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Abstract: Allocation and management of agricultural water resources is an emerging concern due
to diminishing water supplies and increasing water demands. To achieve economic, social, and
environmental goals in a specific irrigation district, decisions should be made subject to the changing
water supply and water demand—the two critical random parameters in agricultural water resources
management. This paper presents the foundations of a systematic framework for agricultural water
resources management, including determination of distribution functions, joint probability of water
supply and water demand, optimal allocation of agricultural water resources, and evaluation of
various schemes according to agricultural water resources carrying capacity. The maximum entropy
method is used to estimate parameters of probability distributions of water supply and demand,
which is the basic for the other parts of the framework. The entropy-weight-based TOPSIS method is
applied to evaluate agricultural water resources allocation schemes, because it avoids the subjectivity
of weight determination and reflects the dynamic changing trend of agricultural water resources
carrying capacity. A case study using an irrigation district in Northeast China is used to demonstrate
the feasibility and applicability of the framework. It is found that the framework works effectively to
balance multiple objectives and provides alternative schemes, considering the combinatorial variety
of water supply and water demand, which are conducive to agricultural water resources planning.

Keywords: agricultural water management; supply and demand; optimization and evaluation;
maximum entropy; entropy-weight-based TOPSIS

1. Introduction

The conflict between limited water supplies and increased water demands underscores the
necessity of efficient and sustainable water resources management. In many counties, irrigated
agriculture is the biggest water consumer, occupying more than 70% of available water resources in the
world [1,2]. The concept of sustainable agriculture calls for decision-makers to manage water resources
not only to focus on economic benefits but also to consider environmental and social effects [3]. Thus,
sustainable optimization methods for agricultural irrigation water allocation, which can determine
how much water should be allocated to different crops or different regions in obtaining certain goals
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associated with economic, social, and environmental aspects, is desired and beneficial for agricultural
water management.

Water supply and water demand are two main drivers to determine agricultural water resources
allocation strategies. In an irrigated agriculture system, water supply is usually derived from
upstream runoff (or ground water) and water demand depends highly on crop evapotranspiration.
Both runoff and crop evapotranspiration are affected directly by natural conditions and human
activities, leading to the randomness of the two parameters [4,5]. Water supply and water demand are
closely associated with wet and dry conditions, and their variations have resulted in the sustainable
management of agricultural water resources tending to be increasingly vulnerable, particularly in
extreme conditions. This emphasizes the importance to investigate the joint probabilities of alternating
wet and dry conditions of water supply and water demand, thus guiding the management of
agricultural water resources.

Copula functions are useful for deriving joint distributions of two or multiple random
variables and are widely used in the field of hydrology and water resources [6–8]. For example,
Zhang et al. [9] constructed a multivariate copula-based joint probability distribution of water supply
and demand with student t-copula function based on the data series of precipitation, reference crop
evapotranspiration, and irrigation water in the Luhun irrigation district of China. Golian et al. [10]
used the copula method to study the joint response of key hydrologic variables, including total
precipitation depths and the corresponding simulated peak discharges for different antecedent soil
moisture conditions. The formulation of copula function was based on the marginal distributions,
and parameter estimation provided a vital role in determining the corresponding functional forms.
Many methods have been used to estimate parameters of hydrologic frequency distributions, such as
the moments method, maximum likelihood method, probability weighted moments, weight function
method, curve-fitting method, maximum entropy principle, Mellin transformation, and minimum
interaction entropy method [11,12]. Among them, the maximum entropy principle is widely used for
its simple and quick calculation [13].

Further, the sustainable management of agricultural water resources usually involves multiple
conflicting objectives, including economic, social, and environmental aspects. That end, multi-objective
programming has proven to be an effective way to balance contradictory goals [14–16]. How to
evaluate the performance of system objectives and the corresponding water resources allocation
strategies under different combination scenarios of water supply and demand is conducive to making
judicious decisions.

Many methods can be adopted to evaluate system performance. The technique for order
preference by similarity to an ideal solution (TOPSIS) is a frequently-used and efficient method
for multi-objective decision [17]. TOPSIS is a ranking method approximating the ideal solution and it
assesses relative merits for the existing strategies. The determination of weights is needed when using
TOPSIS. Entropy-weight-based TOPSIS method is popular, because it only requires the characteristic
of monotone increasing/decreasing of different utility functions, and can avoid the subjectivity of
weight selection [18]. However, very limited research has been reported on managing agricultural
water resources in a comprehensive framework which can achieve trade-off solutions to inform and
assist decision-makers by following the steps of uncertainty identification, modeling, optimization,
and evaluation.

