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Abstract: We consider the thermodynamic origin of the gravitational force of matter by applying the
spacetime entanglement entropy and the Unruh effect originating from vacuum quantum fluctuations.
By analyzing both the local thermal equilibrium and quasi-static processes of a system, we may get
both the magnitude and direction of Newton’s gravitational force in our theoretical model. Our work
shows the possibility that the elusive Unruh effect has already shown its manifestation through
gravitational force.
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1. Introduction

In the last decade, the investigation of spacetime entanglement [1–8] has given remarkable
opportunities to consider the coalescence of quantum mechanics and gravitational force, although
it is still unclear how to unify quantum mechanics and general relativity. Nevertheless, the concept
of quantum entanglement has been found to connect closely with some fundamental properties of
spacetime, such as vacuum quantum fluctuations [9–11], the holographic principle [12–14], and black
holes [15–18].

The concept of quantum entanglement has already promoted our understanding of Boltzmann
entropy and statistical thermodynamics [19–21]. For a thermodynamic system we want to study, if we
consider the whole system including the external environment, the thermodynamic system is highly
entangled with the external environment. In this case, the usual entropy of this thermodynamic system
is in fact the entanglement entropy obtained from the reduced density matrix of this thermodynamic
system [22].

In the present work, we apply both the concepts of entanglement entropy and relevant
thermodynamics to consider the fundamental property of spacetime. In particular, the Unruh effect
for an accelerating particle is used to consider the thermodynamic origin of gravitational force. In
addition, we use a quasi-static process to consider theoretically the direction of gravitational force,
which has potential application for further studies of the gravitational force for dark energy [23,24],
black holes, and so on.

The paper is organized as follows. In Section 2, we give a brief introduction to the Unruh effect
for the Minkowski spacetime and curved spacetime. In particular, we discuss the Unruh temperature
for gravitational radiation. In Section 3, we give the finite spacetime temperature distribution of
matter from the consideration of spacetime entanglement entropy and statistical thermodynamics. In
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Section 4, based on the consideration of the local thermal equilibrium and a quasi-static process of
a system, we give an interpretation to Newton’s gravitational force and in particular the attractive
characteristic. In Section 5, we consider the relativistic formula of the spacetime temperature. In the
last section, we give a brief summary and discussion.

2. Vacuum Quantum Fluctuations and the Unruh Effect for Minkowski Spacetime and
Curved Spacetime

The Minkowski spacetime can be specified by the distance between two nearby points in
spacetime, given by:

ds2 = −c2dt2 + dx2 + dy2 + dz2. (1)

Even for this flat spacetime without considering the spacetime curvature of general relativity, the
Minkowski spacetime has some remarkable properties when both spacetime and quantum mechanics
are considered.

The confluence of special relativity and quantum mechanics will lead to nontrivial vacuum
quantum fluctuations [9–11]. Although we do not know the exact property of the quantum vacuum,
we may assume the existence of an extremely complex and time-dependent quantum vacuum state
|Ψvacuum〉 for the quantum vacuum of the Minkowski spacetime.

The usual vacuum quantum fluctuations are considered for the existence of the zero-point energy
of various quantum fields. The Casimir effect [11] between two conducting metals is due to the
presence of the zero-point energy of electromagnetic field. Although there are other types of zero-point
energy, the conducting metals can only change the zero-point energy of the electromagnetic field in a
noticeable way. Hence, the Casimir effect is about the specified vacuum quantum fluctuations due to
the electromagnetic field.

Now, we turn to consider the Unruh effect in both Minkowski spacetime and curved spacetime,
which originates from the vacuum quantum fluctuations and the coupling between matter and
spacetime, a little similar to the Casimir effect.

