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Abstract: In order to extract fault features of rolling bearings to characterize their operation state
effectively, an improved method, based on modified variational mode decomposition (MVMD) and
multipoint optimal minimum entropy deconvolution adjusted (MOMEDA), is proposed. Firstly,
the MVMD method is introduced to decompose the vibration signal into intrinsic mode functions
(IMFs), and then calculate the energy ratio of each IMF component. The IMF component is selected
as the effective component from high energy ratio to low in turn until the total energy proportion
Esum(t) ≥ 90%. The IMF effective components are reconstructed to obtain the subsequent analysis
signal x_new(t). Secondly, the MOMEDA method is introduced to analyze x_new(t), extract the
fault period impulse component x_cov(t), which is submerged by noise, and demodulate the signal
x_cov(t) by Teager energy operator demodulation (TEO) to calculate Teager energy spectrum. Thirdly,
matching the dominant frequency in the spectrum with the fault characteristic frequency of rolling
bearings, the fault feature extraction of rolling bearings are completed. Finally, the experiments have
compared MVMD-MOEDA-TEO with MVMD-TEO and MOMEDA-TEO based on two different
data sets to verify the superiority of the proposed method. The experimental results show that
MVMD-MOMEDA-TEO method has better performance than the other two methods, and provides a
new solution for condition monitoring and fault diagnosis of rolling bearings.

Keywords: modified variational mode decomposition; multipoint optimal minimum entropy
deconvolution adjusted; Teager energy operator demodulation; fault feature extraction; rolling bearings

1. Introduction

Rotating machinery is core equipment in commercial production. It is widely used in metallurgy,
power, petrochemical, manufacturing, aerospace, and other industrial production fields [1]. Rolling
bearing is one of the most frequently used and easily vulnerable key components in rotating machinery.
According to incomplete statistics, more than 44% of rotating machinery faults are caused by bearing
faults [2]. Therefore, the research on rolling bearing operation condition monitoring and fault diagnosis
has important theoretical value and economic significance.

However, the operating conditions of rolling bearings are usually complex and inevitably affected
by various noise and signal modulation interference. It is difficult to extract fault characteristics directly
from time domain or frequency domain [3]. Therefore, how to extract fault feature information from
nonstationary vibration signals is the key to bearing fault diagnosis.

To extract bearing fault features, Hilbert–Huang transform (HHT) [4], kurtosis [5], high-order
spectrum [6,7], Wavelet Transform (WT) [8], Empirical Mode Decomposition (EMD) [9], Local Mean
Decomposition (LMD) [10], and other methods have been proposed and achieved some results.
Nevertheless, these methods have their own limitations. HHT has some problems, such as unexplained

Entropy 2019, 21, 331; doi:10.3390/e21040331 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-4186-680X
http://dx.doi.org/10.3390/e21040331
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/4/331?type=check_update&version=2


Entropy 2019, 21, 331 2 of 25

negative frequency and energy leakage caused by endpoint effect. High-order spectrum has good
application in signal processing and fault feature extraction of nonlinear systems, but its computational
complexity is larger than other algorithms. WT needs to preset the wavelet basis and decomposition
scale, and the result is a fixed frequency band signal without self-adaptability. Although EMD and
LMD methods can adaptively decompose complex signals into a series of components, there are still
some theoretical problems, such as envelope, mode aliasing, endpoint effect, and IMF criterion.

Combining the idea of solving modal bandwidth with constrained optimization, Dragomiretskiy
and Zosso [11] proposed variational mode decomposition (VMD). This method used an iterative
method to search the optimal solution of the variational model, and then determined the central
frequency and bandwidth of each component so that the effective separation of signal frequency
domain can be realized adaptively. Compared with EMD and LMD, there is no mode mixing and
endpoint effect. Because of the above advantages, the VMD method has been widely used in rolling
bearing fault feature extraction since it was proposed [12–14]. However, there are two limitations
for VMD: (1) the number K of decomposition components must be given beforehand and (2) the
selection of control parameters for VMD lacks theoretical basis. For nonlinear and unsteady signals,
the preset the number K of decomposition modes may lead to information loss or overdecomposition,
which affects the performance of subsequent feature extraction [15]. Therefore, how to quickly and
adaptively determine the decomposition mode number K of VMD for improving the speed of signal
processing is one of the urgent problems to be solved. Therefore, the modified variational mode
decomposition (MVMD) method proposed in [16] is introduced to determine the decomposition mode
number K of VMD rapidly and accurately.