The objective of this study therefore is to develop a framework that integrates the following
components: (1) Determining probability distribution functions of water supply and water demand
with parameter estimation using the maximum entropy principle; (2) establishing a joint distribution
function of water supply and water demand using a copula function and obtaining their joint
occurrence probabilities; (3) modeling agricultural water resources allocation using a multi-objective
programming technique; and (4) evaluating system performance under different scenarios based
on agricultural water resources carrying capacity using entropy-weight-based TOPSIS method.
The framework is then tested in a real case study in an irrigation district in Northeast China.
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2. Methods

This section introduces the methods involving the four components of the proposed framework
for agricultural water resources management. Specifically, the aim of the first part is to determine
the probability distribution functions of runoff and ETc, using the maximum entropy principle to
estimate parameters, which is regarded as the marginal distribution function of the joint distribution
function of runoff and ETc based on an appropriate copula function (the second part). The output of
the second part is the joint occurrence probabilities of runoff and ETc. The joint occurrence probabilities
are obtained considering the combination and dry, normal, and wet conditions of runoff and ETc

based on their joint distribution function, and they are treated as different scenarios for agricultural
water allocation and agricultural water resource capacity evaluation. Then, the agricultural water
allocation schemes can be obtained under different scenarios (the third part), which will be inputs for
the determination of indices for agricultural water resource capacity evaluation. Finally, the evaluation
results are obtained under different scenarios (the fourth part). Figure 1 shows the connection of each
component and, thereafter, each method involved is described. The dashed line shows the concrete
connection of different parts.
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2.1. Maximum Entropy Principle

Entropy is considered as a measure of information that may be extracted from a system or
analogously the uncertainty that the system comprises random events [19], and the uncertainty of
a random variable can be described by the probability distribution function. If x denotes a discrete
random variable of a system, then the probability when the system in the state xi(i = 1, 2, · · · , n) is
expressed as p(xi). Thus, the entropy of the system with the abbreviation of H can be expressed as:

H = −
n

∑
i=1

p(xi) ln p(xi) (1)

If the random variable is continuous, then H can be expressed as:

H = −
∫

R
f (x) ln f (x)dx (2)

where f (x) is the probability density function of x and R is the range of variability of x.
Since the maximum entropy principle was introduced in the study of hydrological frequency [20],

parameter estimation of hydrological frequency distributions using maximum entropy principle has
received much attention. The maximum entropy principle can make the entropy of the known sample
data achieve the maximum under given constraints. It can be expressed as:

maxH = −
∫

R
f (x) ln f (x)dx (3)

s.t.
∫

R
xn f (x)dx = µn, n = 1, 2 · · · , N (4)

where µn is the nth origin moment which is determined using the sample data.
The maximum entropy principle which is used to estimate parameters of hydrological

distributions has been found to be accurate. The steps for parameter estimation using the maximum
entropy principle can be summarized as:

(1) Calculate the constraints based on the known probability density function, i.e.,:∫
R

xn f (x)dx = µn, n = 1, 2 · · · , N (5)

(2) Deduce the analytical expression of the probability density function using the maximum
entropy distribution that is expressed in terms of Lagrange multipliers. Let λn(n = 0, 1, · · ·N) be the
Lagrange multipliers. Then the Lagrange function can be expressed as:

L = H +
N

∑
n=0

λn

[∫
R

xn f (x)dx− µn

]
(6)

The variational method was used for deriving f (x). Let the value of δL be equal to 0. Then
we have:

δL = −
∫

R[1 + ln f (x)]δ f (x)dx +
N
∑

n=0
λn
∫

R xnδ f (x)dx

=
∫

R

[
−1− ln f (x) +

N
∑

n=0
λnxn

]
δ f (x)dx

(7)

Due to the arbitrariness of δ f (x), the formula in the parentheses of Equation (7) has to be equal to
zero. Let λ0 replace λ0 − 1, then we have:

ln f (x) = λ0 +
N

∑
n=1

λnxn (8)
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i.e.,:

f (x) = e
λ0+

N
∑

n=1
λnxn

(9)

Equation (9) is the analytical expression of the probability density function based on the
maximum entropy.

(3) Deduce the relationship between linear parameters and Lagrange multipliers.
(4) Deduce the relationship between Lagrange multipliers and constraints based on the partial

derivative relations between Lagrange multipliers.
(5) Remove Lagrange multipliers and establish the relationship between linear parameters and

constraints, i.e., the equation set for parameter estimation, and solve it.
This study conducted the parameter estimation of runoff and crop evapotranspiration (ETc) in

Jinxi irrigation district in Northeast China. The Pearson III distribution, which is commonly used
in China, was selected as the hydrological frequency line. Based on the above steps, the parameter
estimation equations for Person III distribution can be expressed as:

E[X] = γ + αβ (10)

σ2(x) = α2β (11)

E[ln(x− γ)] = Ψ(β) + ln(α) (12)

where α, β, and γ are the scale parameter, shape parameter, and location parameter, respectively;
E[X] is the mean value; σ2(x) is the variance; and Ψ(β) is the psi function. For parameter estimation
equations for other types of hydrological frequency functions, one can refer to [13].