2.1. The Unruh Effect for an Accelerating Particle in Minkowski Spacetime

The Unruh effect [17,25,26] is due to vacuum quantum fluctuations of various quantum fields. For
an inertial frame of reference in the Minkowski spacetime, we consider a particle with four acceleration
aα = d2xα/dτ2 with τ the proper time. We first consider the simplest case that the particle has a
specified charge so that it has a coupling with a massless scalar Bose field φ (t, r). The scalar field φ

should satisfy the following equation in Minkowski spacetime,(
− 1

c2
∂2

∂t2 +52
)

φ (t, r) = 0. (2)

The quantization of this scalar field leads to:

φ̂ (t, r) ∼
∫

d3k
(

â (k) fk + â† (k) f ∗k
)

. (3)

Here, fk = eik·r−iEkt/h̄. â (k) and â† (k) are the annihilation and creation operators for the mode
k, respectively. The vacuum state |0M〉 of the Minkowski spacetime satisfies the following property:

â (k) |0M〉 = 0 (4)

for all the modes denoted by k.
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For the particle with four acceleration aα, we should use the Rindler coordinate [27–30] to consider
the expansion of the field operator φ̂ (t, r). In this case, we have:

φ̂ (t, r) ∼
∫

d3k
(

b̂ (k) gk + b̂† (k) g∗k
)

. (5)

It is worthwhile to point out that in this case, â (k) 6= b̂ (k) and fk 6= gk for nonzero aα.
For this accelerating particle, it will seem that there are excitations of the φ field in the Minkowski

spacetime because 〈0M| b̂† (k) b̂ (k) |0M〉 6= 0. It is shown by Unruh [17] that:

〈0M| b̂† (k) b̂ (k) |0M〉 ∼
1

eEk/kBTU − 1
, (6)

with:
TU =

h̄a
2πckB

(7)

the so-called Unruh temperature. Here, the proper acceleration a in this equation is the magnitude of
the four acceleration defined by:

a =
√

ηµνaµaν. (8)

ηµν is the metric of the Minkowski spacetime. Further works have verified that there are no hidden
correlations in the excitations of the φ field, which means that the excitations are purely thermal [28].

We should note that TU can be only observed by this accelerating particle. Hence, only at the
location of this particle, there are observable thermal excitations of the φ field, because only at the
location of this particle, there is coupling with the φ field in the vacuum. It is similar to calculate〈
0p
∣∣ â† (k) â (k)

∣∣0p
〉

with
∣∣0p
〉

defined by b̂ (k)
∣∣0p
〉
= 0 for all modes k. For an observer at rest in the

Minkowski spacetime, this means that this observer will think that there is a temperature distribution
around the accelerating particle with peak temperature given by TU .

2.2. The Unruh Effect for Curved Spacetime

The concept of Unruh temperature had been generalized to curved spacetime. This is shown
clearly in [30] by Jacobson where the Unruh temperature in curved spacetime is used to give a simple
derivation of Hawking temperature. Here, we give a brief introduction of the Unruh temperature for
curved spacetime.

We first consider a particle with a specified charge so that it has a coupling with the φ field. For a
curved spacetime given by:

ds2 = gµνdxµdxν, (9)

we may also define the four acceleration in curved spacetime for this particle. The four velocity uα is:

uα =
dxα

dτ
. (10)

The four acceleration aα is then:
aα = uµDµuα. (11)

Here, Dµ is a covariant derivative operator.
The magnitude of the four acceleration is:

a =
√

gµνaµaν. (12)

It is worthwhile to point out that the proper acceleration a is an invariant quantity for any observer.
In a local inertial frame of reference, it is clear that previous analysis of the Unruh effect and

Unruh temperature is valid, and hence, Equation (7) can be applied to curved spacetime by replacing a
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given by Equation (8) with Equation (12). It is by the application of Equations (7) and (12) that the
Hawking temperature can be derived with the Unruh effect.