A certain amount of noise still remains in each IMF component obtained by decomposition
method without exception. To improve the accuracy of fault feature extraction, it is necessary to further
enhance the periodic effective pulse of the fault vibration signal such as the bearings, and denoise the
reconstructed signal after decomposition. Wiggins [17] proposed minimum entropy deconvolution
(MED). H. Endoet et al. firstly applied MED to fault detection of rotating machinery [18]. For
reducing the influence of noise and extract the fault feature information of rolling bearings accurately,
Sawalhi et al. [19] presented an algorithm for enhancing the surveillance capability of spectral kurtosis
by using the minimum entropy deconvolution (MED) technique. The MED technique effectively
deconvolved the effect of the transmission path and clarifies the impulses, even where they are not
separated in the original signal. Ren et al. [20] proposed a fault characteristics extraction method of
rolling bearings based on the combination of VMD and MED. The fault signal of rolling bearing is
decomposed by VMD method, and then the reconstructed signal is processed by MED denoising.
The fault feature information is extracted from envelope spectrum accurately. However, the MED
method is not only complex in operation, but also not necessarily the global optimal filter. Moreover,
the MED method is only suitable for single impulse signals. Wang et al. [21] and Xia et al. [22] proposed
a bearing fault diagnosis method based on the combination of VMD and maximum correlation kurtosis
deconvolution (MCKD). After VMD decomposition of the fault signal, MCKD was used to reduce the
noise of each IMF component and highlight the fault impact component to obtain accurate bearing
fault characteristic frequency. However, the MCKD method needs to preset the core parameters such
as the fault period, which is inconsistent with the reality. Because the fault period may not be known
or calculated in advance. To solve the above mentioned problems, McDonald et al. [23] proposed a
multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) method, defined the target
vector and D-norm, and effectively solved the design problem of the optimal filter. The MOMEDA
algorithm does not need to preset the fault cycle, nor does it need to iterate. The impulse component
can be accurately extracted by using the multipoint kurtosis spectrum.
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In summary, this paper selects the advantages of MVMD and MOMEDA, and proposes a rolling
bearing fault feature extraction method based on MVMD and MOMEDA. The advantages of the
MVMD-MOMEDA-TEO method are as follows.

(1) The method of MVMD based on scale segmentation is introduced to solve the problem of adaptive
selection of mode parameter K for VMD decomposition.

(2) The introduction of MOMEDA method not only overcomes the limitation of MCKD method, but
also highlights the periodic impulse component of bearing fault vibration signal.

(3) A new feature extraction method based on MVMD-MOMEDA-TEO is proposed to distinguish
the running state of rolling bearings. It provides a new solution for condition monitoring and
fault diagnosis of rolling bearings.

(4) By using the measured data of four different types of bearing faults from two different sources
(Case Western Reserve University (CWRU) and NASA), the comparative experimental analysis
of the proposed method and MVMD-TEO method and MOMEDA-TEO method is completed,
which validates the effectiveness and feasibility of the proposed method.

The rest of the chapters are arranged as follows. Section 2 describes the basic principles of MVMD
and MOMEDA. The implementation details of the presented method are discussed in Section 3.
In Section 4, comparative experiments are conducted to demonstrate the effectiveness of the proposed
method. Section 5 is discussion and conclusions.

2. Core Methodology Introduction

2.1. MVMD Method

In the decomposition process, decomposition mode number K of VMD needs to be preset, and
unreasonable settings can easily lead to information loss or over decomposition. In the literature,
a scale space adaptive spectrum segmentation method was introduced. According to the spectrum
characteristics of the signal, the support boundary of the signal scale segmentation is selected, and then
decomposition mode number K in the VMD decomposition process is determined [24]. The adaptive
VMD decomposition of the original signal is realized. The method is called MVMD. Its basic supporting
principle is briefly described as follows.

2.1.1. VMD

As a new adaptive quasiorthogonal signal decomposition method—VMD—decomposes the given
signal x into a series of sparse modal components uk. Each decomposition component uk has a limited
bandwidth of central frequency wk.

In order to solve the above mentioned problems, the quadratic penalty factor α and Lagrange
multiplier operator λ(t) are introduced to get Equation (1).

