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Abstract: In this paper, the design of a data-rate constrained observer for a dynamical system is presented.
This observer is designed to function both in discrete time and continuous time. The system is connected
to a remote location via a communication channel which can transmit limited amounts of data per unit
of time. The objective of the observer is to provide estimates of the state at the remote location through
messages that are sent via the channel. The observer is designed such that it is robust toward losses
in the communication channel. Upper bounds on the required communication rate to implement the
observer are provided in terms of the upper box dimension of the state space and an upper bound
on the largest singular value of the system’s Jacobian. Results that provide an analytical bound on
the required minimum communication rate are then presented. These bounds are obtained by using
the Lyapunov dimension of the dynamical system rather than the upper box dimension in the rate.
The observer is tested through simulations for the Lozi map and the Lorenz system. For the Lozi map,
the Lyapunov dimension is computed. For both systems, the theoretical bounds on the communication
rate are compared to the simulated rates.

Keywords: nonlinear systems; observers; data-rate constraints

1. Introduction

Ever since the widespread usage of wireless technologies, there has been a focus on data-rate problems
for dynamical systems. These problems arise when networked technologies are employed in configurations
where sensors, actuators, and controllers are placed at locations that are remote from one another. Extra
complications arise from uncertainties in the system’s parameters, initial conditions, sensor measurements,
communication channels, and dynamics, such as in the form of exogenous disturbances. These necessitate
communication strategies that are efficient in terms of data rate and robust against all kinds of uncertainty.
In this paper, the focus will be placed on uncertainties in the initial conditions, and also on issues of losses
in the communication channel.

Up until now, the main focus in the relevant control-oriented literature was on state estimation and
stabilization problems. In the early 2000’s, most of the research dealt with linear systems, for which many
results have been obtained (see [1–4] for extended surveys).
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Early results on nonlinear systems (exemplified by [5,6]) typically assumed special properties of the
considered systems, and were also based on these properties. Proper adapting and extending techniques,
originally developed for linear plants, opened the door for handling generic nonlinear systems and
permitted the establishment of lower data-rate bounds sufficient for the observability and stabilizability of
such systems; see, e.g., [7]. Another research trend was concerned with intrinsic characteristics of nonlinear
systems that provide a somewhat exhaustive description of the bit-rate of information transmission under
which a certain dynamic property (such as stability, invariance, observability) can be achieved. As a result,
there appeared a whole series of extensions and modifications of classical topological entropy [8], such as
feedback topological entropy [9], invariance entropy [10,11], topological entropy with regard to dynamic
uncertainties [12] and to uncertainties in the initial conditions [13], estimation entropy [14], and others
(see, e.g., [15–18]). Finally, some papers such as [19] have relied on passivity-based methods to provide
bit-rate bounds.

One of the objectives of the paper is to use non-Euclidean concepts of the set dimension as
an alternative to the aforementioned notions of entropy. Among the non-Euclidean concepts of set
dimensions, the best known is, maybe, the Hausdorf dimension [20]. Another related characteristic
is the upper box dimension [21], which is sometimes referred to as the limit capacity [22]. These two
dimensions—the entropy and Lyapunov exponent—were proven to be closely related to one another
in [23–25]. Both dimensions are based on covering a set with balls of infinitesimally small size (a technique
which is very similar to the idea of partitioning the state-space and using symbolic dynamics to describe
the dynamical system—see, e.g., [26]); both can assume non-integer values, and both may be smaller than
the dimension of the hosting Euclidean space. These concepts have been much inspired by studies of
fractals and research on chaotic attractors of dynamical systems. The latter is a primary incentive for our
interest in these dimensions, which may be a non-integer for chaotic attractors and provide a somewhat
deeper insight into the issue of their dimensionality than the ordinary Euclidean dimension.

