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Abstract: This study investigates the solitary wave solutions of the nonlinear fractional Jimbo-Miwa
(JM) equation by using the conformable fractional derivative and some other distinct analytical
techniques. The JM equation describes the certain interesting (3+1)-dimensional waves in physics.
Moreover, it is considered as a second equation of the famous Painlev’e hierarchy of integrable
systems. The fractional conformable derivatives properties were employed to convert it into an
ordinary differential equation with an integer order to obtain many novel exact solutions of this model.
The conformable fractional derivative is equivalent to the ordinary derivative for the functions that has
continuous derivatives up to some desired order over some domain (smooth functions). The obtained
solutions for each technique were characterized and compared to illustrate the similarities and
differences between them. Profound solutions were concluded to be powerful, easy and effective on
the nonlinear partial differential equation.

Keywords: fractional Jimbo-Miwa (JM) equation; explicit lump solitary wave solutions; complex
lump solitary wave solutions

1. Introduction

During the last five decades, the nonlinear fractional partial differential equations (NLFPD)
have been used for modeling many of the nonlinear phenomena in various fields. For instance,
physics, chaos synchronization, continuous-time random walk, mechanical engineering, dynamical and
sub-diffusive systems, anomalous diffusive, wave propagation phenomenon and so on. The non-local
property is considered as the fundamental advantage of discovering many distinct properties of
fractal models. Fractional calculus is a generalization of ordinary calculus, where derivatives and
integrals of arbitrary real or complex order are defined. These fractional operators may model more
efficiently certain real-world phenomena, especially when the dynamics are affected by constraints
inherent to the system. According to the fundamental role of fractal models, an extensive study
is applied on the fractional calculus to discover new fractional derivatives that have been defined
such as the Riemann-Liouville, Caputo, Hadamard, Riesz, Griinwald-Letnikov, Marchaud, etc. [1-5].
These kinds of derivatives are linear operators and possess some fine properties, but they are not
available for all other operational behaviors of a typical first derivative, such as chain rule, quotient
rule, semigroup property, and product rule. Failure of previously mentioned derivatives created the
interest of many researchers to derive a new derivative until, in 2014, R. Khalil et al. were discovered a
new kind of derivative that is a new local fractional derivative which is well-behaved and complies
with the computational relationships of the first derivative, called conformable derivative [6-10]. In the
following steps, we give the summarized properties of this kind of derivative as follows:
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For the given function f : [0, co[— R, then the conformable derivatives of it with order « where
a €]0,1], is given by

F(t e — £()

Du(f)(#) = lim )
e—0 €
forall t > 0. If f is a-differentiable in (0,4), a > 0, and lim+ f4(t) exists, then define
t—0
F(0) = Da(f)(1) = Tim £(8). @

t—0t

For classical definition of R — L and Caputo on polynomial, we see the conformable derivative
coincides with them such as it takes the following definition

Dy (") = mt™ ", 3)

where m is arbitrary constant.
For chain rule, quotient rule and semi group property, we see the properties of conformable
derivative given by

Dﬂé(af+bg):ﬂDa(f)+thx(g)r 4)

where a and b are arbitrary constants.

DaO‘) =0, (5)

where A is arbitrary constant.
Du(f g) = f Du(8) + & Du(f), (6)

Jj _ 8Du(f) — fDu(g)
D (g - g’ ) 7
and also
_aadf

D)) = 7 25) ®)

when f is differentiable. According to these properties and definitions of conformable fractional
derivative, it is equivalent to the ordinary derivative for smooth functions [11,12].

Definition 1. The local fractional derivatives:

letk : [a,b] — R be a continuous nonnegative map such that k(t) # 0, whenever t > a. Given a
function f : [a,b] — R and a € (0,1) a real, we say that f is a-differentiable at t > a, with respect to
kernel k, if the limit that given by Equation (1), exists. The « derivative at t = a is defined by

fO() = lim (1) ©)
t—at
if the limit exists.

Consider the limit &« — 17. In this case, for t > a, we obtain the classical definition of the fraction
that is matched with conformable fractional derivative definition. Based on the conformable derivative
definition, the fractional models convert to nonlinear ordinary differential equations with integer
order. In this step, the contribution of both analytical and numerical schemes have started to study
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explicit solutions for these models and for this purpose, many analytical and approximate schemes
have been derived such as exp (—¢(©))-expansion, improved F-expansion, extended (%)—expansion,
extended tanh- function, simplest and extended simplest equation, generalized Riccati expansion and
sinh-Gordon expansion, Riccati-Bernoulli Sub-ODE, and modified Khater methods to discover more
physical and dynamical properties of these models. For further information about these methods,
you can see [13-27].

This research applies a nine recent methods to the nonlinear time fractional Jimbo-Miwa (JM)
equation for studying the properties of exact and solitary wave solutions. Moreover, we study
the performance of a novel technique that has called the modified auxiliary equation method
(modified Khater method) on the same model for examining the similarities and differences between
these methods.

In 1983, Jimbo and Miwa put the structure of the J]M model in the following formula [28]:

Uxxxy+3vxyvx+3vyvxx+2vyt_3vxz:Or (10)

where v = v(x,y, z,t) describes a certain wave in physics. This model is the second equation in the
well-known KP hierarchy of integrable systems that are given by [29]

(ut+6uux+uxxx)x+3(72uyy:0, (11)

where u = u(x,y,t) is a scalar function, x, y, t, o represent longitudinal, transverse spatial coordinates,
time, and arbitrary constant, respectively. However, it does not pass any of the conventional
integrability tests. It is shown to be conditionally integrable having two types of solitary wave
solutions such that the solitary waves in second type do not interact elastically. Equation (11) has two
forms that depend on the values of ¢ as follows [30-34]:

e Wheno =i,i = y/—1,Equation (11) has been called a KPI equation and was used to describe
waves in thin films with high surface tension [35].

e  When o =1, Equation (11) has been named KPII equation and was used to describe water waves
with small surface tension [36].

The rest of the paper is organized as follows: Section 2 applies the above-mentioned techniques
to the nonlinear time fractional JM equation to obtain exact and solitary wave solutions. Section 3
sketches some figures (Figures 1-10) for the solutions and gives the physical interpretation of them.
Section 4 gives a full discussion about the similarities and differences between these methods. Section 5
summaries the main conclusions.