L(uk, wk, λ) = α∑
k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jwkt

∥∥∥∥2

2

+ ‖x−∑
k

uk‖
2

2

+ 〈λ, x−∑
k

uk〉 (1)

The specific implementation steps are as shown in Figure 1.

2.1.2. Scale Space Representation

Discrete Fourier transform transforms the time domain sampling of discrete vibration signals into
frequency domain sampling. Scale space representation can describe the spectrum of signals from
different dimensions. So the implementation of scale space representation is shown in Figure 2.
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The derivation process of specific parameters is detailed in [16]. In Figure 1, n is a scale parameter.
The selection of scale parameters is generally calculated according to Equation (2):

√
n ≥ µ fch (2)

In Equation (2), there is no strict restriction on the selection of µ values, and the recommended
range of values is [2–4]. At the same time, when the signal is modulated by fault characteristic
frequency fch and noise pollution, the small change of scale parameters has no obvious influence on
the final analysis results. Therefore, the scale parameter is chosen as

√
n ≥ 3 fch [16].

Entropy 2019, 21, 331 4 of 25 

1
ku

1
kw 1λ

1
ku

1
kw 1λ

1

1
2

ˆ ( )ˆ ˆ ˆ( ) ( ) ( )
2ˆ ( )

1 2 ( )

n
n n
i i

n i k i k
k k

m

wx w u w u w
u w

w w

λ

α

+

+ < >

− − +
←

+ −

 

{ }
21

+1 0
21

0

ˆ ( )
1,

ˆ ( )

n
kn

k n
k

w u w dw
w k K

u w dw

∞ +

∞ +
← ∈


，

+1 1ˆ ˆ ˆ ˆ( ) ( ) ( ( ) ( ))n n n
k

k
w w x w u wλ λ τ +← + −

2 21
2 2

ˆ ˆ ˆn n n
k k k

k
u u u ε+ − <

1
ku

1
kw 1λ

Figure 1. Variational mode distribution (VMD) implementation process. 

The derivation process of specific parameters is detailed in [16]. In Figure 1, n is a scale 
parameter. The selection of scale parameters is generally calculated according to Equation (2): 

chn fμ≥  (2)
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2.2. MOMEDA Method

The purpose of the MOMEDA algorithm is to find the optimal finite impulse response (FIR) filter
in a noniterative way and reconstruct the vibration and shock signal y. The deconvolution process is
as follows

y = f ∗ x =
N−L

∑
k=1

fkxk+L−1 (3)

k = 1, 2, · · · , N − L, according to the characteristics of periodic impulse signal, the method introduces
multipoint D-norm:

MDN(y, t) =
1
||t||

tTy
||y|| (4)

MOMEDA = max
f

MDN(y, t) = max
f

tTy
||y|| (5)

In the Equation (4), the constant vector t is used to determine the position and weight of the target
impact component. The optimal filter f is obtained by solving the maximum of the multipoint D-norm,
and the deconvolution process also obtains the optimal solution.

MOMEDA uses multipoint kurtosis (MKurt) to determine the maximum position of the pulse.

MKurt= (
N−L

∑
n=1

tn
2)2

N−L

∑
n=1

(tnyn)
4/(

N−L

∑
n=1

tn
8(

N−L

∑
n=1

y2
n)

2) (6)

Referring to the parameter selection rule in reference [25], the length range of the filter is 20–500,
and the periodic parameters should cover the frequency range analyzed. This article takes the default
value of T= [10 : 0 .1 : 300], L = 500 and carries on the analysis.

2.3. TEO Demodulation Principle

For continuous signal x(t): the definition of TEO demodulation ϕ[x(t)] can be referred to [26]:

ϕ[x(t)] =
[ .
x(t) ]2 − x(t)

..
x(t) (7)

.
x(t) and

..
x(t) are the first- and second-order differentials of x(t) to time t, respectively.

For discrete signal x(n), ϕ[x(n)] is defined as

ϕ[x(n)] = [x(n)]2 − x(n − 1)x(n + 1) (8)

It is known from Equation (8) that for discrete signal x(n) TEO only needs three sets of sample
data to calculate the signal source energy at any time n. For the IMF component of the vibration signal,
the TEO demodulation envelope signal ϕ[PF] of the IMF component can be calculated according to
Equation (8), and the subsequent Fourier spectrum analysis is performed using ϕ[PF] instead of the
original signal x(n). The spectral characteristics of the vibration signal are extracted to determine
the fault.