2.2. Copula Function

Copula is a multi-dimensional joint distribution function based on marginal distributions and
the correlation structure. Assume X and Y are continuous random variables, with the marginal
distributions as FX and FY, respectively. Then, the joint distribution function can be expressed as
F(x, y) using a copula function C(u, v) which can be expressed as:

C(u, v) = Cθ(FX(x), FY(y)) ∀x, y (13)

where C(u, v) is the copula function and θ is the undermined parameter.
There are many types of copula functions, such as Clayton copula, Gumbel copula, Frank copula,

t-copula, Gaussian copula, and Ali-Mikhail-Haq copula [21]. Each type of copula function has its own
function structure and parameter estimation method. The merits of different types of copula functions
should be judged to select proper functions, and the squared Euclidean distance can be used for the
goodness-of-fittest which can be expressed as follows:

d2 =
n

∑
i=1

∣∣Ĉn(ui, vi)− C(ui, vi)
∣∣2 (14)

Assume (xi, yi)(i = 1, 2 · · · , n) is a sample of the two-dimensional sample of (X, Y), and the
empirical distribution functions of X and Y are Fn(x) and Gn(y), respectively. ui = FX(xi), vi = FY(yi),
and i = 1, 2, · · · , n. Then the empirical copula function can be defined as:

Ĉn(u, v) =
1
n

n

∑
i=1

I[Fn(xi)≤u] I[Gn(yi)≤v] (15)

where I[ ] representing the indicative function, and when Fn(xi) ≤ u, I[Fn(xi)≤u] = 1, otherwise,
I[Fn(xi)≤u] = 0. The smaller the value of d2, the better the fitting effect.
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2.3. Optimization Model for Agricultural Water Resources Allocation

This section builds a multi-objective programming model for agricultural water resources
allocation, considering economic, social, and environmental aspects. The economic objective is
quantified by the system net benefit, the social objective is quantified by the shortage of water resources,
and the environmental objective is quantified by the pollutants that fall into the river. In irrigated
agricultural systems, water and land can be converted to each other. In order to better reflect the
environmental objective, the decision variable of the optimization model was selected as a land
resource allocation amount, then the water resources allocation amount can be obtained by multiplying
the optimized land resource amount with the corresponding irrigation quota. The objectives of the
model can be expressed as follows:

Economic objective

fEco = max

(
n

∑
i=1

Ai ×Yi × P− Ci×Ai − IQi × Ai × Ca

)
(16)

Social objective

fSoc = min

(
n

∑
i=1

ETci × Ai−IQi × Ai

)
(17)

Environmental objective

fEnv = min
(

n
∑

i=1
Ai ×

(
λCODcr × PEICODcr + λNH3−H × PEINH3−H + λTN × PEITN + λTP × PEITP

))
(18)

The above objectives are subjected to the following constraints:

(1) Water availability constraint

n

∑
i=1

(IQi × Ai) ≤ Qs × ηs + Qg × ηg (19)

(2) Water demand constraint
n

∑
i=1

(IQi × Ai) ≥WDmin (20)

(3) Land availability constraint
Ai,min ≤ Ai ≤ Ai,max ∀i (21)

(4) Food security constraint
n

∑
i=1

(Yi × Ai) ≥
n

∑
i=1

(POi × P f ) (22)

where fEco (RMB, RMB is the Chinese monetary unit), fSoc (m3) and fEnv (kg) represent economic
objective, and social objective and environmental objective, respectively; i is the index of subareas;
Ai is the irrigation area for subarea i and it is the decision variable (ha); Yi is the yield per unit
area for subarea i (kg/ha); P is the market price (RMB/kg); Ci is the planting cost (RMB/ha);
IQi is the irrigation quota for subarea i (m3/ha); Ca is the price of irrigation water (RMB/m3);
ETci is the actual evapotranspiration for subarea i (m3/ha); λCODcr, λNH3−H , λTN , and λTP
are the coefficient of chemical oxygen demand, ammonia nitrogen, total nitrogen, and total
phosphorus, respectively, that flow into the river; PEICODcr , PEINH3−H , PEITN , PEITP are the
emission per unit area of chemical oxygen demand, ammonia nitrogen, total nitrogen, and total
phosphorus, respectively (kg/ha); Qs and Qg are the surface water availability and groundwater
availability, respectively; ηs and ηg are the utilization efficiency of surface water and groundwater,
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respectively; WDmin is the minimum water demand (m3); Ai,min and Ai,max are the minimum
and maximum irrigation areas, respectively, (ha); POi is the population for subarea i; P f is the
food demand per capita (kg/capita).

The above multi-objective programming model can be solved by the minimum deviation method.
This method is an improved method of the ideal point method, with the advantage of no consideration
of relative importance of various objectives, thus the weight determination can be avoided [22].
Assume a multi-objective programming model is expressed as:

Fm = ( fm,1(x), fm,2(x), · · · , fm,n(x)) (23)

where Fm contains n objectives which they are expressed as fm,1(x), fm,2(x), · · · , fm,n(x), among which,
fm,k(x)(k = 1, 2, · · · , l) represent the minimum objective functions and fm,k(x)(k = l + 1, l + 2, · · · , n)
represent the maximum objective functions. Based on the minimum deviation method, the
multi-objective programming can be transformed into a single-objective programming model that can
be expressed as:

minFm
s =

l

∑
k=1

fm,k(x)− f min
m,k

f max
m,k − f min

m,k
+

n

∑
k=l+1

f max
m,k − fm,k(x)

f max
m,k − f min

m,k
(24)

where f max
m,k , f min

m,k are the maximum and minimum values of fm,k(x). In order to obtain the optimal
solution of Fm

s, the values of f max
m,k and f min

m,k should not be equal.