2. Explicit Wave Solutions of the Nonlinear Time Fractional JM Model

This part tests the performance of ten analytical techniques on the nonlinear time fractional
Jimbo-Miwa (JM). This model has a variety of solutions with distinct structures such as single-soliton
solutions, multiple-soliton solutions, periodic wave solutions, and traveling wave solutions [37—44].
The fractional mathematical modeling of this equation is given as follows:

Vixxy + PVy Vax + G Vx Vay + 7 D{vy — svxz =0, (12)

where v = v(x,y,z,t) describes the dynamics of a certain (3+1)-dimensional waves in physics and
p, q, 1, s are arbitrary constants. Transformation the NLFPD equation into the NLPD equation with
integer order by using the following conformable fractional derivative [v(x,t) =v(©®), @ = x+y +
z+ %] yields:

v’/'+%(p+q)v’2+(rc—s)u’:O. (13)
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Calculating the homogeneous balance value between the highest order derivative and nonlinear
terms of Equation (13) gives N = 1.

2.1. Utilization of Exp (—¢(®))-Expansion Method

Applying this method enables putting the general solution of Equation (13) in the next formula:
N .
@) =Y a,e7%©) = 4,790 4 g, (14)

where a;, {i =0,1,---, N} is arbitrary constant and ¢(®) is the solution function of the next ODE

/ = $(0)
¢ (@) = A+ pe +e¢(®)'
where A, and p are arbitrary constants. Handling Equation (13) by utilizing Equation (14) and its
derivatives, converts the left-hand side of Equation (13) to a polynomial equation of e(~#(®)). Gathering
all coefficients of term that has the same degree and equating them to zero. Solving the obtained
algebraic system of equations leads to

12 A% —dp—s
aq — ——,c -+ ————— where + 0,A>2—4 s, r#0]|.
1T . pta# pFES T F }
According to the value of these parameters, we get the relevant traveling wave solutions of
Equation (12):
When [A2 —4pu >0, u #0]:

24u
vi(x,y,z,t) =ag — T , (15)
(p+9)(A — /AZ—4ptanh(1/A2 y(tl(f%‘mm +x+y+z+9)))
24u
vo(x,y,2,t) =ag — — . (16)
(p+q)(A — /A2 —4p coth (/A2 y(%%—x—i—y—i—z—i—ﬂ)))
When [A2 —4u >0, u = 0]:
12A
v3(x,y,z,t) = ag+ F 1) . (17)
(P+a)(pAM(—F7— +x+y+z+9) - 1)
When [A2 —4pu =0, #0,A #0]:
6A2(arr(x+y+z+8)+5t4)
v /t = - . 18
Ve y 2 t) = 00 = e G M Ty + 24+ 0) +2) F As ) 18)
When [A2 —4pu=0,u=0,A=0]:
12097
,Y,z,t) = . 19
vs(eyz ) =00t e G y 12 ) T s ) 19)
When [A2 —4u <0, u #0]:
ve(x,y,2,t) =ap— 24y (20)

(p+a) (A — /A — AZtan(} /A — AZ(EHE) gy 424 8)))
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24y
(p+9) (A — /A — A2 cot(} /A — AZ(ERHED) 4 gyt 24 8)))

2.2. Utilization of the Improved F-Expansion Method

vz(x,y,z,t) =ap — (21)

Applying this method enables putting the general solution of Equation (13) in the next formula:

N
V(@)= ) a(u+9(0) = +ar(p+¢(®)) + ao, (22)
N +<P( )
where a;, {i = —N,—N +1,---, N —1,N} is arbitrary constant and ¢(®) is the solution of the

next ODE

¢'(©) = ¢p(©) +r.

Handling of Equation (13) by utilizing Equation (22) and its derivatives converts the left-hand
side of Equation (13) to a polynomial function of ¢(®). Gather all coefficients of terms that have the
same degree and equate them to zero. Solving the obtained system of equations yields.

Family I
12(p? + 1) 4r +s
a_1 — ﬁ,al —0,c — — where [4r+s#0,r#0, p+q #=0].

According to the value of these parameters, we get the relevant traveling wave solutions of
Equation (12):

When [r < 0]:

12(;{ + )
(p+q)(u + Vrtan(yr(F5 4 x4y +2)))

vg(x,y,2,t) = ag + , (23)

12(u% +7)
Yz, t) = ag + 1 . (24)
o ot = VreotH T 21y +2))
When [r > 0]:
12(4 + 1)
,Y,z,t) = ag + m , 25
Mo 0 it VR tan(V AR 1 1y 1 2)) )
2
vi1(x,y,2,t) = ag+ 12(p" +7) (26)

(p+9) (1 — Vrcot(v/r(HE 4 x+y +2)))

Family II:

12 4
a1 —0,a1 — —p+q,c—> rjs,where [4r+s#0,r#0, p+qg#=0].

According to the value of these parameters, we get the relevant traveling wave solutions of
Equation (12):
When [r < 0]:

ao(p +q) — 12(p + v/rtan(vF(EID 4 x4y 4 2)))
p+q

vi2(x,y,2,t) = , (27)
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12(p — ﬁcot(ﬁ(% +x+y+z)))

v x/ ,Z,t = dp — 28
13( Y ) 0 p+q ( )
When [r > 0]:
12(5+ Vrtan(VA(PEIE 4 x4y + 2)))
v14(x,y,2,t) = ag — ’ 29)
p+q
12(1 — /rcot(v/r(EE L vy 4
vis(x,y,2,t) = ag — (1 = V/reot(vr( apr Yy )))‘ 30)

p+q

2.3. Utilization of an Extended (%/)—Expansion Method

Applying this method enables putting the general solution of Equation (13) in the next formula:
. , / 2
V(@) =ag+ LN, | a (—G'(®))l+b' (Gl@))lil v (&) +1) | +a
B RN NCIC) Z 0

=510 oy 4D &

where a;, b; are arbitrary constants and g((g)) is the solutions of the next ODE
G/l (@) L
Ge) ~ "

where 1 is arbitrary constant. Handling of Equation (13) by utilizing Equation (31) and its derivatives

((3;’(®) )il 0G'(©)?
() #G(©)*

where {i =0,1,--- ,4&j = 0,1}. Gather all coefficients of terms that have the same degree and equate

them to zero. Solving the obtained system of equation yields

Family I:

converts the left-hand side of Equation (13) to the polynomial function of ( + 0},

a—>6b—>
1 —, 0
p+q

6V L pts
r

NS T , where [pz(f +2pqo+q*c >0, p+q£0,r# 0} ,

(>0 u+s#0].