Unfortunately, there are still no general analytical techniques for computing the two aforementioned
dimensions for chaotic attractors. Numerical methods remain the main tool used by scientists and engineers
to estimate these dimensions [27]. In this paper, an alternative to this numerical approach is developed.
The alternative is based on the so-called Lyapunov dimension, in which the upper bounds are the above two
dimensions [28]. Moreover, its advantage resides in the fact that the Lyapunov dimension can be computed
analytically by using the second Lyapunov method [29,30], which leads to analytical upper bounds.
By following this alternative, we obtain a fully analytical lower bound on the communication data-rate
under which reliable estimation of the system’s state becomes feasible. When doing so, we consider a
generic nonlinear system and focus attention on its behavior within a given invariant set, which may be a
chaotic attractor, for example.

Apart from this bound, the design of a particular observer that ensures such an observability is also
presented. The observer is composed of a sampler, a quantizer, a data-rate constrained channel, and a
decoder. All components interact in order to build estimates of the state at a remote location in real time.
The observer can ensure arbitrarily high precision of estimation with a communication rate that remains
below the channel capacity. Moreover, the proposed observer is robust against delays and losses in the
communication channel, which is a valuable property for applications where delays and losses are a
common occurrence. This robustness is achieved without any feedback in the communication channel,
which is atypical for most data-rate constrained observers in the current literature [31–34] and constitutes
the novel contribution of the paper.

This paper is both a generalization and an extension of [35,36]. We provide a unified solution for
both continuous and discrete-time systems. In addition to providing proofs for all the results that were
presented in the two aforementioned conference papers, the problem statement is extended to also include
delays in the communication channel.
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In Section 2, we define the types of systems to be observed, as well as the observer notations,
and provide a definition for observability with data-rate constraints. Section 3 introduces the proposed
observer. In Section 4, preliminary criteria for observability of the plant are offered, which are converted
into a fully analytical form in Section 5. Section 6 illustrates the general theory via handling two examples:
the Lozi map and the Lorenz system. For both systems, the necessary data-rates are computed and
simulations that confirm the theoretical results are provided.

2. Problem Statement

In this section, we introduce the problem statement. The general setting is that of a dynamical system
and two peers connected together via a communication channel. Both peers have full knowledge about
the dynamics of the system. Meanwhile, only one of them has direct access to the system’s current state
and fully measures it. The task is to provide estimates of the state to the other peer by sending messages
through the communication channel. This channel is discrete (i.e., the variety of transmittable messages is
finite) and has delays, losses, and limited data-rate. The effects due to data-rate constraints and delays are
explicitly modeled in this section, whereas the issue of message losses is discussed separately in Remark 1.
Two types of delays will be considered in turn. A processing delay is also incurred, since the channel can
transmit only a given and finite number of bits c per unit time, and so a B-bits message can wholly arrive
at the receiving end of the channel not earlier than B/c time units after the transmission of this message is
commenced. A transmission delay is caused by holding up the progress in the ideal routine of bits transfer,
which may occur as a result of, e.g., resolving competition with third parties for shared resources of the
communication medium or network.

In order to solve the stated problem, we will develop a particular type of observer. In this section,
we will only introduce notations concerned with the observer. Operation of its components will be
described in the next section.

2.1. Observed Dynamical System

We consider a dynamical system {ϕt}t∈T on an open set S ⊂ Rn, paying special attention to a certain
subset S0 ⊂ S. Here,

• T is the set of time periods, which is either Z+ or R+;
• ϕt : S→ S is the evolution function that gives the system state x(t) = ϕt(x0) at time t ∈ T, provided

that the initial state is x0;
• S0 is the focus of our interest in the system.

Specifically, we are interested only in trajectories that start in S0 and remain there afterwards:

x(t) ∈ S0 ∀t ∈ T. (1)

Assumption 1. The dynamical system at hands is time-invariant: ϕt ◦ ϕs = ϕt+s ∀t, s ∈ T.

Assumption 2. The set S0 is a bounded forward invariant ϕt(S0) ⊂ S0 ∀t ∈ T, its closure S0 lies in S.