2.4. Entropy-Weight-Based TOPSIS Method

The entropy-weight-based TOPSIS method was used to evaluate various agricultural water
resources allocation schemes under different scenarios by analyzing agricultural water resources
carrying capacity. The method avoids the subjectivity of weight determination with no excessive
requirement of data sample. This is beneficial to analyze the difference between current situation and
perfect state of agricultural water resources carrying capacity, and objectively and thoroughly reflect
the dynamic change trend of agricultural water resources carrying capacity [23]. In this study, the
relative approach degree that is determined by the entropy-weight-based TOPSIS method was used to
evaluate the level of agricultural water resources carrying capacity.

Assume there are n evaluation objects, m evaluation indices, then the evaluation matrix X can be
formulated as:

X =


x11 x12 · · · x1m
x21 x22 · · · x2m

...
...

...
...

xn1 xn2 · · · xnm

 (25)

where xij is the index for the ith subarea and jth evaluation index; and m and n denote the year and the
number of evaluation indices, respectively.

In order to make different indices comparable, standardization of each index should be conducted.
For positive indices, the equation of standardization can be expressed as:

x′ij =

xij −minxij
1≤j≤m

maxxij
1≤j≤m

−minxij
1≤j≤m

(i = 1, 2 · · · , n; j = 1, 2 · · ·m) (26)

For negative indices, the equation of standardization can be expressed as:
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x′ij =

maxxij
1≤j≤m

− xij

maxxij
1≤j≤m

−minxij
1≤j≤m

(i = 1, 2 · · · , n; j = 1, 2 · · ·m) (27)

Now the normalized matrix can be expressed as

X′ =


x′11 x′12 · · · x′1m
21′x x′22 · · · x′2m

...
...

...
...

x′n1 x′n2 · · · x′nm

 (28)

Then, the weights of each index should be determined and entropy weight method was adopted
in this study. It is a comparatively objective method compared with common methods for determining
weights, such as analytic hierarchy process and Delphi method. The entropy weight method can
determine the weights by calculating the entropy value of indices based on the dispersion degree of
data. Thus, first, the information entropy of index, Hj <is calculated using the following formula:

Hj = −k
m

∑
i=1

pij ln
(

pij
)

(29)

where k = 1/ln m and k > 0. ln is the Napierian logarithm. Then, the coefficient of difference Gj for
the jth evaluation index can be expressed as:

Gj = 1− Hj (30)

Thus, the weighs Wj can be calculated by:

Wj =
Gj

∑n
i=1 Gj

(j = 1, 2 · · · , m). (31)

Based on the weights, the weight-normalized matrix T can be obtained by multiplying X′ with
Wj and it is expressed as follows:

T = Wj × X′ =


w1x′11 w2x′12 · · · wmx′1m
w1x′21 w2x′22 · · · wmx′2m

...
...

...
...

w1x′n1 w2x′n2 · · · wmx′nm

 (32)

The positive ideal solution which is constituted by the maximum value of each column of matrix
T, can be obtained as:

R+ =
(

R1
+, R2

+, · · · , Rn
+
)
= (maxTi1, maxTi2, · · · , maxTin), (i = 1, 2, · · · , n) (33)

Similarly, the negative ideal solution which is constituted by the minimum value of each column
of matrix T, can be obtained as:

R− =
(

R1
−, R2

−, · · · , Rn
−) = (maxTi1, maxTi2, · · · , maxTin), (i = 1, 2, · · · , n) (34)

Then, calculate the Euclidean distances from evaluation object to the positive ideal solution and
negative ideal solution using the following equations:
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D+
i =

√√√√ m

∑
j=1

(
Tij − R+

j

)2
(i = 1, 2, · · · , n) (35)

D−i =

√√√√ m

∑
j=1

(
Tij − R−j

)2
(i = 1, 2, · · · , n) (36)

Finally, the relative approach degree of evaluation indices and ideal solutions can be expressed as:

Ri =
D−i

D+
i + D−i

(37)

The agricultural water resources carrying capacity can be evaluated based on the value of Ri. The
larger the value of Ri, the better the situation of carrying capacity.

3. Application

3.1. Study Area and Data Acquisition

The developed framework was applied to a real case study in Jinxi irrigation district, Fujin City
in Northeast China. The longitude is from 131◦30′ to 132◦37′, and the latitude is from 46◦48′ to 47◦14′.
The climate of the Jinxi irrigation district belongs to the warm temperate zone with obvious seasonality.
Jinxi irrigation district is an important base for food production, and is the key area for high quality
rice, soybean, and maize in China. Agriculture is the largest water consumer, accounting for more
than 95% of the total water use. Among which, irrigation water use occupies approximately 90%.
Both surface water and groundwater are used for water supply to the district for food production.
The surface water originates from Songhua River. There are four subareas in Jinxi irrigation district,
including Songhuajiang, Jinshan, Huama, and Toulin subareas. The current cultivated land of the
irrigation district is about 1.01 × 105 ha. According to the Project Planning Report of Jinxi Irrigation
District, rice occupies the majority of the cultivated land because of its high quality. Therefore, rice was
considered as the study crop, and the aim of the optimization model was to allocate limited surface
water and groundwater resources to rice in different subareas.