3. MVMD-MOMEDA-TEO Implementation Process

Combining the advantages of MVMD and MOMEDA with TEO, the implementation flow chart is
shown in Figure 3. The detailed implementation steps of the proposed method are described as follows.

Step 1: Calculate the fault characteristic frequency fch, and then obtain the scale parameters
√

n.
Step 2: Collect the rolling bearings vibration signal x(t) and calculate scale space representation

L(f, n) of the Fourier spectrum. Then, the support boundary number m of the signal spectrum
is acquired. Finally, the decomposition modes number K = m is decided in VMD based on the
support boundary.
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Step 3: Penalty parameter α = 2000, VMD bandwidth τ = 0.001.
Step 4: According to the given parameters of Step 2 and Step 3, the signal x(t) is decomposed by

VMD into a series of IMF components uk(t).
Step 5: According to the energy ratio criterion (on the basis of the energy ratio from high-to-low,

the IMF component is selected as the effective component in turn until the total energy proportion
Esum(t) ≥ 90%), reconstruct the analysis signal x_new(t).

Step 6: The MOMEDA method is used to deconvolute x_new(t) to suppress the influence of noise
interference, enhance the periodic impulse component of x_new(t), and finally obtain the deconvolution
fault characteristic signal x_cov(t).

Step 7: Teager energy spectrum of x_cov(t) is calculated by Teager energy operator, and finally the
fault feature is extracted.Entropy 2019, 21, 331 7 of 25 
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4. Comparative Analysis of Experiments

In this paper, the comparative experiments of MVMD-MOMEDA-TEO, MVMD-TEO, and
MOMEDA-TEO are completed by using CWRU data sets [27] and NASA data sets [28]. The effectiveness
and superiority of the proposed method are further verified by experimental analysis.

4.1. CWRU Rolling Bearing Vibration Data Analysis

The CWRU rolling bearing fault analogous experimental platform and the actual bearing are
shown in Figure 4, and the detailed experimental parameters are shown in Table 1. The speed of the
motor is 1797 rpm (i.e., the rotation frequency fr = 1797/60 Hz = 29.95 Hz). The sampling frequency fs
is 12 kHz and the data point N is 2048.

Table 1. Bearing basic parameters.

Model
Rolling
Element

Number (Z)

Inner
Diameter
(inches)

Outer
Diameter
(inches)

Contact
Angle (θ)

Rolling
Element
Diameter
d (inches)

Pitch
Circle

Diameter
D (inches)

Speed
(rpm)

6205-2RSJEMSKF 9 0.9843 2.0472 0◦ 0.3126 1.537 1797Entropy 2019, 21, 331 8 of 25 
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bearing fault simulation experiment platform. (b) Deep groove rolling bearing.

Outer race defect frequency:

BPFO =
Z
2

(
1− d

D
cos θ

)
× fr (9)

Inner race defect frequency:

BPFI =
Z
2

(
1 +

d
D

cos θ

)
× fr (10)

Based on the bearing parameters shown in Table 1 and Equations (9) and (10), the fault characteristic
frequency of rolling bearing, BPFO = 107.36 Hz, and BPFI = 162.19 Hz, are calculated, respectively.

In the following sections, the comparative experiments of the two methods are completed by
using the vibration signals of the outer race fault and the inner race fault in CWRU, respectively.
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4.1.1. The Feature Extraction of Outer Race Fault

Figures 5 and 6 show the results of time-domain and frequency-domain waveforms in normal
operation and with an outer race fault, respectively. It can be seen from Figures 5a and 6a that with
the continuous operation of bearings, the time-domain waveforms of vibration signals have obvious
impulse components with certain regularity, and there are many unknown components in the spectrum.
Therefore, more noise can be observed. However, from Figures 5b and 6b, it cannot directly obtain the
detailed fault information, such as fault type, fault location, etc. It is necessary to adopt new analytical
solutions or methods to extract the characteristic frequency of rolling bearing and distinguish the
running state of rolling bearings. For this perspective, follow-up analysis is carried out by using
MVMD-MOMEDA-TEO and MOMEDA-TEO.
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Experiment of Outer Race Fault Feature Extraction Based on the MVMD-MOMEDA-TEO Method

According to Figure 7, 10 IMF components are derived by VMD method. The energy ratio E(t) of
each IMF component is calculated separately and shown in Table 2. According to the energy ratio from
high-to-low, the IMF component is selected as the effective component in turn until the total energy
proportion Esum(t) ≥ 90%. Based on this criterion, five IMF components (IMF4–IMF8) are selected and
shown in Figure 8.