2.3. The Unruh Effect for Gravitational Field hµν

For a small deviation from the Minkowski metric, we may write:

gµν = ηµν + hµν. (13)

To leading order, we get the Ricci curvature tensor as follows,

Rµν = −1
2

(
∂2hµν − ∂µ∂λhλ

ν − ∂ν∂λhλ
µ + ∂µ∂νhλ

λ

)
+ O

(
h2
)

. (14)

Here, hλ
µ = ηµνhνλ. Obviously, there is gauge freedom in hµν. Similar to the case of electromagnetic

field, we may use the gauge condition to consider further the physical significance of hµν. Using the
following harmonic gauge condition:

∂µhµ
ν =

1
2

∂νh, (15)

the symmetric tensor hµν will have six free components.
With this harmonic gauge condition, in a vacuum, the Einstein field equation simplifies to:(

− 1
c2

∂2

∂t2 +52
)

hµν = 0. (16)

After the harmonic gauge condition, we may still make a “residual” gauge transformation so that
the solution becomes:

hµν = εµν sin(ηαβkαxβ + ϕ), (17)

with:

εµν =


0 0 0 0
0 ε+ ε× 0
0 ε× −ε+ 0
0 0 0 0

 . (18)

Here, ε+ and ε× represent two independent degrees of polarizations of gravitational waves.
Similar to the quantization of electromagnetic waves, we obtain gravitons, after we quantize
gravitational waves. Of course, the above discussions are about the weak field approximation, which
can be applied in the present work.

By quantizing the hµν field and carrying out almost identical calculations, we will get the same
Unruh temperature for the gravitational radiation. Of course, these considerations can be applied
to the Unruh temperature for electromagnetic field as well. In the following sections, we will use
Equation (7) as the effective temperature for gravitational radiation. It is well known that energy is
the “charge” of the gravitational field hµν. Hence, for any particle with a 6= 0, there is always nonzero
Unruh temperature for gravitational radiation.

We want to emphasize two properties of the Unruh effect as follows.

1. TU should be regarded as a peak value of a local temperature distribution in an inertial frame
of reference.

2. Besides the case of an electrically-charged particle usually considered for the Unruh effect, the
particle may have other types of charges. Hence, TU may also mean the temperature for other
gauge fields, such as the gravitational field. Because the gravitational field is universal for
any particle, Equation (7) can be applied to the gravitational field. In this paper, the Unruh
temperature is considered mainly for the gravitational field.
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The purpose of this subsection is to show that for an accelerating observer, it will think that there is
excitation of gravitons with the same Unruh temperature as that of the scalar field and electromagnetic
field. We will show that this result gives us the chance to have close connection between the Unruh
effect, spacetime temperature, and gravitational force.

3. Finite Spacetime Temperature Distribution Due to Matter

3.1. The Spacetime Quantum Fluctuations

When the sum of all zero-point energies is considered, it is well known that the vacuum energy
density εV is extremely high and even divergent as a result of a rough consideration. Usually, the
finite value of εV may be assumed by setting the Planck energy and Planck length as the cutoff
of the quantum spacetime [27]. It is natural that this will lead to violent quantum fluctuations of
the spacetime geometry [31,32] at the microscopic scale of lp. To distinguish the vacuum quantum
fluctuations introduced in the preceding section, we call it spacetime quantum fluctuation in this paper.

To give a clear picture of spacetime quantum fluctuations, we consider fAB defined by:

fAB =

√√√√ 〈Ψvacuum| d2
AB |Ψvacuum〉 − |〈Ψvacuum| dAB |Ψvacuum〉|2

〈Ψvacuum| d2
AB |Ψvacuum〉

. (19)

Here, dAB is an operator in an inertial frame of reference to measure the spatial distance between
nearby points A and B in spacetime. It is clear that fAB shows the fluctuations of spacetime geometry.

If A and B are macroscopically separated, it is expected that the fluctuation fAB is negligible,
while below or of the order of a microscopic distance lp, there would be significant fluctuations in
fAB. At the present stage, we do not know the exact value of lp. However, the existence of spacetime
quantum fluctuations [31,32] and the stable spacetime property at macroscopic scales means that there
should be a distance lp. We will give further discussion of lp in the next section.