In order to determine the joint probability of water supply and water demand, data related water
supply and demand were required. Surface water supply originated from the runoff of Songhua
River, therefore, the runoff data of Songhua River at Jiamusi hydrometric station from 1954 to 2015
were collected. In this study, water demand was the numeric equivalent to the value of crop actual
evapotranspiration (ETc). The actual evapotranspiration was calculated by multiplying the crop
coefficient with reference evapotranspiration (ET0). Daily ET0 was estimated by the Penmen–Monteith
formula [24] based on the meteorological data including wind speed, the highest temperature, the
average temperature, the lowest temperature, relative humidity, and sunshine duration from national
meteorological network. Monthly value of ET0 was obtained by the accumulation of the daily values.
The crop coefficient of rice was: 0.38 for May, 0.78 for June, 1.335 for July, 1.06 for August, and 0.45
for September. Social-economic data involved in the optimization model were from the Feasibility
Report of Jinxi Irrigation District, Yearbook of Fujin City and related references. Specifically, data related
to different subareas are listed in Table 1. The emission per unit area of chemical oxygen demand,
ammonia nitrogen, total nitrogen, and total phosphorus were 150 kg/ha, 11.85 kg/ha, 171.75 kg/ha,
and 65.25 kg/ha, respectively, and the coefficient of chemical oxygen demand, ammonia nitrogen,
total nitrogen, and total phosphorus that flow into the river were 0.06, 0.05, 0.04, and 0.01, respectively.
The market price of rice was 3.16 RMB/kg, the planting cost of rice was 9589 RMB/ha, the price of
irrigation water was 0.15 RMB/m3.
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Table 1. Data related to different subareas.

Parameter Unit
Subarea

Songhuajiang Jinshan Huama Toulin

Yield per unit area kg/ha 8465.67 8511.17 8511.17 7887.33
Irrigation quota m3/ha 3660.33 3686.48 3686.48 3327.95

Population 104 people 0.77 4.31 1.12 1.62
Maximum

irrigation area 104 ha 0.53 1.85 3.34 2.28

Minimum
irrigation area 104 ha 0.51 1.225 1.85 1.43

3.2. Parameter Estimation

Based on the runoff data of Jiamusi hydrometric station and the method for calculating crop ETc,
the changes of runoff and ETc from 1954 to 2015 are depicted in Figure 2. In this study, the Pearson
III distribution function was used to describe the hydrological distribution of runoff and ETc. Based
on the maximum entropy principle for Pearson III distribution, the program was coded in MATLAB
(MathWork, Natick, MA, USA) and the related parameters were estimated. The scale parameter, shape
parameter and location parameter for annual runoff were 12.08, 3.47, and 14.97, respectively. Thus, the
distribution of runoff was expressed as:

F(x) =
1

12.08Γ(3.47)

∞∫
0

(
x− 14.97

12.08

)2.47
e−(

x−14.97
12.08 )dx (38)

The scale parameter, shape parameter and location parameter for ETc were 15.27, 6.94, and 342.66,
respectively. Thus, the distribution of ETc was expressed as:

F(x) =
1

15.27Γ(6.94)

∞∫
0

(
x− 342.66

15.27

)5.94
e−(

x−342.66
15.27 )dx (39)

These two distributions were considered as the marginal distributions of the joint distribution
function of runoff and ETc.
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3.3. Joint Probability of Water Supply and Water Demand

From Figure 2, the variability between runoff and ETc was obvious, leading to the necessity
to obtain the joint probability of wet and dry conditions of these two random variables, thus
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guiding agricultural water resources allocation. Assume both runoff and ETc had three hydrological
characteristics: wet, normal and dry conditions. In this study, the cumulative probability of wet and
dry conditions were pw = 25%, pd = 75%. Specifically, for the wet condition: X ≥ xw, for the normal
condition: xd ≤ X ≤ xw, and for the dry condition: X ≤ xd, where X was the runoff volume or the
value of ETc, and xw and xd were the critical values between wet and normal conditions, and between
normal and dry conditions, respectively. Based on the above principle, there were in total nine scenario
combination of runoff and ETc, i.e., wet (runoff) vs. wet (ETc), wet (runoff) vs. normal (ETc), wet
(runoff) vs. dry (ETc), normal (runoff) vs. wet (ETc), normal (runoff) vs. normal (ETc), normal (runoff)
vs. dry (ETc), dry (runoff) vs. wet (ETc), dry (runoff) vs. normal (ETc), and dry (runoff) vs. dry (ETc).
Based on the marginal distribution functions of runoff and ETc, this study selected the commonly used
Gaussian copula, t-copula, Archimedean copula (including Clayton copula, Frank copula, Gumbel
copula, and Ali–Mikhail–Haq copula in this study which are frequently-used in hydrology-related
analysis) to establish the joint distribution functions. The specific equations of these copula functions
are presented in Appendix A. In this study, the Euclidean distance (d2), which is a non-probabilistic
measure of goodness of approximation with the advantage of simple calculation [25,26], was used to
evaluate the performance of each selected copula function. The value of d2 was 0.042, 0.0411, 0.2037,
0.0402, 0.2037, and 0.3232 corresponding to the above copula functions. Results showed that the value
of d2 of Frank copula was the smallest, thus, the Frank copula was adopted and the joint distribution
function of runoff and ETc could be expressed as [27]:

C(U, V) = −1
θ

ln

[
1 +

(
e−θU − 1

)(
e−θV − 1

)(
e−θ − 1

) ]
(40)

where U indicated the runoff, V indicated the ETc. In this study, θ = −3.595.
Based on the joint distribution function, the contour of C(u, v) were drawn as Figure 3 shows,

and the joint probabilities of each scenario was obtained. For example, the joint probability for
the scenario of wet (runoff) vs. wet (ETc) was 1.6%, for the scenario of dry (runoff) vs. dry (ETc)
was 1.63%, and for the scenario of normal (runoff) vs. normal (ETc) was 28.15%. The synchronous
joint probability of runoff and ETc (31.38%) was appreciably lower than the asynchronous joint
probability of runoff and ETc (68.62%). The runoff values corresponding to wet, normal, and dry
conditions were 754.845 × 108 m3, 604.136 × 108 m3, and 474.903 × 108 m3, respectively. The ETc

values corresponding to wet, normal and dry conditions were 472.27 mm, 443.54 mm and 419.41 mm,
respectively. The proportion of water supply for Jinxi irrigation district of the runoff volume from
Jiamusi hydrometric station were 0.66% for wet condition, 0.7% for normal condition and 0.74% for dry
condition. Therefore, the values of water supply and water demand under each scenario were obtained.

Entropy 2019, 20, x 11 of 17 

 

advantage of simple calculation [25,26], was used to evaluate the performance of each selected 
copula function. The value of 2d was 0.042, 0.0411, 0.2037, 0.0402, 0.2037, and 0.3232 corresponding 
to the above copula functions. Results showed that the value of 2d of Frank copula was the smallest, 
thus, the Frank copula was adopted and the joint distribution function of runoff and ETc could be 
expressed as [27]: 

 
  

 
1 11, 1n 1

1

U Ve e
C U V

e

 



 



  
   

  
 (40) 

where U indicated the runoff, V indicated the ETc. In this study, = 3.595  . 
Based on the joint distribution function, the contour of  ,C u v were drawn as Figure 3 shows, 

and the joint probabilities of each scenario was obtained. For example, the joint probability for the 
scenario of wet (runoff) vs. wet (ETc) was 1.6%, for the scenario of dry (runoff) vs. dry (ETc) was 
1.63%, and for the scenario of normal (runoff) vs. normal (ETc) was 28.15%. The synchronous joint 
probability of runoff and ETc (31.38%) was appreciably lower than the asynchronous joint 
probability of runoff and ETc (68.62%).The runoff values corresponding to wet, normal, and dry 
conditions were 754.845 × 108 m3, 604.136 × 108 m3, and 474.903 × 108 m3, respectively. The ETc values 
corresponding to wet, normal and dry conditions were 472.27 mm, 443.54 mm and 419.41 mm, 
respectively. The proportion of water supply for Jinxi irrigation district of the runoff volume from 
Jiamusi hydrometric station were 0.66% for wet condition, 0.7% for normal condition and 0.74% for 
dry condition. Therefore, the values of water supply and water demand under each scenario were 
obtained.  

 

Figure 3. Joint probability of runoff (U) and ETc (V). 

3.4. Agricultural Water Resource Allocation Schemes 

According to the minimum deviation method, the optimization model was solved. The 
irrigation area was allocated to different subareas, then the water allocation amount can be obtained, 
based on the irrigation quota of different subareas, as shown in Figure 4. From the figure, it was 
obvious that if the wet and dry conditions of runoff were considered only, the water allocation 
amounts followed the law: wet > normal > dry conditions, indicating that a larger water supply 
would lead to a larger water allocation. If the wet and dry conditions of water demand were 
considered only, the water allocation amounts followed the law: dry > normal > wet conditions, 
indicating that a larger water demand would lead to a larger water allocation, because the value of 
water demand in the wet condition was the smallest, while it was the highestin the dry condition. 
Hence, two extreme conditions happened in the WD and DW scenarios between which DW 
indicated the most water shortage condition and should draw attention of policymakers, with the 
corresponding water allocation amount being 1.96 × 108 m3. Based on the joint probabilities of 

0.05

0.05

0.05

0.05

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.8

0.9

U

V

Contour of C(U,V)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. Joint probability of runoff (U) and ETc (V).