Figure 9a is the reconstruction signal x_new (t) composed by five selected components. Next, the
periodic pulse signal x_cov(t) is extracted from x_new (t) by the MOMEDA method and is demonstrated in
Figure 9b. Finally, the Teager energy spectrum is calculated by Teager Energy Operator demodulation
and displayed in Figure 10. It can be seen that frequency 105.5 Hz and its frequency doubling
characteristic approach theoretical BPFO and its frequency doubling (2BPFO ~ 9BPFO). It can be
judged that the outer race fault has occurred.
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Figure 11 shows that the original signal x(t) is denoised by MOMEDA filtering directly, and x_cov(t)
is obtained. It can be seen that frequency 105.5 Hz and its frequency doubling characteristic approach
BPFO and its frequency doubling (2BPFO~9BPFO) in Figure 12. So it can seen that the outer race fault
has occurred.
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The comparative experiments of MVMD-MOMEDA-TEO, MVMD-TEO in Ref. [16], and
MOMEDA-TEO show that (1) the proposed MVMD-MOMEDA-TEO can achieve the comparable
or better results than the other two methods, and clearly identify the characteristic frequency BPFO
and multiple harmonics of outer race fault and (2) at the same time, it can be clearly observed that
MVMD-MOMEDA-TEO and MOMEEDA-TEO can achieve better performance than MVMD-TEO,
and their Teager energy spectrum amplitude is more obvious and prominent. Therefore, the impact
part of vibration signal of rolling bearing fault can be enhanced by MOMEDA in actual analysis and
the necessity of MOMEDA deconvolution is also demonstrated.
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4.1.2. The Feature Extraction of Inner Race Fault

Figures 13 and 14 show the results of time-domain and frequency-domain waveforms of normal
operation and inner race fault, respectively. The presence of more noise can be observed from
Figures 13a and 14a. However, from Figures 13b and 14b, it cannot directly obtain the detailed
fault information. So the following analysis was carried out by using MVMD-MOMEDA-TEO
and MOMEDA-TEO.
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Experiment of Inner Race Fault Feature Extraction Based on the MVMD-MOMEDA-TEO Method

According to Figure 15, 11 IMF components are derived by the VMD method. The energy ratio
E(t) is calculated and shown in Table 3. According to the energy ratio from high-to-low, the IMF
component is selected as the effective component in turn until the total energy proportion Esum(t) ≥
90%. Based on this criterion, seven IMF components (IMF2–IMF3 and IMF5–9) were selected and
shown in Figure 16.
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Table 3. Energy ratio of each IMF component.

Decomposed Component IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

E(t) 0.01 0.06 0.12 0.03 0.16 0.21

Decomposed Component IMF7 IMF8 IMF9 IMF10 IMF11

E(t) 0.09 0.11 0.08 0.02 0.01

Figure 17a is x_new (t) by seven selected components. Next, x_cov(t) is extracted from x_new (t) by
the MOMEDA method and shown in Figure 17b. Finally, the Teager energy spectrum is calculated
by TEO and shown in Figure 18. It can be seen that characteristic frequency 164.10 Hz, its frequency
doubling approach BPFI, and its frequency doubling (2BPFI~6BPFI). From this, it can be seen that the
inner race fault has occurred in the rolling bearings.
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Experiment of Inner Race Fault Feature Extraction Based on MOMEDA-TEO Method

Figure 19 shows that x(t) is denoised by MOMEDA filtering directly, and x_cov(t) is obtained.
It can be seen that frequency 164.10 Hz and its frequency doubling approach BPFI and its frequency
doubling (2BPFI~6BPFI) in Figure 20. From this, it can be seen that the inner race fault has occurred.
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Through the analysis of vibration signal of inner race fault, a conclusion which is basically
consistent with outer race fault can be obtained. However, some hidden phenomena revealed that
the performance of the inner race fault is slightly worse than outer race fault in depth, which may be
relevant to the impact of inner race parameter error and transmit process.