Our main interest is in systems for which complex and possibly chaotic long-horizon dynamics arise
from rather regular short-horizon behavior. The last feature is partly substantiated by the following.

Assumption 3. For any t ∈ T, the evolution function ϕt : S→ S is continuously differentiable.

Depending on the “time-set” option, two types of dynamical systems will be considered.
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(1) Discrete time systems: T = Z+, and the system evolves as follows:

x(t + 1) = ψ(x(t)) t ∈ Z+,

where ψ : S→ S is a given mapping. In this case,

ϕt(·) := ψ(. . . ψ(·))︸ ︷︷ ︸
t times

and ψ = ϕ1.

Assumption 1 holds, and Assumption 3 is met if, and only if ψ is continuously differentiable.
(2) Continuous time systems: T = R+ and the evolution of the system is described by an ordinary

differential equation (ODE):

ẋ(t) = f (x(t)) t ∈ R+, (2)

where f : S→ Rn is a continuously differentiable vector field. So for any x0 ∈ S, the solution x(t, x0) of
the Cauchy problem x(0) = x0 for the ODE (2) exists, and is unique; it can be extended to the right on
the maximal interval [0, T(x0)). However, Equation (2) not ineluctably defines a dynamical system on
S, since, not necessarily, T(x0) = ∞ for all x0 ∈ S. Insofar as the right-hand side of Equation (2) is not
defined outside S, this extendability T(x0) = ∞ means, in particular, that the solution x(t, x0), x0 ∈ S
never attempts to leave the set S; i.e., the set S is forward invariant. So when dealing with ODE, we always
assume that all its solutions that start in S at t = 0 can be extended on [0, ∞) while remaining in S.

The following proposition can be proved by retracing the arguments from Section 2.2 in [37].

Proposition 1. Whenever the vector field f : S→ Rn is smooth (i.e., continuously differentiable) and the ODE (2)
has the just-stated extendability and invariance properties, this ODE gives rise to a dynamical system {ϕt}t∈R+ on
S (ϕt(x0) := x(t, x0)), which satisfies Assumptions 1 and 3. Moreover, ϕt(x) and its first derivatives, with respect
to t and x, are continuous functions of t and x.

2.2. Architecture of the Observer, Notations, and General Traits of the Communication Channel

We assumed that the current state x(t) was observed in full at a certain measurement site but is
needed at time t at a remote location, where data can be communicated only via a discrete channel.
The channel is discrete in the sense that first, it is constrained to carry messages that are drawn from a
finite set, and second, the messages can be communicated only one at a time and, while the channel is
busy transmitting a previous message, it is closed for the next transmission.

The purpose of the observer is to arrange and manage transmissions across the channel and to finally
build, at time t and at the remote location, an estimate x̂(t) of the current state x(t) with a pre-specified
exactness. The formal definition of the last notion is as follows.

Definition 1. A number ε > 0 is called an “exactness of observation”, and if there exists t̄0 < ∞ such that

‖x(t)− x̂(t)‖ ≤ ε, ∀t ∈ T : t ≥ t̄0.
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As is illustrated in Figure 1, an observer O is defined as a composition consisting of a sampler S, quantizer
Q, and decoder D; the sampler and quantizer together form a coder C:

O is composed of S and Q︸ ︷︷ ︸
C

and D.

• The sampler and quantizer are built at the measurement site and have access to the dynamics {ϕt} of
the system, the set S0, the current state x(t), and the desired exactness of observation ε.

• The decoder is built at the remote site L and has access to the system dynamics {ϕt}, the set S0,
the desired exactness of observation ε, and the messages transmitted across the channel.

Figure 1. Structure of the observer.