Entropy 2019, 21, 364 12 of 17

3.4. Agricultural Water Resource Allocation Schemes

According to the minimum deviation method, the optimization model was solved. The irrigation
area was allocated to different subareas, then the water allocation amount can be obtained, based on
the irrigation quota of different subareas, as shown in Figure 4. From the figure, it was obvious that if
the wet and dry conditions of runoff were considered only, the water allocation amounts followed the
law: wet > normal > dry conditions, indicating that a larger water supply would lead to a larger water
allocation. If the wet and dry conditions of water demand were considered only, the water allocation
amounts followed the law: dry > normal > wet conditions, indicating that a larger water demand
would lead to a larger water allocation, because the value of water demand in the wet condition was
the smallest, while it was the highestin the dry condition. Hence, two extreme conditions happened in
the WD and DW scenarios between which DW indicated the most water shortage condition and should
draw attention of policymakers, with the corresponding water allocation amount being 1.96 × 108 m3.
Based on the joint probabilities of different scenarios, the average water allocation level was obtained,
i.e., 2.13× 108 m3. Such a result could provide a guidance in water resource planning of Jinxi irrigation
district considering the combination of different scenarios. For different subareas, the change in the
water allocation amount in Huama subarea was obvious because of its larger irrigation area. Based
on the optimal results, the value of economic objective ranged from 8.32 × 108 RMB to 12 × 108 RMB,
with the average value under the nine scenarios being 9.55 × 108 RMB. The value of social objective
ranged from 3.29 × 107 m3 to 7.13 × 107 m3, with the average value under the nine scenarios being
5.05 × 107 m3. The value of environmental objective ranged from 1.67 × 106 kg to 2.39 × 106 kg,
with the average value under the nine scenarios being 1.91 × 106 kg. These were the results of a
comprehensive coordination of the three objectives.
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3.5. Agricultural Water Resources Carrying Capacity

Based on the results of optimization model, the agricultural water resource carrying capacity was
evaluated using the entropy-weight-based TOPSIS method. As the optimization model considered
three objectives, involving economic, social, and environmental factors, the index system for evaluating
agricultural water resources carrying capacity contained three dimensions, i.e., economic, social, and
environmental dimensions, and each dimension contained three parameters. Detailed information of
the index system can be found in Table 2. Acquisition of the values of these indices was based on the
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results of the optimization model and actual conditions. Using the entropy-weight method, the weight
of each index was calculated as shown in Table 1. Based on the entropy-weight-based TOPSIS method,
the agricultural water resources carrying capacity values for the four subareas were obtained as shown
in Figure 5 This study divided the value of agricultural water resources carrying capacity into five
grades: [0, 0.2) belonged to I grade, [0.2, 0.4) belonged to II grade, [0.4, 0.6) belonged to III grade,
[0.6, 0.8) belonged to IV grade, and [0.8, 1.0) belonged to V grade. The larger the value the higher
the grade, indicating the better the agricultural water resources carrying capacity. From Figure 5, the
agricultural water resources carrying capacity in Toulin subarea was the worst with the average value
of the nine scenarios being 0.41, and in Songhuajiang subarea it was the best with the average value
of the nine scenarios being 0.52. However, the fluctuations of agricultural water resources carrying
capacity for Huama subarea and Toulin subarea were obvious under different scenarios. This indicated
that the agricultural water resources carrying capacity in these two subareas was sensitive to the
changes of water supply and water demand. In general, the resources carrying capacity in the wet
condition in terms of runoff was higher than that in the dry condition, indicating that the resources
carrying capacity was more sensitive to water supply. Therefore, improving water use efficiency under
the limited water supply was significant.

Table 2. Index system and weights.

Dimension Index Calculation Formula Unit Index
Attribute Weights

Economic
dimension (A)

Water production
efficiency (A1)

Yield/(Crop
evapotranspiration) kg/ha + 0.1013

Production value per
unit water (A2)

(Yield per unit water) ×
Market price RMB/m3 + 0.1095

Grain output (A3) Yield × (Market price) RMB + 0.1018

Social
dimension (B)

Food per capita (B1) Yield/Population kg/capita + 0.1443

Water per capita (B2) Water resource
amount/Population m3/capita + 0.0923

Agricultural water
shortage (B3)

(Crop
evapotranspiration-Irrigation

amount) × Irrigation area
m3 − 0.1393

Environmental
dimension (C)

Agricultural non-point
pollution discharge

(C1)

(Emission of agricultural
non-point pollution per unit

area) × Planting area
kg − 0.0996

Agricultural
greenhouse gases

emission (C2)

(Emission of agricultural
greenhouse gases per unit

area) × Planting area
kg − 0.0997

Coefficient of
groundwater

exploitation (C3)

(Groundwater exploitation
amount)/(Total groundwater

amount)
% − 0.1122

Note: “+” indicates the index belongs to the attribute of “the larger, the better”, while “−” indicates the index
belongs to the attribute of “the smaller, the better”.
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Figure 5. Agricultural water resource carrying capacity for different subareas. (a) Songhuajiang;
(b) Jinshan; (c) Huama; and (d) Toulin. (Note: AWRCC means agricultural water resource
carrying capacity).