4.2. NASA Rolling Bearing Vibration Data Analysis

The comparative experiments among MVMD-MOEDA-TEO, MVMD-TEO, and MOEDA-TEO
are completed by using the vibration data of rolling bearings with two different fault types of CWRU.
The advantages of the proposed method are preliminarily verified, and the experimental results of
the proposed method are extended and applicable. Three groups of experiments are completed by
using vibration data of rolling bearings from two different fault types of NASA. Figure 21 shows the
simulation test platform and sensor layout of the rolling bearing fault. Four bearings are installed on the
rotating axle of the test bench. One acceleration sensor is installed on the axial and radial direction of
each bearing, and the sampling frequency is 20 kHz. The rotational speed of the motor is 2000 rpm
(i.e., the rotational frequency fr = 2000/60 Hz = 33.33 Hz). Detailed experimental parameters of the
bearing are shown in Table 4 [16].
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Based on the bearing parameters shown in Table 4 and Equations (9) and (10), the fault characteristic
frequencies of rolling bearing, BPFO = 236.4 Hz and BPFI = 296.93 Hz, are calculated, respectively.

Table 4. Bearing basic parameters.

Rolling Element
Number (Z) Contact Angle (θ) Rolling Element

Diameter d (mm)
Pitch Diameter D

(mm)
Rotational Speed

(rpm)

16 15.17◦ 0.331 2.815 2000

4.2.1. The Feature Extraction of Outer Race Fault

Figures 22 and 23 show the results of time-domain and frequency-domain waveforms of normal
operation and the outer ring fault, respectively. It can be observed that more noise occurs, as shown in
Figures 22a and 23a. However, from Figures 22b and 23b, it cannot directly obtain the detailed fault
information, such as fault type, fault location, etc. So the following analysis was carried out by using
MVMD-MOMEDA-TEO and MOMEDA-TEO.
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domain analysis.
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Experiment of Outer Race Fault Feature Extraction Based on MVMD-MOMEDA-TEO Method

According to Figure 24, 12 IMF components are derived by VMD method. The energy ratio E(t) t
is calculated and shown in Table 5. According to the energy ratio from high-to-low, the IMF component
is selected as the effective component in turn until the total energy proportion Esum(t) ≥ 90%. Based on
this criterion, six IMF components (IMF2 and IMF4–IMF8) are selected and shown in Figure 25.

Figure 26a is x_new (t) by six selected components. Next, x_cov(t) is extracted from x_new (t) by the
MOMEDA method and demonstrated in Figure 26b. Finally, the Teager energy spectrum is calculated
by TEO displayed in Figure 27. It can be seen that characteristic frequency 230.70 Hz and its frequency
doubling characteristic approach BPFO and its frequency doubling (2BPFO~4BPFO). From this, it can
be judged that the failure of outer race of rolling bearing has occurred.
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Figure 28 shows that x(t) is denoised by MOMEDA filtering directly, and x_cov(t) is derived.
Its characteristic frequency 230.70 Hz, frequency doubling approach BPFO, and frequency doubling
(2BPFO ~ 4BPFO) are shown in Figure 29. So it can be seen that the outer race fault has occurred.
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Figure 29. Teager energy spectrum.

The comparative experiments of MVMD-MOMEDA-TEO, MVMD-TEO in Ref. [16], and
MOMEDA-TEO show that the proposed MVMD-MOMEDA-TEO can achieve the same results as
the other two methods, and can clearly identify the outer race fault characteristic frequency and its
frequency doubling characteristics.
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4.2.2. The Feature Extraction of Inner Race Fault

Figures 30 and 31 show the results of time-domain and frequency-domain waveforms of
normal operation and inner race fault, respectively; more noise can be observed, as shown in
Figures 30a and 31a. However, from Figures 30b and 31b, it cannot directly obtain the detailed
fault information. The following analysis is carried out by using MVMD-MOMEDA-TEO
and MOMEDA-TEO.
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Experiment of Inner Race Fault Feature Extraction Based on MVMD-MOMEDA-TEO Method

According to Figure 32, 12 IMF components are derived by VMD method. The energy ratio E(t) is
calculated and shown in Table 6. According to the energy ratio from high-to-low, the IMF component
is selected as the effective component in turn until the total energy proportion Esum(t) ≥ 90%. Based on
this criterion, six IMF components (IMF12 and IMF1–IMF8) are selected and shown in Figure 33.
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Table 6. Energy ratio of each IMF component.