According to the value of these parameters, the relevant traveling wave solutions of Equation (12)
are given by the following formulas:

When [p > 0]:
(C24+C2)r
6 fl 12
vE (Cy sin( /7l Wtfl)fal Fry+2))+Cy cos( Vil (“J;j)fal Frtyt)))2
veby =) =0t Ve

&
6,/i(C1—Cy tan( /(LU= x4y+2)))

(p+a)(Cr tan( (P50 oty 42))+Cy)

(32)
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When [ < 0]:
(C2-C2)o
6 f 1 2
( ) N vE (Cy cos(/7i( <"§sl)fa1 “+a4y-+2))+Cy sinh(y/7H( (Vf,“?fal Faty+z)))?
Vi7{X,¥,z,1t) = ag
Y Volp+q)?

6Cy /= cos((/H( M+x+y+z))

+
(p+)(Cr cos( T fxty42)) +Cysimh(y =R (LT xy+2))

6C1\/ﬁsm(f(w+x+y+z))
() cos( (LT W L xty+2))+Cy sinh(y—p( UL ’”S L fxty+2))

(33)

Family II:
12 4
a — m,bl —0,c— Vf_i_s,where [p+q#0,r#0,4u+s#0].
According to the value of these parameters, the relevant traveling wave solutions of Equation (12)

are given by the following formulas:
When [p > 0]:

(a0C1 (p+q)~12Cy 1) sin (i BT vy 42))
(p+a) (Crsin(y( W 4y 2)) 4Gy cos(\/ﬁ(ererijz)))

apr

viz(x,y,2,t) =

4;4+s )"

(a0C2(p+q)+12C1 /1) cos(/p (57— +X+yjrf)) (34)

(p+9)(Cy sm(\/ﬁ(M+x+y+z))+c2 cos(\ﬁ(wﬂwﬂ)))

When [ < 0]:

o
C1(ao(p+q) cos(\/ﬁ(w+x+y+z)) 12 /fsin( (T ay+2)))

(p+9)(Cy cos(ﬁ(w+x+y+z))+cz sinh(y/=( HE vy 42))

VlS(x/ ]/, z, t) -

n Co(ag(p+q) sinh(/—p( M"ISZ x+y+z))+l2\/7cos(f(w+x+y+z)))
(p+a)(Cr cos( (WL X+y+2))+Czsmh(\ﬁ(w%flﬂwﬂ))) '

(35)

2.4. Utilization of an Extended Tanh-Function Method
Applying this method enables putting the general solution of Equation (13) into the next formula:

N

V@) = ), a9(0) = p(0) T M@ +an (36)

wherea;, {i=—-N,—-N+1,--- ,N —1,N} and ¢(0O) is the solution of the next ODE

¢'(©) =d+¢(0)?,

where d is arbitrary constants. Handling of Equation (13) by utilizing Equation (36) and its derivatives
converts the left-hand side of Equation (13) to polynomial function of ¢(®). Gather all coefficients
of terms that have a same degree and equate them to zero. Solving the obtained system of equation
results in
Family I:

12d 16d +s

12
m———,a_1— ,C—> ,where[p+g #0,r#0,16d+s # 0].
P+ P+ r lp+a }

According to the value of these parameters, the relevant traveling wave solutions of Equation (12)
are given by the following formulas:



Entropy 2019, 21, 397 8 of 29

When [d < 0]:

12/ tan(VA( P |y y g2)) (co (VAR 4y yy 42)) — 1) -
P+ '

vi9(X,y,2,t) = ag +
When [d > 0]

12v/dtan(Vd( U 4y 4yt 7)) (cot2 (VAL 4 vy 4 2)) — 1)

voo(x,y,z,t) = ag + ar ar . (38)
(X, y,2,1) s
When [d = 0]:
12
vo1(x,y,2,t) = ap + 5 : (39)
(P+a) (57 +x+y+2)
Family II:
4d + s
a; — — ,a_1 — 0,c — ,where[p+q #0,r#0,4d+s #0].

r
According to the value of these parameters, the relevant traveling wave solutions of Equation (12)

are given by the next formulas:
When [d < 0]

12\/Htan(\/ﬁ(w +x+y+2z))

aqr

p+q

VZZ(-X/ Y,z t) =ag — ’ (40)

12/d cot(Va( UL 4y 4y 4 2))
vo3(x,y,2,t) = ap + bt . (41)

When [d > 0]:

12\/H’car1(\/ﬁ(M +x+y+2z2)

voa(x,y,2,t) = ap — pﬁrq , (42)

12/d cot(v/a(QE o 1yt s
vos(x,y,z,t) = ag+ (vl p':l_rq Y )) (43)

When [d = 0]:
12
P+ +x+y+2)

aqr

V2 (X,Y,2,t) = ag + . (44)

Family III:

12d 4d
a —0,a_1 — m,c — %,where[;ﬂ—q #0,7r#0,4d+s#0,d #0].

According to the value of these parameters, the relevant traveling wave solutions of Equation (12)
are given by the following formulas:
When [d < 0]

12/d cot(Va(UEE 4y 4y 4 2))

Vo7 (x,Y,2,t) = ag + , (45)
27(x,Y,2,t) = ag s
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12\/Htan(\/ﬁ(w +x+y+2z)
vog(x,y,2,t) = ag — ; j_ p . (46)

When [d > 0]:

12V/d cot(Va(LEL oy 1y 7))

vao(x,1,2,1) = ag + ar , (47)
29(x,Y,2,t) = ag s

IZﬁtan(\/E(W%-x—l—y—kz))
V30(x/]/zzz t) =4ap — p":_q . (48)

2.5. Utilization of the Simplest Equation Method

Applying this method enables putting the general solution of Equation (13) in the next formula:

N

V(@) =Y a;f(©) = a1£(©) + ap, (49)

i=0

where a; is arbitrary constant and f(®) is the solutions of the next ODE

f'(®) = c2f (©)* + c1f(0),

where cjandc; are arbitrary constants. Handling of Equation (13) by utilizing Equation (49) and its
derivatives converts the left-hand side of Equation (13) to polynomial function of f(®). Gathering
all coefficients of terms that have the same degree and equating them to zero. Solving the obtained
system of equation obtains

Family 1

iv2c 5
———,a — a;j(=b),cq1 —
\/E 0( ) 1

a] —

iv2a9vb
—W,where [b<0,c#0].