3.2. Spacetime Entanglement Entropy and Spacetime Temperature

We consider a sphere of radius R. The surface of this sphere divides the whole universe into two
systems SA and SB, i.e., the interior of the sphere SA and the external environment SB. Without the
presence of any other matter in the Minkowski spacetime, the entanglement entropy is [33]:

Sentangle = −Tr [ρA log ρA] . (20)

Here, ρA = TrB(ρ) is the reduced density matrix with ρ = |Ψvacuum〉 〈Ψvacuum| the density
matrix for the pure state |Ψvacuum〉 of the Minkowski spacetime. It is easy to show that Sentangle =

−Tr [ρB log ρB] with ρB = TrA(ρ).
For the situation that R >> lp, it is expected that the entanglement entropy Sentangle depends only

on the property of |Ψvacuum〉 in the region of a thin spherical shell with the width of the order of lp.
Hence, it seems reasonable to assume the following conjecture of the spacetime entanglement entropy:

Sentangle ∼
Aarea

l2
p

. (21)

Here, Aarea = 4πR2 is the area of the sphere. This is the so-called area laws for the entanglement
entropy [34–36]. We have another way to understand this relation. From Equation (21), we may also
regard Aarea/l2

p as the number of Planck areas on the spherical surface. We will show that lp is the
Planck length in due course. It is worthwhile to point out that at the present stage, this formula does
not mean directly the holographic principle because we do not consider the possible presence of matter
distribution inside the sphere yet.
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Now, we consider the case that there is a classical particle with mass M inside the sphere. Of
course, the coupling between this particle and spacetime will lead to a change of |Ψvacuum〉 on the
spherical surface. Hence, the modified entanglement entropy for the sphere becomes:

SM
entangle ∼

Aarea

l2
p

+ ∆SM. (22)

For the usual case that the particle M only gives a slight change to the curvature of the spacetime,
it is expected that ∆SM << Sentangle. However, the presence of this particle will lead to an important
effect by applying the holographic principle. The holographic principle [12–14] implies that the energy
Mc2 will show its effect on the spherical surface. Combined with the first law of thermodynamics
dU = TMdS, we have:

Mc2 ∼ kBTM(R)× Aarea

l2
p

. (23)

TM(R) is the effective spacetime temperature on the spherical surface. From the above equation,
we have:

TM(R) ∼
c2l2

p

4πkB

M
R2 . (24)

There is another way to understand this formula. We consider an ideal case that the mass M is
distributed uniformly on a surface of a sphere with a radius a little smaller than R. Assume that the
spacetime temperature of this case is the same as the case we are considering. On the spherical surface,
the energy within the spatial cell of area l2

p is:

ε =
Mc2

4πR2/l2
p

. (25)

Assume the microscopic freedom of this cell is i; we have:

ikBTM
2

= ε. (26)

Because it is expected that i is of the order of one, we will also get TM given by Equation (24).
From the result given by Equation (24), we see that our consideration is self-consistent by assuming the
ideal distribution of M on the spherical surface. In a sense, this distribution of TM is the well-known
Gaussian law. Here, we give an interpretation of the Gaussian law from the holographic principle and
thermodynamics. In Section 5, we will give another method to calculate TM.

It is worthwhile to discuss the following properties of this effective spacetime temperature.
(1) In the usual case, this effective spacetime temperature is extremely small by noticing that there

is a factor l2
p in the above equation.

(2) This effective spacetime temperature is about the spacetime and gravitational field, rather than
the electromagnetic field.