3.6. Discussion

Compared with traditional irrigation water allocation modes which were obtained based on
“Water Resources Verification Report of Jinxi Irrigation District”, “Water Resources Argumentation
Report of Jinxi Irrigation District”, and “Engineering Feasibility Study Report of Jinxi Irrigation
District”, one of the main contributions of this study was to consider the changes of water supply
and water demand as well as their interrelationships. For this, we established the joint distribution
function of water supply and water demand, based on which, different scenarios with the combination
of wet and dry conditions of water supply and water demand were generated. This would provide
decision makers more reasonable references for irrigation water allocation. Additionally, this could
help decision-makers for irrigation water allocation to response promptly to different changes in
natural conditions, andimprove the adaption ability to climate change. Another major contribution
of this study was that multiple targets were considered when optimally allocating limited water
resources, including economic, social and environmental aspects. This avoided the disadvantage of
traditional irrigation water allocation patterns of the study area that focused on economic benefit.
(In the related reports as mentioned above, the current irrigation water allocation plans for crops
were based on the benefit-cost analysis, without analyzing the associated social and environmental
impacts). Compared with actual conditions of the study area, taking the normal-normal scenario of
water supply and water demand which was the scenario that was the most likely to happen (with
the joint probability was 28.15%) as an example, the optimal results could save 0.57 × 108 m3 water
resources. From the angle of environmental protection, the optimal results could reduce pollutants
emission of 5.14 × 105 kg. Such results were conducive to improve the efficiency and sustainability of
irrigation water allocation. Moreover, the agricultural water resource carrying capacity was evaluated
based on the optimal results to help decision makers evaluate the irrigation strategies under different
scenarios and, thus, provide guidance when planning the irrigation water of the irrigation district.
The major limitation of this study was that the dynamics of the framework was ignored, for example,
the changes of water supply and demand during the crop growth period and the changes in crop
growth factors were not considered, which might affect the applicability of the proposed framework.
Future work would make it a priority to improve the proposed framework.

4. Conclusions

This study developed a framework for agricultural water resources management, including
the determination of the distribution function of water supply and water demand based on
parameter estimation, joint probability of water supply and water demand, optimization model
for agricultural water resources allocation, and evaluation of agricultural water resources carrying
capacity. The relationship between the adjacent components is input-output. Specifically, because of
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the characteristic of high accuracy and quick calculation, the maximum entropy methodis used to
estimate the parameters of the probability distributions of water supply and water demand, so that
the joint probabilities of these two random variables can be obtained based on the copula function.
Thus, nine scenarios with the combination of wet and dry conditions of water supply and water
demand are generations, and agricultural water resources is optimally allocated under these scenarios,
considering the comprehensive benefit of economic, social, and environmental dimensions. The results
can provide decision makers more alternatives of water allocation schemes considering the changes
of natural conditions, which is conducive to agricultural water planning. Lastly, agricultural water
resources carrying capacity is evaluated based on the optimal results using entropy-weight-based
TOPSIS methods, which can avoid the subjectivity of weight determination, and objectively and
thoroughly reflect the trend of dynamic change of agricultural water resources carrying capacity.

The developed framework is applied to a real case study in an irrigation district in northeast China.
Results demonstrated the feasibility and applicability of using the maximum entropy method and
entropy-weight-based TOPSIS method to agricultural water resources management, and the results
can provide a certain guidance for local agricultural water management. The developed framework
and the associated method can also be applied to regional resources management problem or to other
regions. This study aims to construct such a framework for agricultural water resources management,
however, concrete details for some components are simplified, for example, the objective functions and
constraints of optimization model are simple with only basic elements associated with economic, social,
and environmental aspects being considered, and the dynamics of the framework are overlooked.
These deserves further study to improve the framework.
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Appendix A

Table A1. Equations of the copula functions in this study.

Function Name C(u,v) Interpretation

Gaussian copula
∫ φ−1(u)
−∞

∫ φ−1(v)
−∞

1
2π
√

1−ρ2
exp

[
− s2−2ρst+t2

2(1−p2)

]
dsdt

φ−1 is the inverse function of standard
normal distribution function; ρ is the
correlation coefficients between
variables.

t-copula
∫ tk

−1(u)
−∞

∫ tk
−1(v)
−∞

1
2π
√

1−ρ2

[
1 + s2−2ρst+t2

k(1−p2)

]
dsdt

t−1
k is the inverse function t

distribution function with the degree
of freedom is k; ρ is the correlation
coefficients between variables.

Clayton copula
(

u−θ + v−θ − 1
)−1/θ

θ > 0 and τ = θ
θ+2 . τ is the Kendall

coefficient of rank correlation, and the
same below.

Frank copula − 1
θ 1n

[
1 + (e−θu−1)(e−θv−1)

e−θ−1

]
θ ∈ R and
τ = 1− 4

θ

[
− 1

θ

∫ 0
θ

t
exp(t)−1 dt− 1

]
Gumbel copula exp

[
−
(
(−1nu)θ + (−1nv)θ

)1/θ
]

θ ≥ 1 and
τ = 1− 4

θ

[
− 1

θ

∫ 0
θ

t
exp(t)−1 dt− 1

]
Ali–Mikhail–Haq copula uv

1−θ(1−u)(1−v)

θ ∈ [−1, 1) and

τ =
(

3θ−2
θ

)
− 2

3

(
1− 1

θ

)2
1n(1− θ)
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