According to the value of these parameters, the relevant traveling wave solutions of Equation (12)
are given as follows:

When [c; — —1]:
a icc1(1+tanh(%c1(—% Vcl_ytl+x+y+z+19)))
va1(x,y,2,t) = 5 NN , (50)
7 iccﬂ—l%—tanh(%cﬂ—% Vcl_gtl+x+y+z+19)))
v3(x,y,2,t) = -3t NN . (51)
Family 11

ay — —2ag,¢ — iv2a9V'b,a — a3(—b), where [b < 0].

According to the value of these parameters, the relevant traveling wave solutions of Equation (12)
are given as follows:
When [¢c1 = 1,¢0 — —1]:

V2ivby [t
1/33(x,y,z,t):—,/—%tanh(%(—lb+x+y+z)). (52)

o
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2.6. Utilization of an Extended Simplest Equation Method

Applying this method enables putting the general solution of Equation (13) in the next formula:
vO)= ¥ af(@) =
=N f(©)

wherea;, {i=—-N,—-N+1,--- ,N—1,N} and f(®) is the solution of the next ODE

+a1f(®) +ay, (53)

f1(©) = a+Af(®) + uf(©)?,

where a, A, and y are arbitrary constants. Handling Equation (13) by utilizing Equation (53) and its
derivatives converts the left-hand side of Equation (13) to polynomial function of f(®). Gather all
coefficients of terms that have the same degree and equate them to zero. Solving the obtained system
of equation, we get:

Family I

_ 2 _
2p ,a_1 — 0,c — —M,where[r#O,p—kq#O,y#O, —4a;4+)\27és].

ap — —
p+q

According to the value of these parameters, the relevant traveling wave solutions of Equation (12)
are given as follows:

When [A = 0]:

Thus, when [« > 0], the solutions take the following forms:

12,/aytan(‘/zx‘u(% +x+y+z+9))

V34<x/yrzr t) =4ap — p + q s (54)
12,/&ycot(,/o¢y(% +x+y+z+9))

v35(x,y,2,t) = ag — . (55)

p+q
When [a p < 0]:

12\/06(—‘1/1) tanh(\/o((—y)(w+x+y+z)¢ 10g2(19))

aqr

p+q

v36(X,y,2,t) = ag — , (56)

—

12/a(—p) coth(y/a(— ) (FEEED 4y oy 4 2) 5 1280

1/37(x, ,Z, i’) =aqap— (57)
g P+
When [« = 0]:
Thus, when [A > 0], the solutions take the following forms:
121 e +1
L v -
V38 xr]//Z,t - a0+ ’ 58
p+q
12u(1 - -
‘u( . <57£\,12,)t ! +x+y+z+19)+1
v39(X,y,2,t) = ag+ ¥ . (59)

p+q
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When [4ap > A%]: while [u > 0]:

ao(p +q) + 64 — 6y/Fag — A2 tan(L \/ap — AZ(LLUSATES) |yt g 4 g))

V40(x/y/Z,f) == p+q ar ’ (60)
( . ao(p+q)—5—6)\—6\/404;1—A2cot(%\/4a;¢—/\%%-ﬁ-)ﬁky—kz—ﬂ?)) D)
g (X, y,2,t) = .
p+q

When [4ap < A?):
Thus, when [ > 0], the solutions take the following forms:

ag(p+q) — 6(A + /4ap — A2 tan(4 \/4ap — )\2(w +x+y+z+9)))

vp(x,y,z,t) = o . (62)
2(x,Y,2,t) P
o _ 12
ao(p +q) — 6(A + VAap — AZcot(}\/4ap — AZ(W +x+y+z+19)))
vaz(x,y,2,t) = - (63)
p+q
Family I1
— 2 _
ap —0,a_1 — pliaq,c — —M,where [r#0,p+q#0,a #0, —4apu+ > #s].

According to the value of these parameters, the relevant traveling wave solutions of Equation (12)
are given as follows:

When [A = 0]
While [a p > 0]:
1 (4o pi+s)
12 /i cot(/ap(—5 7 +x+y+z+ 9))
v (x,y,2,t) = ag + P , (64)
1 (4o pi+-s)
12, /acpi tan /txy(T +x+y+z+9))
vg5(x,y,2,t) = ag + D4 : (65)

While [« p < 0]:

12/a(—p) coth(y/a(—p) (FUEREE) 4y oy 4 2) 5 g0y

vge(x,Y,2,t) = ag — s , (66)

12/a(—p) tanh (y/a(—p) (2G84 |y 4y 4 7) 5 los(0))

vay(x,y,2,t) = ag — ; +”;” (67)
When [4apy > A?):
Thus, when [y > 0], the solutions take the following forms:
24n
vag(x,y,2,t) = ag — — , (68)
(p+q)(A — VAap — A2 tan(} /4y — /\2(w +x+y+z+9)))
24n
vao(x,y,2,t) = ag — ¢ . (69)

(p+q)(A — V/Aap — A2 cot(} /Aap — \2(FIEA) 4y 12 4 9))
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When [4ap < A?):

While [p > 0]:
24np
vso(X,y,2,t) = ao + ST , (70)
(p+q)(A+ /A — A2 tan(}y/Bap — A2(FHEUEE) 4y y 42 4 9))
24
VSl(x/y/Z,f):ﬂ0+ ‘xl/l . (71)

(p+ ) (A + /Aap — AZcot(]/Aap — A2 sty 42 4 9)))

2.7. Utilization of the Generalized Riccati Expansion Method

Applying this method enables putting the general solution of Equation (13) in the next formula:

N N ,
v(@) = ZaiQ(®)’ + 2 biQ(O®) " +ay=a1Q(O) +ag+ b—l, (72)
=1 i-1 Q(O)

where ag, a;, b;, {i =0,1,--- ,N} and Q(O) is the solution of the next ODE
Q'(©) = A+ BQ(O) + mQ(©)?,

where A, B,and m are arbitrary constants. Handling of Equation (13) by utilizing Equation (72)
converts the left-hand side of Equation (13) to polynomial function of Q(®). Gather all coefficients of
terms that have the same degree and equate them to zero. Solving the obtained system of equation
leads to

12A 4Am — B2
by — m,al —0,c— w, where[p+q#0, A#0,r #0,4Am — B> +5s #0).
According to the value of these parameters, we get the relevant traveling wave solutions of
Equation (12):
When [A = (B> —4mA) >0&mB #0&mA #0&F*—R? > 0]:

24Am

V(Y2 t) = a0 = (p+q)(VBtanh(LVA(TEAN B |y z)) 1) 7
vsa(%,y,2,t) = ap — (p+ q)(ﬂcoth(;\/ﬁ(f“lziig;wm +x+y+2)+B) 7

el g% 8) =40 (p+0)(B+ VA(tanh(vA( T EATEES) o TyA f 2)) % isech(VA(T AT |y iy 4 2))))] 75)
vl = (p +9)(VA(coth(VA(HEARTE) 4 o1y it?)mi csch(VA(TEAE) |y 4y 4 2))+B) (76)
vl ) = o = (p+q) (VA(tanh(} VA(TEATES) 4oy fi?)r: coth(} VAP 4 v 4y +2))) +2B) @7)
vs7(x,y,2,t) = ag — 244m (78)

\/ZRcosh(\/Z(M+x+y+z)), A(F2+R?)

xqr

Rsinh(VA(ZHEAMB24) oyt o)) 4 F

0(17

(p+a)( +B)
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24Am
ﬁRSinh(ﬁ(w+x+y+z))+ A(szFZ)

Xqr

Rcosh(ﬂ(w+x+y+z))+F

Al}’

, (79)

vss(X,y,2,t) = ag —

(p+a)( + B)

ao(p+q) + 6vAtanh(LVA(ELEAMEMS) Lty 4 7)) —6F

ar

, 80
— (80)

vso(x,y,z,t) =

6(B — VAcoth(3VA(THAE) |yt y 4 2)))

aqr
veo(x,y,2,t) = ag — , (81)
p+q
Vel (x vz t) _ 6sech(\/5( = (AA:;:BZJL;) +x+y+z))
Y2, o
x [\/Ksinh(\/g(% +xty+z))— (Bcosh(ﬂ(% +x+y+2))£ivVA)| +ag, (82)

6(B —csch(ﬂ(w +x+y+z))(\/gcosh(\/g(w +x+y+2z))£VA))
Vea(%,Y,2,t) = ag — ! s ! , (83)

ao(p+ ) +3VA tanh(LVA(ELEAMES) |4yt o)) (coth?(LV/A(ELEAMEES) |y 4y 2)) 4 1) — 6B

ve3 (%, y,2,t) = ar p+q a7 (84
When [A = (B> —4mA) <0&mB #0&mA #0&F?—R? < 0]:
24Am
Vea(X, Y, 2,t) = ag — T p (85)
(p+q)(VAtanh(§ VA(TUARES) 4y iy 4 2)) + B)
24Am
1/65 (Xb‘y, Z, t) = LZO - o _ 7 (8(3)
(P—i—‘i)(\/gcoth(%f(%+x+y+z))+B)
24Am
=T ‘ 2+s a 2 ’ 87
B~ Vo Ban(V B TBTE 1y ))& s (VAT 1y ) )
24Am
Y,z ) = ag — ] i u 2 .
ver(x,y,2,1) = ag qu)(rﬁm(ﬂ(%+X+y+z))iCSC(\/jA(w+x+y+z)))+3) (88)
ves(x,y,2,t) = ag — 48Am (#9)

(p+ ) (VA tanh(§VA(LEAELS) 4y 4y 4 2)) (coth?(AVA(EBAMENS) |y 4yt 2)) 4+ 1) +2B)

ayr a7

24Am
Veo (X, Y, 2,t) = ag — 1 (4Am—B21s) ’ (90)
(p+ )(FRcosh(\f(Tﬁ—i-x-&-y-&-z)) A(F—R)(F+R) +B)
P Rsin(y/—a(L1UAn-B+s) . B245) 4 v yytz))+F
24 Am
vro(x,y,2,t) = ag — , 91)

( n )(\/ (F—R)(F+R)—+/AR sinh( f(%+x+y+z)) n
P Rcosh(f(%ﬂ’gm+x+y+z))+P

ao(p+q) + 6vAtanh(L/A(LLEAMBES) Ly 4y 4 7)) — 6B

aqr

p+q

vy (x,y,z,t) = , (92)
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6(B — \/Kcoth(%\/g(w +x+y+2)))

aqr
I/72(36/ y/ z, t) =4ap — 7 (93)
p+q
6sech(vA( 1 (4Am—B2+s) MA:;:BZH) +x+y+z))
v3(x,y,2,t) = o
X \/Esinh(\/g(% +x+y+z))— (Bcosh(ﬂ(% +x+y+z)+ \/7A)] +a, (94)

6(B — csc(y/—A(LLUAMBS) | o4yt 2)) (VoA cos(VA(LLEAMEE) 4ty 4 7)) £ VA))
v (x,y,2,t) = ag — 1 . 1 , (95)

ao(p+ ) + 3V tanh(LVA(THEAEES) 4y 4y 4 2)) (coth? (AVA(THEANTES) 4oty t2)) 4 1) - 6B
p+aq

. (96)

vzs(x,y,2,t) =

2.8. Utilization of the Generalized Sinh—Gordon Expansion Method

Applying this method enables putting the general solution of Equation (13) in the next formula:

N

v(©) = Y cosh' M (w(®)) | B; sinh(w(®)) + A; cosh(w(®)) | + Ag = Ay cosh(w(®)) + Ag + By sinh(w(©)),  (97)

i=1
where A1, Ao, and Bj are arbitrary constants. Handling of Equation (13) by utilizing Equation (97) and
its derivatives converts the left-hand side of Equation (13) to polynomial function of f(®). Gather all
coefficients of terms that have the same degree and equate them to zero. Solving the obtained system
of equation leads to
Case I: When [w/(©) = sinh(w(©))]:
Family I:
Ay ——° B S 6 ¢ 571 where p+q#0,7#0, p*+2pg+4¢* #0
1 - /b1 - s s ’ ’ .
p+q VP2 +2pq + g2 r
According to the value of these parameters, the relevant traveling wave solutions of Equation (12)

are given in the following formulas:

6tanh(( ) +x+y+2) 6(iz)sech(( ) +x+y+z)

vre(x,y,2,t) = Ao+ P T3 - (P 02 , (98)
6coth((s 1)“ +x+y+2z) 6(iz)csch((s 1)“ +x+y+2z)
vr7(x,y,z,t) = Ao + p T - (p ) . (99)
Family II:

Ay —0,B; — _pl+2q'c — (;)Z, where, [p+q #0, r #0].