Decomposed Component IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

E(t) 0.38 0.03 0.03 0.04 0.09 0.07

Decomposed Component IMF7 IMF8 IMF9 IMF10 IMF11 IMF12

E(t) 0.18 0.06 0.03 0.03 0.02 0.04

The analysis signal x_new (t) is reconstructed by nine components and x_cov(t) is extracted from
x_new (t) by MOMEDA. Finally, the Teager Energy Operator Demodulation of x_cov(t) is carried out, and
the Teager energy spectrum is calculated as shown in Figure 34. It can be seen that there is obvious
peak value at 293.6 Hz in the Teager energy spectrum, which gets close to theoretical frequency of
bearing inner race fault, and peak values also occur at 148.39 Hz (0.5 octave) and 439.9 Hz (1.5 octave).
From this, it can be judged that the inner race fault occurred in the bearing, which is consistent with
the practical fault. However, its characteristic frequency is not obvious in the inner loop.
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Experiment of Inner Race Fault Feature Extraction Based on MOMEDA-TEO Method

Figure 35 shows that the original signal x(t) is denoised by MOMEDA filtering directly, and the
periodic pulse signal x_cov(t) is obtained. Finally, the output signal is demodulated and analyzed by
TEO, and its Teager energy spectrum is shown in Figure 36. It can be seen that there is obvious peak
value at 293.6 Hz in Teager energy spectrum, which approximates theoretical frequency of bearing
inner race fault. From this, it can be judged that the inner race fault occurred in the bearing, which is
close to the practical fault.
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Through the comparative experiments of MVMD-MOMEDA-TEO, MVMD-TEO in Ref. [16],
and MOMEDA-TEO, we can see that the proposed MVMD-MOMEDA-TEO can achieve the same
results as the other two methods, and can clearly identify the inner race fault characteristic frequency
and its frequency doubling features. Compared with the results of the other two methods, there are
a lot of noise signals in the Teager energy spectrum when using the MVMD method, which affect
the extraction of fault features. Thus, it is effective to enhance the impact part of signals by using
MOMEDA method.
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5. Discussion and Conclusions

5.1. Discussion

An improved method based on MVMD and MOMEDA to extraction fault characteristics for
rolling bearings is proposed.

(1) The proposed MVMD-MOMEDA-TEO can achieve the same results as the other two methods,
and can clearly identify the fault characteristic frequency (including frequency doubling features)
of rolling bearings.

(2) Compared with the other two methods, the results obtained by MVMD directly in Ref. [16] have a
large number of noise signals in the Teager energy spectrum, which have a certain impact on fault
feature extraction. Thus, MOMEDA of complex signals can enhance the impact part of signals.

(3) Because the measured signal of NASA inner race contains not only noise interference, but also
harmonic signal interference from the outer race and rolling body; the results obtained by
MOMEDA method directly are compared with those of other two methods. Due to the signal
decomposition process is not carried out, there is a problem that useful fault information will be
filtered out together when filtering and denoising. Therefore, it is necessary to decompose the
complex signal by MVMD method to extract useful information from the original signal.

(4) By comparing the experimental results of the two groups of measured data, it can be seen
that the MVMD-MOMEDA-TEO method can get a bit better or equivalent experimental results
than the other two methods under strong noise interference, which proves the validity of the
proposed method.

5.2. Conclusions

A method based on MVMD and MOMEDA is proposed. The following three conclusions
are drawn.

(1) Introducing the MVMD method self-adaptively choosing VMD decomposition mode number
to realize fast self-adapting decomposition of signals. At the same time, introducing
energy proportion index to extract effective decomposition components and reduce signal
interference components.

(2) The MOMEDA method is introduced to enhance the fault periodic pulse characteristics, and the
Teager energy operator is introduced to analyze the envelope demodulation of deconvolution
signal x_cov(t), which enhances the fault characteristic frequency of rolling bearings in the
envelope spectrum.

(3) Based on the vibration data of four different fault types from two different datasets of
CWRU and NASA, the comparative experiments of MVMD-MOMEDA-TEO and MVMD-TEO,
MOMEDA-TEO were carried out systematically, and the validity of the proposed method
was demonstrated.

When the MOMEDA method was used, there are randomness and trial-and-error in the parameter
settings of the filter. How to find the best parameter adaptively is an important breakthrough point in
improving MOMEDA method.
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