The roles and structures of the observer components are as follows.
The Sampler generates the (sampling) instants sj ∈ T (where at every one of these instants t = sj,

transmission of another message e(sj) is initiated):

sj+1 = S({ϕt}t∈T , S0, x(sj), sj, ε) > sj, s0 = 0, j ∈ Z+. (3)

Also, the sampler builds a finite alphabet Aj from which the message e(sj) should be drawn at time sj
for subsequently communicating across the channel:

Aj = A({ϕt}t∈T , S0, x(sj), sj, ε), j ∈ Z+. (4)

The alphabet is thus permitted to depend on sj.
The Quantizer forms the message e(sj) ∈ Aj to be dispatched

e(sj) = Q({ϕt}t∈T , S0, x(sj), sj, ε), ∀j ∈ Z+. (5)

The Decoder generates state estimates based on the previously received messages:

x̂(t) = D({ϕτ}τ∈T , S0, {(e(sj), s̄j)}j∈J(t), ε), (6)

where s̄j is the time when the message e(sj) arrives at the remote site L and J(t) := {j : s̄j ≤ t}. If no
message has arrived yet, J(t) = ∅ and the meaningless {(e(sj), s̄j)}j∈∅ is replaced by an arbitrarily
pre-specified symbol, e.g., 0 ∈ Z+. The observer has to fit the constraints and capabilities of the channel,
which are as follows.

(c.1) The channel correctly transfers any message e(sj) ∈ Aj to the receiving end provided that the
message processing time τ

pr
j and the size of the message are in balance:

log2 card(Aj) ≤ b(τpr
j ). (7)

Here, b(τ) is a channel-dependent function that gives the number of bits processable by the
channel during any time period of length τ.
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(c.2) As the processing time increases to infinity, the average number of bits transmittable per unit of
time stabilizes and converges to a certain value c ∈ R+, called the (bit-rate) channel capacity:

∃c := lim
τ→∞

b(τ)
τ

. (8)

(c.3) The channel is closed for the next message until all bits of the current message e(sj) have been
processed, but is open afterwards.

(c.4) On its way to the destination point L, any message e(sj) incurs a transmission delay τtr
j :

s̄j = sj + τ
pr
j + τtr

j , (9)

where s̄j is the time when the whole of the message e(sj) arrives at L, and the processing time τ
pr
j

plays the role of a processing delay here.
( c.5) The transmission delays are upper-bounded: τtr

j ≤ τtr
+ < ∞.

To correctly transmit messages, the sampler should balance the chosen alphabet and the message
processing time τ

pr
j in accordance with Equation (7), and respect the requirement: sj+1 ≥ sj + τ

pr
j .

2.3. Observability via Channels with Limited Bit-Rate Capacity

The objective of the observer is to guarantee observability, as defined in the following definition.

Definition 2. A system {ϕt}t∈T is said to be observable on the set S0 via a communication channel if, for any
ε > 0, there exists an observer Equations (3)–(6) that operates via this channel and ensures the requested exactness
of observation ε for any trajectory satisfying Equation (1).

Observability is classically defined as a property of the system itself. However, in the current context,
finite data rate makes observability critically dependable on the employed communication channel. So,
by following [18,35,36,38], observability is introduced as a property of the pair “system + channel”.
In Definition 2, the reference to existence of an observer in fact conveys the idea of most effectively
utilizing the properties of the system and the potentialities of the channel, where if their clever use may
result in a reliable and exact state estimate at the receiving end of the channel, the pair is sealed with the
stamp, “observable”.

3. Design of the Proposed Observer

Since we are interested only in trajectories satisfying Equation (1), our discussion of the observer
design is confined to the case where x(sj) ∈ S0 ∀j in Equations (3)–(5).

We will introduce an observer that is determined by the following four entities:

(e.1) s+ ∈ T—The period sj+1 = sj + s+ between consecutive dispatches of messages via the channel;
(e.2) P—A symmetric and positive definite n× n-matrix;
(e.3) δ(ε, s+) > 0—A function of ε > 0 and s+ for which

‖x̂− x‖P ≤ δ(ε, s+) and x̂, x ∈ S0 ⇒
∥∥ϕt(x̂)− ϕt(x)

∥∥
P ≤ ε ∀t ∈ T, t ≤ s+. (10)

(e.4) {BP
δ (qk)}K

k=1—A finite covering of the compact set S0 with K = K(ε, s+) balls (with respect to the
norm ‖ · ‖P) centered in qi ∈ S0 and with a radius of δ = δ(ε, s+) each.