(3) Because this effective spacetime temperature originates from the entanglement entropy and the
presence of M inside the sphere, its finite value does not mean that there would be various radiations
spontaneously. We may notice these radiations only when we have an appropriate means to experience
the entanglement entropy. This is a little similar to the observation of the Casimir effect [11]. We must
have two conducting metals to show the Casimir effect through the coupling with the fluctuating
electromagnetic field in the quantum vacuum.

It seems that it would be extremely challenging to observe this effective spacetime temperature.
However, combined with the physical picture of the Unruh effect, we will show the possibility that the
simultaneous considerations of this effective spacetime temperature and the Unruh effect just lead to
gravitational force.
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4. Newtonian Gravitational Force Derived by the Consideration of Local Spacetime
Thermal Equilibrium

4.1. Spacetime Thermal Equilibrium

We consider another fictitious particle with mass m and assume that this particle does not have
any other interaction in addition to gravitational force. The particle M establishes an effective vacuum
temperature field TM(r) given by Equation (24). Now, we consider the case that the particle m is fixed
at location r, relative to M. Because there is no relative motion between M and m, the whole system has
the chance to be in spacetime thermal equilibrium. For simplicity, we consider the case that M >> m.
To be in spacetime thermal equilibrium, there should be another effective temperature Tm for m so that:

TM(r) = Tm. (27)

When the relative location between M and m is fixed, we know that in the local inertial frame of
reference for m, m has a finite acceleration. It is clear that the Unruh temperature should be calculated
in a local inertial frame of reference. Hence, omitting the high-order term for the proper acceleration a,
the Unruh temperature for m is:

Tm(a) =
h̄ |a|

2πckB
. (28)

Here, a = d2r/dt2. We will give the exact value of Tm in Section 5. It is clear that both TM and Tm

are about gravitons, so that this equation is universal for any particle. This is one of the motivations of
the analysis of the Unruh effect for gravitons in Section 2.3.

The spacetime thermal equilibrium condition (27) leads to:

|a| = α
c3l2

p

2h̄
M
r2 . (29)

The coefficient α can be absorbed in the definition of Newton’s gravitational constant G. Compared
with Newton’s law of gravitational force, we have:

lp =

(
2h̄G
αc3

)1/2
. (30)

We see that with the choice of α = 2, we get the conventional gravitational constant G if we regard
lp as the Planck length. Here, we show the possibility that lp is more fundamental than G in a sense.

In the units with h̄=1 and c = 1, we have G = l2
p. We see that G decreases with the decreasing of

lp. This is due to the fact that with the decreasing of lp, the degree of freedom increases, and hence, the
effective spacetime temperature decreases on the spherical surface. The spacetime thermal equilibrium
condition means that m has smaller acceleration, and equivalently smaller G.

4.2. Quasi-Static Process to Determine the Direction of Gravitational Force

Previous studies only give the magnitude of gravitational force. Now, we turn to consider the
direction of gravitational force. We consider a quasi-static process by an external force Fext so that the
system is always in quasi-thermal equilibrium. In addition, we consider the case that the particle m
moves toward M in a quasi-static way. Because TM ∼ 1/r2, we see that the particle m will exchange
heat energy with spacetime during the quasi-static process, while the kinetic energy will not change.
The first law of thermodynamics then gives:

dUm = δQ + δW = 0. (31)
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Here, δQ is the heat energy absorbed from spacetime, while δW is the work by the external force
on the particle m. δW is given by:

δW = Fext · dr. (32)

Hence, for the quasi-static process of the system with dUm = 0, we have:

Fext · dr = −δQ. (33)

For simplicity, we consider the case that the particle m moves along the line connecting M and m.
If their distance increases, δQ < 0, and we have:

Fext ∼
r
r3 .

This determines the direction of the external force to maintain the thermal equilibrium or
time-independent location of the particle m. We see that this is equivalent to the fact that the
gravitational force is attractive.

