participant 3 0.776 0.530 0.495 0.362 0.501 0.384 0.749 0.542 0.151
Participant 4 0.735 0.685 0.549 0.455 0.377 0.599 0.788 0.598 0.138
Participant 5 0.770 0.529 0.402 0.428 0.546 0.491 0.644 0.544 0.118
Participant 6 0.541 0.856 0.320 0.461 0.532 0.426 0.703 0.548 0.166
Participant 7 0.688 0.509 0.497 0.478 0.499 0.294 0.607 0.510 0.113
Participant 8 0.698 0.510 0.604 0.510 0.382 0.363 0.766 0.548 0.141
Participant 9 0.642 0.456 0.445 0.429 0.490 0.509 0.652 0.517 0.086
Participant 10 0.707 0.380 0.399 0.536 0.396 0.396 0.480 0.471 0.110
Average Value 0.668 0.569 0.484 0.464 0.480 0.443 0.679 – –

Standard Deviation 0.084 0.127 0.090 0.048 0.065 0.084 0.089 – –
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Table A6. Normalized mutual information by H(X, Y) in gaze information channel of all posters and
all participants.

Normalized MI Tested
Poster1

Tested
Poster2

Tested
Poster3

Tested
Poster4

Tested
Poster5

Tested
Poster6

Tested
Poster7

Average
Value

Standard
Deviation

Participant 1 0.422 0.416 0.452 0.342 0.367 0.341 0.607 0.421 0.092
Participant 2 0.358 0.477 0.339 0.309 0.374 0.296 0.474 0.375 0.073
Participant 3 0.634 0.361 0.329 0.221 0.334 0.238 0.599 0.388 0.165
Participant 4 0.580 0.521 0.378 0.295 0.232 0.428 0.651 0.441 0.152
Participant 5 0.626 0.359 0.251 0.272 0.375 0.328 0.475 0.384 0.130
Participant 6 0.371 0.749 0.191 0.299 0.362 0.271 0.542 0.398 0.189
Participant 7 0.524 0.341 0.331 0.314 0.333 0.173 0.435 0.350 0.109
Participant 8 0.536 0.342 0.434 0.342 0.236 0.221 0.621 0.390 0.149
Participant 9 0.473 0.296 0.287 0.273 0.324 0.341 0.508 0.357 0.094
Participant 10 0.548 0.234 0.249 0.366 0.247 0.248 0.316 0.315 0.113
Average Value 0.507 0.410 0.324 0.303 0.318 0.289 0.523 – –

Standard Deviation 0.099 0.145 0.083 0.042 0.058 0.074 0.103 – –
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