Here, the centers qi may also depend on ε, s+.
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Lemma 1. Let Assumptions 2 and 3 hold, and for any τ ∈ T, the derivatives of ϕt are bounded over t ∈ T, t ≤ τ

and x from some τ-dependent neighborhood of S0. Then, a function δ(ε, s+) > 0 with the property (10) exists.

The proof of this lemma simply follows from the continuous differentiability of ϕt and the
boundedness of of the derivates.

The proposed observer operates as follows.

Procedure 1. (Observer)

(o.1) The sampler S (Equations (3) and (4)) carries out the following actions:

sj+1 =S({ϕt}t∈T , x(sj), sj, ε) := sj + s+, s0 := 0.

A({ϕt}t∈T , x(sj), sj, ε) := {1, . . . , K},

i.e., the alphabet substantiates the numbering of the balls from (e.4).
(o.2) The quantizer Q finds an element BP

δ (qk) of the covering from (e.4) that contains x(sj+1) = ϕs+(x(sj)) ∈
S0 and sends its index k over the channel:

Q({ϕt}t∈T , x(sj), sj, ε) = k,

(o.3) The decoder D performs the following operations at time t ∈ T:

– Extracts the index k from the last message received at a time θ ≤ si, where i := bt/(s+)c (If no
message has been received yet, k is assigned an arbitrarily pre-specified value, e.g., 1.).

– By using the centers from (e.4), forms the current state estimate

x̂(t) := ϕ(t−si)(qk). (11)

Several comments on this observer are as follows:

• In (o.2), we do not address the case x(sj+1) 6∈ S0 due to the reason stated at the onset of the section.
• The proposed design assumes that both the coder and decoder have access to s+ from (e.1) and the

covering from (e.4).
• The observer uses a fixed alphabet {1, . . . , K}, which is shared by the coder and the decoder.
• The quantizer sends data about the estimate qk of not the current x(sj), but the forward-time state

x(sj+1), which is computed from the measured x(sj) by using the known transition map ϕs+(·).
• The idea behind this relies on the expectation that these data will be received prior to sj+1 and put in

use at due time, t = sj+1. Then, the exactness of estimation will be δ at this time.
• These data are also used to estimate the state on the subsequent time interval {t ∈ T : sj+1 ≤

t < sj+2} via applying the matching transition map to the just-discussed estimate at time t = sj+1.
By Equation (10), this guarantees the exactness of estimation ‖x(t)− x̂(t)‖P ≤ ε on this interval.

In order for the proposed observer to be able to operate correctly via a given communication channel,
the message e(sj) initiated at time sj should be fully processed and received prior to sj+1. (This, in particular,
implies that the messages arrive in order: s̄j+1 > s̄j.) Due to (c.1), (c.4), and (c.5), correct operation occurs
whenever there exists a solution τ pr ∈ T to the following two inequalities:

log2 K(ε, s+) ≤ b(τpr), s+ ≥ τpr + τtr
+ . (12)
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We recall that τtr
+ is an upper bound on the transmission delay. In the typical case where K(ε, τ)

is an increasing function of τ and modulo the possibility to choose s+, Equation (12) reduces to only
one inequality:

log2 K(ε, τpr + τtr
+) ≤ b(τpr). (13)

Anyhow, the inequalities depend on both the system (via K(·, ·)) and channel (via b(·), τtr
+). This means

that correct operation in fact requests a certain level of conformity between the system and the channel.
The conditions for correct operation will be fleshed out in the next section. We conclude the section

with a comment on observability and a remark on how the observer proceeds when a loss occurs.