If we consider the case that the particle m moves toward M along the line connecting M and
m, we have δQ > 0. We will still have Fext ∼ r /r3, and this leads to the attractive characteristic of
gravitational force as well. Combined with Equation (29), the gravitational force can then be written as:

Fg = −GMm
r3 r. (34)

4.3. Free-Fall Motion

In a gravitational field, we know that the free-fall motion has no acceleration at all, based on
Einstein’s general relativity. In this case, the Unruh temperature is zero for the particle m, while the
spacetime temperature due to M is larger than zero. Hence, during the free-fall motion, there is always
a temperature difference between TM(r) and the Unruh temperature Tm. Because of this temperature
difference, the free fall motion is not a quasi-static process. This temperature difference leads to the
possibility of energy exchange between spacetime and the particle m.

Similarly to the analysis of Joule expansion in thermodynamics, for the free-fall motion from A to
B, we may construct a quasi-static process from A to B by a fictitious external force, and then, at the
end of this quasi-static process, the work of the external force is given to the particle m. In this case, in
the non-relativistic approximation, the work by the gravitational force on the particle m during the
free-fall motion is:

∆W = φ(r1)− φ(r2), (35)

with φ(r) = −GMm/r and ∆W the work done on the particle m by the gravitational field.

5. Relativistic Formula of the Spacetime Temperature TM of a Classical Particle

In Section 3.2, based on spacetime entanglement entropy, the holographic principle, and
thermodynamics, we get the non-relativistic approximation of the spacetime temperature TM for
a classical particle with mass M. It seems that it is extremely difficult to give a method to calculate
TM(r) in the frame of general relativity because we do not know the exact mechanism to unify general
relativity and quantum mechanics yet. However, in this section, we will provide the method to
calculate TM (r) by using the local thermal equilibrium condition TM (r) = Tm.

For a classical particle with mass M, the Schwarzschild metric is:

ds2 = −
(

1− 2GM
c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1
dr2 + r2

(
dθ2 + sin2 θdφ2

)
. (36)
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The four-dimensional coordinate of another particle m is:

xα = (t, r, θ, φ) . (37)

We consider the situation that the particle m has a fixed location, i.e., r, θ, and φ are time
independent. The four velocity uα is:

uα =
dxα

dτ
=

(
1
c

(
1− 2GM

r

)−1/2
, 0, 0, 0

)
. (38)

The four acceleration aα is:

aα = uµDµuα =

(
0,

MG
r2 , 0, 0

)
. (39)

From this result, we have:

a2 = gµνaµaν =

(
MG
r2

)2 (
1− 2GM

c2r

)−1
. (40)

The proper acceleration is then:

a =
MG
r2

(
1− 2GM

c2r

)−1/2
. (41)

For this particle m with fixed r, θ, and φ, relative to M, the Unruh temperature is then:

Tm(aα) =
h̄G

2πckB

M
r2

(
1− 2GM

c2r

)−1/2
. (42)

We see that the factor
(

1− 2GM
c2r

)−1/2
is the correction due to general relativity.

From the local thermal equilibrium condition given by Equation (27), the relativistic formula for
the spacetime temperature due to particle M is then:

TM(r, θ, φ) =
l2
p

2πkB

Mc2

r2

(
1− 2GM

c2r

)−1/2
. (43)

Here, for a comparison with Equation (24), we have used the Plank length lp in this equation.
Of course, if we regard the particle M as a point particle, this formula only holds for the situation of

r > 2GM/c2. Compared with Equation (24), we see that the factor
(

1− 2GM
c2r

)−1/2
is the correction

due to curved spacetime.
Compared with the calculations of the spacetime temperature TM in Section 3.2, in this section, we

give significant improvement to calculate TM by using Equations (27) and (42). These improvements
also show that the calculations in Section 3.2 are valid in the semi-relativistic approximation, and hence,
this gives the support for the concept of the entanglement entropy for spacetime and the relevant
thermodynamics for spacetime based on this entanglement entropy. It also implies the validity of the
holographic principle and relevant thermodynamics based on the concept of entanglement entropy,
because the Unruh effect does not depend on the holographic principle.