According to the value of these parameters, the relevant traveling wave solutions of Equation (12)
are given in the following formulas:

( V= A 12tanh((S 4)t1 +x+y+z) 100)
vrg(X,Y,2,t) = Ao+ ,
/ R
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12cothw+x+ +z
vro(x,y,2,t) = Ag + ( Mpr_i_q 4 )- (101)

Case II: When [w/(¢&) = cosh(w(&))]:
Family I

A1 —0,B; — —pqu,c—> ;, where, [p+q #0,r #0].

According to the value of these parameters, the relevant traveling wave solutions of Equation (12)
are given by the following formulas:

&1

12tan(3— +x+y+z)

t
n1r

USO(x/]// z, t) = AO - p n q s (102)
12 cot(sw1 +x+y+z)
V1 (x,,2,t) = Ag + p e . (103)

2.9. Utilization of Riccati—Bernoulli Sub-ODE Method

Applying this method enables putting the general solution of Equation (13) in the next formula:
V(&) = av(®)*" + b(®) + ()™, (104)

where g, b, 17, and m are arbitrary constants. Substituting Equation (104) and its derivatives into
Equation (13), in addition to collecting all coefficients of the same term of v(&), we get the system of
equation. Solving this system leads to

Family I:

a— f—z(—p—q),b — —/s —cr,1 = 0, where [s —cr > 0].

Thus, the solitary wave solutions of Equation (12) are given by:

Vear(Shaxtytn)  pHg oy

Y.z, t) = 105
Family II:
a— %(—p —q),b = /s —cr, — 0, where [s —cr > 0].
Thus, the solitary wave solutions of Equation (12) are given by
p+q —Vemer (L taty+z)y
v /t =\ 7 — “ . 106
V83(xyz ) (12m+‘ue ) ( )
Family III:
a— %(—p —q),b—0,c— 3(;;_"'1377), where [s —cr > 0].
Thus, the solitary wave solutions of Equation (12) are given by
When [m #0,a #0, b2 —4an < 0]
+g)tan(3v/er —s(C fx+y+z+9
a1 = LA ENOVET Uy Ty e ) (107)

6r/cr —s ’
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(p+4q)cot(3v/er —s(LL +x+y+2+9))

7Y, /t = - 108
1/85(.7( y Z ) 6\/m ( )
When [m # 0, a #0, b> —4an > 0]
~(p+9) coth(%\/s—cr(%+x+y+z+l9))
vge(x,y,2,1) = Z , (109)
Ver —s
Vo2, ) = (p+q) tanh(3v5s —cr(%r +x+y+2+9)) 110
87 /y/ 7 6m .

2.10. Utilization of the Modified Auxiliary Method

Applying this method enables putting the general solution of Equation (13) in the next formula:

ZaKlf 4 3B KO g — 0y KO 4 gt by KO, (1
i=1

where a;, b; are arbitrary constants and (@) is the solution of the next ODE

B+ aK—f(©) 4 gKf(©)
In(K) ’

where B, #, and ¢ are arbitrary constants. Handling of Equation (13) by utilizing Equation (111) and
its derivatives converts the left-hand side of Equation (13) to polynomial function of K/(®). Gather all
coefficients of terms that have the same degree and equate them to zero. Solving the obtained system
of equation yields:

Family I:

f(@) =

12 dpo — B2
a1—>0,b1—>p+‘xq,c—> i r'B +S,where p+q7é0,r7é0,4zw—,82+s#O,a;«éo}.

According to the value of these parameters, the relevant traveling wave solutions of Equation (12)
are given as follows:
When [g2 —4a0 < 0&0 # 0]:

vgs(x,y,2,t) =a 2400 (112)
88\ A, Y4, = Uy — a ’
(p+0)(B— VAno — B tan(3/Aao — BT 4y gy 4 2))
2
vso(x,y,2,t) = ag — eot(] Ao (G ) . (113)
(p+4)(B— V4o — > cot(5\/4a0 — IB(T+x+y+Z)))
When [f2 —4a0 > 0&0 # 0]:
voo(x,y,z,t) = ag — - 240 T (a0 F279) , (114)
(P +4)(B+ /B — 4ac tanh(3\/B? — dao(—=1 +x+y+2z)))
vor(x,y,2,£) = ag — 2400 (115)

(p+q)(B+ /B — 4ac coth(} /B2 — dac (" TFE) oy y )
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When [f2 +4a? < 0&a = —0c &0 # 0]:

2442

vor(x,y,2,t) = ap + Ry , (116)
(p+9)(B— V=42 — Ptan(} /—2aZ — B A Lty 4 2)))
242
1/93(951 Y,z t) =ap + 1 11 (—da2—p2+3) : (117)
(p+9)(B—/—4a? — B2 cot( j\/—4a2—ﬁ2(T +x+y+2z))
When [f2 +4a? > 0&a = —0c&o #0]:
2402
V94(xr]/,Z/t) = a0+ 1 402 ﬁ +5) ’ (118)
(p+q)(B+ 4a? + p* tanh(; /442 +5Z(T +x+y+z)))
2402
V95(xr]/,Z/ t) =ag+ > > 1 5 5t (—402— B2 +5) . (119)
(p+aq)(B+ /4a? + p? coth(5\/4a? + p2(————— +x+y +2)))
When [f? —4a? < 0&a = 0 &0 # 0]:
2402
U96(x/ ]/, z, t) =4ag — « ’ (120)
(p+0)(B— /A — B tan(} /a2 — pA(THECED) 4y y 7))
2402
voy(x,y,2,t) = ag — i L e . (121)
(p+q)(B— V/4a? — p? cot(5/4a? ﬁ%44774*+x+y+ﬂn
When [f? —4a® > 0&a = 0 &0 # 0]:
2442
U98(xr]/r z, t) =4ap — 1 ) (40(2—ﬁ2+s) ’ (122)
(p+a9)(B+p*—4a?tanh(5/p? — 4a?(—— " +x +y +2)))
2402
V99(xr]// z, t) =4ag — « . (123)
(p+a)(B+ /B — 8 coth(} /F7 — daZ(L0CFs) | oy o))
When [0 < 0&a #0&B =0]:
12+/a0 cot(+/ a0 % +x+Yy+z
vipo(X, Y, 2,t) = ag + (Var ; +c; !/ )), (124)
12+/ac tan(y/ao (M+x+y+z))
vio1(X, Y, z,t) = ap — S ta . (125)
When (a0 > 0&a #0& B =0]:
12/ —ao coth(v/—ac M +x+y+z
VlOZ(xl Y,z, t) =4ap + ( ( Y ))/ (126)