Observation 1. The following statements are true:

(i) Let the proposed observer correctly operate for a given ε > 0 and s+. Then, for any trajectory satisfying
Equation (1), the desired exactness of observation ε is ensured with respect to the norm ‖ · ‖P;

(ii) Let a communication channel be given. Also, let any ε > 0 small enough be coupled with some s+ so that the
proposed observer with these ε and s+ operates correctly via the channel at hand. Then, the system {ϕt}t∈T is
observable on the set S0 via this communication channel.

All observability conditions that will be established in this paper are nothing but implications of ii) in
this observation. This means that these conditions ensure the correct operation of the proposed observer
modulo’s proper and feasible choice of its parameters. In other words, whenever these conditions are
satisfied, a reliable state estimate can be obtained by means of this observer.

Remark 1. Suppose that messages may be lost when transmitting over the communication channel. If a loss does
occur, the message qk which was last received is used in Equation (11) not only during the intended time interval
(from si to si+1), but also during the subsequent time intervals until the next successful transmission. Certainly,
there is no guarantee that the estimation accuracy will be within the desired ε on these extra intervals. However,
as soon as a new message arrives, this accuracy is restored due to the very design of the observer. This robustness
against losses is achieved without any feedback in the communication channel (i.e., the coder is not notified when
losses occur on the channel), unlike many competing schemes [31–34].

This remark extends on the situation where the message is not lost, but corrupted so that an incorrect
qk is occasionally used in Equation (11).

4. Criteria for Observability of the System

A problem with the conditions (12) and (13) is that they use the function K(·, ·) from (e.4), for which
there is a lack of constructive techniques to compute, or at least to assess it from its “parents”: the dynamics
{ϕt}, and the set S0. In this section, we make a first step to overcome this deficit; whereas the function
K(·, ·) is a by-product of the coalesce of the dynamics and set, we re-master the conditions into a form
where separate characteristics of the dynamics and the set are employed.

4.1. The Size of Finite Covering

Inspired by (e.4), we start with the question: How many balls of a common radius δ are needed
to cover a given bounded set? Though not articulated thus far, our interest in fact focuses on the high
exactness of estimation δ ≈ 0. This, in turn, motivates asymptotical analysis as δ → 0. A response to
these concerns is partly given by the concept of an upper box-counting dimension d̄B, which is defined
as follows.
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Definition 3 ([21]). The upper box-counting dimension d̄B(F) of a bounded set F ⊂ Rn is given by

d̄B(F) := lim sup
δ→0

log Nδ(F)
− log δ

. (14)

Here, Nδ(F) can be defined in any of the following ways, with all of them resulting in a common value (14):

(i) The smallest number of closed balls of radius δ that cover F;
(ii) The smallest number of closed balls of radius δ and centers in F that cover F;
(iii) The smallest number of cubes of side δ that cover F;
(iv) The number of δ-mesh cubes that intersect F;
(v) The smallest number of sets of diameter at most δ that cover F;
(vi) The largest number of disjoint balls of radius δ with centers in F.

Also, the quantity (14) does not depend on the choice of the norm in (i),(ii), (v), and (vi).

It follows that for arbitrarily small κ > 0, the number of δ-balls with centers in F that are needed to
cover F does not exceed δ−(d̄B(F)+κ) for all sufficiently small δ > 0.

As is well-known [21], d̄B(F) = d̄B(F) ≤ n for any bounded set F ⊂ Rn and d̄B(F) = n if the interior
of F is not empty, F1 ⊂ F2 ⇒ d̄B(F1) ≤ d̄B(F2), and d̄B(F1 ∪ . . . ∪ Fk) = max{d̄B(F1), . . . , d̄B(Fk)}, k ∈ Z+.
The box-counting dimension may assume non-integer values; for example, d̄B(F) = 1/ log2 3 for the
middle-thirds of the Cantor set F ⊂ R.

Our particular interest is in dynamical systems and their invariant sets S0 with d̄B(S0) < n; this case
does hold for some chaotic systems and complex attractors S0.