6. Potential Application to Modified Gravity

Although the present work is not a modification to Einstein’s general relativity, we may consider
the potential application to modified gravity in the future. Here, we consider the potential application
to two modified theories of gravity as follows.
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In [37–40], the modification of the inertia originated from a reconsideration of the quantum
effect in the Unruh effect was considered to give a modified gravitational law, which has potential
application to modified Newtonian dynamics [41]. In particular, in [39,40], the modified inertia due to
the consideration of the long-wavelength of the order of the Hubble scale in Unruh radiation is used to
explain the Pioneer anomaly [42]. This means that when the long-wavelength excitation of gravitons is
considered, there may be significant modification to spacetime temperature considered in the present
work, because the result of the present work relies on the local thermal equilibrium condition. When
the long-wave mode is addressed, there is even the condensation of gravitons, similar to Bose–Einstein
condensed gases.

Another potential application would be the case of massive gravity [43]. The observations of
gravitational waves have given strong confinement on the graviton mass that it should be no more than
7.7× 10−23 eV/c2 [44], which means that the Compton wavelength of the graviton would be at least
1.6× 1016 m. This suggests that our theory will not give a significant modification to massive gravity
for the long-wave mode below 1.6× 1016 m. However, when the cosmology evolution is addressed, we
cannot exclude the possibility of significant modification due to massive gravity. Another possibility is
the modification of the massive gravity to black holes [45–50], which has seen intensive studies in the
last few years. Near the horizon of a black hole, the Unruh effect has close connection with Hawking
radiation, and it would be interesting to consider the gravitational radiation in the Unruh effect and
the relevant spacetime temperature in this work.

7. Summary and Discussion

In summary, we consider the thermodynamic origin of Newton’s gravitational force by
considering simultaneously the spacetime entanglement entropy, the holographic principle,
thermodynamics, and the Unruh effect for an accelerating particle. Different from previous works on
the thermodynamic origin of gravitational force [2,51–53], in this work, we emphasize the quantum
entanglement of spacetime. In the present paper, we do not use the assumption of the displacement
entropy ∆S ∼ d in [2,52], which implies a more solid basis for the thermodynamic origin of Newton’s
gravitational force.

Currently, the direct observation of the Unruh effect is still elusive. For an electronically-charged
particle, the Unruh temperature is too small to have observable electromagnetic radiation with current
techniques. Most recently, a pioneering quantum simulation of coherent Unruh radiation [54] was
observed based on an ultra-cold atomic system. Of course, this observation does not show directly the
original Unruh effect for spacetime. In the present work, however, we show the possibility that the
original Unruh effect has already shown its manifestation through gravitational force.

The purpose of this paper is to try to propose the possibility that there exists a spacetime
temperature due to the curvature of spacetime because of the existence of matter. We give the general
method to calculate the spacetime temperature of a classical particle by applying the thermodynamics
of spacetime and the Unruh effect. Our theory suggests that the magnitude of the four acceleration for
a fixed location is of equivalent importance, compared with the scalar curvature. By analyzing both
the local thermal equilibrium and quasi-static processes of a system, we may give the microscopic
interpretation of the attractive characteristic of classical particles, while in general relativity, this is
imposed by observation [55]. It is worthwhile to point out that even in the pioneering work about
the thermodynamic origin of gravitational force in [2], there is no consideration on the direction of
gravitational force. In future work, we may consider the application of the spacetime temperature to
black holes, e.g., the excitation of atoms falling into a black hole [56] because of the presence of the
spacetime temperature in this work. Another future work may consider the influence of the spacetime
temperature on the quantum correlation of matter, which would be a complementary of the recent
scenario where quantum correlations are considered theoretically to affect the gravitational field [57],
by emphasizing the quantum thermodynamic characteristic of work [58].
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