p+q

12y/—wa0o tanh(y/—ac (M +x+y+2z))
vios(x,y,2,t) = ag + P ) (127)
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When [ =0&a = —0]:

12a tanh(« M—i—x—i— +z
vioa (X, y,2,t) = ap + N ;tq : ))' (128)

When [ =k &a =2x&0 =0

241<

vigs (%, Y, 2,t) = ag + TTw— . (129)
(p+q)(e ™ T )
When [ =0 =0]:
12raq
Y.z, k) = . 130
vi06(x, v, 2, 1) = ap + 7T 0 +y+2) F50) (130)
When [ =0&a =0}
( ) 12 cot(C + a(w +x+y+2z)) (151)
v xX,Y,z,t) =ap+ .
107\X, Y 0 rp
When [0 = 0]:
120
vio8(X, Y, 2,t) = ag — (fm v (132)
(p+q)(a— gt T
When [f% —4ac = 0):
o
V100 (5,9, 2 b) = ag + 2400 (raq (x +y + z) + st*1) (133)

(p+q)(—ray (2y/ao(x + y + z) +2) — 25 /act*1)’

Family II:

120
a ————,by =+ 0,c—

dao — B2+
p+q r

, where [0750,p+q7é0,4zxa—ﬁ2+5750,r750}.

According to the value of these parameters, the relevant traveling wave solutions of Equation (12)
are given as follows:
When [f2 —4a0 < 0&0 # 0]:

ap(p+q)+68—6 4&0—‘82tan(%\/4a0—52(%+x—|—y+z))
Vllo(x/]//Z/ t) = p+q 7 (134)
a0(p +q) + 68 — 6+/3ac — B cot(L /Eag — PL(ELANES) 4yt gy )
v (x,y,zt) = 7 1 . (135)

When [f2 —4ac > 0&0 # 0]

ao(p +q) + 6(B + /B — 4ac tanh(3 /B2 a(”l(‘*”‘;;iﬁ“)+x+y+ 2)))
p+q

V112 (x/ Y,z t) ’ (136)
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ao(p +q) + 6(B + /B — 4ac coth(}/BZ — dac(TEFES) 4o 1y 1))

1113(x,v,2,t . (137)
When [f? +4a? < 0&a = —0 &0 # 0]:
6aB + aag(p + ) — 6n/—4a2 — B2 tan(1 \/—4a? — 52(% +x+y+z)
1/llél(xlylzr t) = P (138)
a(p+9q)
6ap +aag(p +q) —6a\/mcot(%\/77ﬁ2(% +x+y+z))
vi1s(%, ¥, 2,t) = . (139)
a(p +9)
When [82 +4a2 > 0&a = —0 &0 # 0]:
aag(p + q) + 6a(B + /4a? + B2 tanh( %«/4042—1—/32(% +x+y+z)))
vi16(X, ¥, 2,t) = , (140)
a(p+4q)
wag(p+ 4) + 6a(B + /A2 + P2 coth(} /A2 + P2 ) §x ty 4 2)))
vi7(x,y,z,t) = . (141)
a(p +9q)
When [f? —4a® < 0&a = 0 &0 # 0]:
wag(p -+ ) + 60(B — /402 — B tan(} /A2 — PRIy x oy 4 2)))
Vlls(x/ylzl t) - , (142)
a(p+4q)
aag(p +q) + 6a(B — \/4aZ — B2 cot(F/4a2 — p2 (%%ﬁm+x+y+ z)))
v19(x, Y, 2, 1) = - (143)
a(p +4q)
When [g2 — 44?2 > 0&a = 0 &0 # 0]
wag(p +4) + 6a(p + /B — 4% tanh(} /B — 42O 4 x4 2)))
Vlzo(x/ylzl t) - ,(144)
a(p +4q)
aag(p +q) + 6a(B + /% — 4a2 coth(3 /B2 (w+x+y+ z)))
vi21(x,y,2,t) = . (145)
(p+q)
When [0 < 0&a #0& B =0]:
12\/zwtan(\/oa7(% +x+y+2z))
vin(X,y,z,t) = ag — ! , (146)
p+q
12y/ao cot(y/ao (M—f—x—}—y—i—z))
vi3(X, Y, z,t) = ap + . (147)

p+q
When (a0 > 0&a #0& B =0]:
12¢/—ao tanh(y/—aco (M +x+y+2))

Vioa(x,Y,2,t) = ag + , (148)
124(%,y,2,1) = ag p+q
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12\/—zwcoth(\/jxa(% +x+y+2))

vio5(x,y,2,t) = ag + (149)
125(%, Y, 2, t) 0 T g
When [ =0&a = —0]
_Ap2)
12a coth(a(% +x+y+2z)
vi26(X,Y,2,t) = ag + - : (150)
(x,y,2,t) P
When [ =0 =x&a =0
YAV
12« coth(a(% +x+y+2z))
vio7(x,y,2,t) = ag + L . (151)
127(%,Y,2,t) P
When [a = 0]:
1213( (s—/jz)t‘% + 1)
(x,y,2,8) = ag + —o (152)
Vig\X, Y, 2,t) = ag .
g P+
When [ = a = 0]
12raq
Y.z, k) = . 153
vizs(%, .2, ) a0+(p+q)(m1(x+y+z)+st“1) (153)
When [ =0&a = 0]
(x,9,2,1) 120tan(C + a(F 4 x by +2)) (154)
v X, Y,z, - aO - .
130\%, Y P
When [ = V4aol]:
6(2var + ——2 )
V131 (X, Yy, z, t) = 4ay + e (x+y+2)+St ! . (155)

p+q
3. Physical Interpretation of Solution

This section discusses and interprets some of the obtained solutions under the suitable choice of
the parameters values as shown in Table 1. Generally, all of these waves are considered as traveling
from right to left.
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7.40010000
vi(x.t)

7.40005000

7v4000009q

Figure 1. Representation of the solution of Equation (15): (a) three-dimensional v; (x, t); (b) v1(x) for
several values of ¢ and (c) density plot vy (x, £).

Figure 2. Representation of the solution of Equation (27): (a) three-dimensional v15(x, £); (b) v1(x) for
several values of t and (c) density plot vy5(x, t).
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Figure 3. Representation of the solution of Equation (35): (a) three-dimensional v1g(x, t); (b) v15(x) for
several values of t and (c) density plot v1g(x, ).

Figure 4. Representation of the solution of Equation (45): (a) three-dimensional vy7(x, t); (b) vo7(x) for
several values of t and (c) density plot vp7(x, f).
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Figure 5. Representation of the solution of Equation (52): (a) three-dimensional vs3(x, t); (b) v33(x) for
several values of t and (c) density plot vaz(x, ).

(@)

52.9995000 —_ =i
52,9980000 — =2
52.9985000 —_g —5
52.9980000
529975000

S S S S —— |
5 10 15 20

ol

Figure 6. Representation of the solution of Equation (58): (a) three-dimensional vsg(x, t); (b) v3g(x) for
several values of t and (c) density plot vag(x, ).
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Figure 7. Representation of the solution of Equation (73): (a) three-dimensional vsp (x, t); (b) vy (x) for

(b)
30 -— -_—
2 - i
— g -l
20 —
15
10 -5 0 5 10
15 20

10 -
. - . ©)
5 10

several values of t and (c) density plot vsy(x, f).

(@)

5y ]
4 4
m
2

s ]

Figure 8. Representation of the solution of Equation (101): (a) three-dimensional v79(x, t); (b) v79(x)

for several values of t and (c) density plot vy9(x, t).
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Figure 9. Representation of the solution of Equation (105): (a) three-dimensional vgy(x, t); (b) vsy(x)
for several values of t and (c) density plot vgy(x, t).

A— L " R
0 5 10 15 20

Figure 10. Representation of the solution of Equation (114): (a) three-dimensional vy (x, t); (b) vgo(x)
for several values of t and (c) density plot vog(x, t).
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Table 1. Physical interpretation of represented solutions where S, A, and W represent shape, amplitude,
and wavelength, respectively.

Fig. Nu. S A w Parameters Value

v1(x, t) Periodic kink 7.4 6 [aoz‘),vc]:0.5,)\:3,y:2,p:8,q:7,r:10,5:5,y:1,z:4,19:6]
via(x, 1) Singular 15 0.5 [r =4,a0=9,01=05pu=2p=849g=7s=5y=1z2= 10]

v18(x, 1) Singular kink 15 7 [ao =9,01=050C=11,C =12, y=—-4p=8q=7r=10,s=5y=1,z= 2]
vo7(x, 1) Singular 20 1.9 [110 =9,0=05d=4p=84g=7r=10,s=5y=1,z= 2]

v33(x, 1) Periodic kink 1.2 0.7 {al =05a=4b=-2y=1z= 2]

v39(x, t) periodic kink 53 7 {t1 =05a0=5b=-2A=4u=-1,p=-2,9q=3,r=-3,z=2,0=3}
vsp(x, t) Kink 10 6 [al:0.5,a0:5,A:2,B:3,A:1,m:1,r:73,s:6,y:1,z:2]
vzg(x,t)  periodic anti-kink 15 6 [al =05 A =3,r=-1,s=5y=1z= 2]

vga(x, 1) periodic kink 0.0006 6 [al =05c=1,u=5p=3,9g=4r=2s=6y=12= 2]

voo(x, 1) periodic kink 0.1 6.5 [ao:7,tx:1,ﬁ:3,c:l,p:3,q:4,r:5,s:6,r7:2,y:1,2:2, a1:0.5]

4. Discussion

This section investigates the relation between all above-mentioned methods with a modified
auxiliary equation method (modified Khater method). We show the similarities and differences
between them and the result of this discussion is shown in Table 2.

Table 2. Discussion of the relations between the modified auxiliary equation and above-mentioned

methods.
Method Conditions Similar

Exp (—¢(0®))-expansion method [f(@) =¢0@),e=K o=y p=Aa= 1} v
Improved F-expansion method KO =yt ¢@),0=1,8=—2ua=p>+ r} Vv
Extended (%)—expansion method [Kf((a) = GG/((S)), c=—-uB=0a= —1} Vv
Extended tanh- function method Kf(©) = $©),0=1,=0a= d} v
Simplest equation method {Kf@) =f*©),0=c,B=c,a= 0] Vv
Extended simplest equation method {Kﬂ@) =fO),c=up=Aa= a*} Vv
Generalized Riccati expansion method _Kf ©) = $(@®),0c=m,p=B,a= A_ v
Generalized Sinh-Gordon expansion method TR T RO URREOURRRPR _ x
Riccati—-Bernoulli Sub-ODE method T ] X

According to this discussion, we can conclude that the modified auxiliary equation method
(modfied Khater method) covers the first seven methods that are used in this research and it is more
general than them.



Entropy 2019, 21, 397 27 of 29

5. Conclusions

This paper studied the performance of conformable fractional derivative on the time fractional
Jimbo-Miwa equation. Moreover, nine analytical and modified auxiliary equation methods (modified
Khater method) were applied to this model for getting various explicit wave solutions of the fractional
JM model. The solutions obtained were discussed and represented under the suitable choice of the
parameters to show the physical properties of each one of them. In addition, we studied each one of
the used methods and its relation with the modified auxiliary equation method. Our discussion shows
the superiority of the modified auxiliary equation method (modified Khater method) on some of these
methods such that it covers almost all solutions that are obtained by these methods.
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