4.2. Balance between the Initial and Forthcoming Estimation Exactness, Respectively

Now, we are going to study relations between the initial exactness δ of the state x estimate x̂ and the
implied forthcoming exactness ε during the time horizon of duration s+. This study is aimed at building
the component (e.3) of which the proposed observer is composed, among others. We recall that this
component is a function δ(ε, s+) for which Equation (10) holds.

The growth rate of the system {ϕt} on the set S0 is defined to be:

g(S0) := lim
δ→0

lim
t→∞

t−1 log2 sup
θ∈T:θ≤t

sup
x∈Bδ(y),y∈S0

‖Aθ(x)‖ , where Aθ(x) :=
∂ϕθ

∂x
(x) (15)

is the Jacobian matrix of the map ϕθ(·) at point x and log2 ∞ := ∞. It is well-defined for all sufficiently
small δ, since x ∈ S in Equation (15), thanks to the following.

Lemma 2. There exists δ0 > 0 such that Bδ0(y) ⊂ S for any y ∈ S0.

The proof of this lemma is trivial and thus omitted from this document.
In Equation (15), the limit limδ→0 exists since the subsequent quantity decays as δ decreases. Since all

norms ‖ · ‖ in the space of n× n-matrices are equivalent, it is easy to see that g(S0) does not depend on
the choice of the norm.

Among other components, the proposed observer uses a function δ(ε, s+) with a special property
described in (e.3). Now, we show how such a function can be built from g(S0).
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Lemma 3. Let g(S0) < ∞. For any ĝ > g(S0) and any positive definite n× n-matrix P, there exists a function
δ(ε, s+) with the property (e.3) that is given by

δ(ε, s+) = ε2−ĝs+ (16)

for all sufficiently small ε > 0 and sufficiently large s+.

The proof of this lemma is provided in Appendix A.

4.3. Correct Operation of the Observer and a Criterion for Observability

By bringing the pieces together, we arrive at the following.

Proposition 2. Suppose that Assumptions 1–3 hold and the system has a finite growth rate g(S0) on the set S0.
Consider a communication channel with capacity c. If

c > g(S0)d̄B(S0), (17)

the system {ϕt}t∈T is observable on the set S0 via this communication channel in the sense of Definition 2.

The proof of this proposition is provided in Appendix A. The previous inequality strongly resembles
other inequalities in the context of entropy in dynamical systems that link dimensions, Lyapunov
exponents, and entropy (see [23–25]).

Remark 2. The bounded transmission delay τtr
j from Equation (9) and its upper bound from (c.5) do not affect the

condition (17) for observability.

5. Constructive Estimates and Analytical Bounds

In this section, we make the next and final step for obtaining tractable conditions for observability.
The road to this is via the development of techniques for assessing growth rate and the box-counting
dimension. A technique will be employed in both these cases that is similar in spirit to the second
Lyapunov method.

5.1. Lyapunov-Like Function

The characteristic trait of the classic Lyapunov function v(·) is its decay along the trajectories of the
system. In the current context, we are not interested in such a decay. Instead, our interest is focused on the
rate at which an infinitesimally small ball is expanded under the transition mapping ϕt. The smallness
implies that this mapping is well-approximated by the first two terms of its Taylor series, and so the rate
in question is nothing but the expansion rate due to the Jacobian matrix At(x) defined in Equation (15).
The deformation of a ball under a linear mapping A is described by the singular values of A; in particular,
the maximal of them is the norm of A and may be used in Equation (15). If P is a symmetric positive
definite matrix and Rn is endowed with the P-related norm ‖ · ‖P, these values are the square roots of
the solutions of the algebraic equation det[AᵀPA− P] = 0 repeated in accordance with their algebraic
multiplicities and ordered from large to small. With these in mind, we introduce a function v(·) : S→ R
with special properties whose description uses the t-step increment of this function:

∆tv(x) := v(ϕt(x))− v(x). (18)
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Assumption 4. There exist d ∈ [0, n], a bounded function v : S → R, constant Λ ≥ 0, and symmetric positive
definite matrix P ∈ Rn×n, such that

∆tv(x) +
bdc

∑
i=1

log2 λi(t, x) + (d− bdc) log2 λbdc+1(t, x) ≤ Λt, ∀x ∈ S, ∀t ∈ T : 1 ≥ t > 0, (19)

where λ1(t, x) ≥ · · · ≥ λn(t, x) are the roots of the algebraic equation

det [At(x)ᵀPAt(x)− λP] = 0 (20)

repeated in accordance with their algebraic multiplicities and ordered from large to small, and log2 0 := −∞.

In the discrete-time case, only t = 1 is concerned in Equation (19). In the continuous-time case,
Equation (19) is imposed only within the finite time horizon of duration 1.

With P = In, Equation (20) reduces to det [At(x)ᵀAt(x)− λIn] = 0 and λi(x, t) are the squares of
the standard singular values of the Jacobian matrix At(x). For a generic P, the roots λi(x, t) can also be
reduced to standard singular values. Indeed, let U be the symmetric and positive definite “square root” of
the symmetric and positive definite matrix P = U2. The solutions of Equation (20) are evidently identical
to those of det

[
U−1 At(x)ᵀUUAt(x)U−1 − λIn

]
= 0, and so the λi(x, t)’s are the squares of the ordinary

singular values of the matrix UAt(x)U−1. This matrix is similar to At(x), and so these two matrices
represent a common linear transformation in various bases. Thus, the role of P is, in fact, that of a linear
coordinate transformation in pursuit of ease of building Λ and v(·).

Assumption 4 will be utilized for assessment of both quantities that we are interested in. Specifically,
it will be used with d = 1 and arbitrary Λ to upper-estimate the growth rate (15) of the system; this estimate
is given by Λ. With Λ = 0 and some d ∈ [0, n], it will be used to establish an upper bound on the upper
box dimension of the invariant set S0; this bound is given by d.

In the case of a continuous time system, the next proposition provides an alternative to computing
the transition maps ϕt, t ∈ (0, 1] and checking infinitely many inequalities (19), each for its own t ∈ (0, 1],
when verifying Assumption 4. To state this proposition, we introduce the Jacobian matrix of the right-hand
side in Equation (2):

J(x) =
∂ f
∂x

(x).

Proposition 3. Let there exist d ∈ [0, n], a continuously differentiable bounded function w : S → R, constant
Γ ≥ 0, and a symmetric positive definite matrix P ∈ Rn×n, such that

ẇ(x) +
bdc

∑
i=1

γi(x) + (d− bdc)γbdc+1(x) ≤ Γ, ∀x ∈ S, (21)

where ẇ(x) = ∂w
∂x f (x) and γi(x) are the solutions of the algebraic equation

det (J(x)ᵀP + PJ(x)− γP) = 0 (22)

ordered from largest to smallest (γ1(x) ≥ · · · ≥ γn(x)) and repeated in accordance with their algebraic multiplicity.
Then, Assumption 4 holds with the particular P and d of Equation (22), v(x) = w(x)

ln 2 and Λ = Γ
ln 2 .

This result is proved in Appendix B.
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5.2. Analytical Upper Bound on the System’s Growth Rate and Related Conditions for Observability

Proposition 4. Let Assumptions 1–4 hold with d = 1 and Λ ≥ 0 in the last of them. Then, the growth rate (15) of
the system on S0 obeys the following bound:

g(S0) ≤
Λ
2

.

The proof of this proposition is provided in Appendix B.
By combining Propositions 2 and 4, we arrive at the following.

Theorem 1. Suppose that Assumptions 1–4 hold with d = 1 and Λ ≥ 0 in the last of them, and consider a
communication channel with capacity c. If

c >
Λd̄B(S0)

2
, (23)

the system {ϕt}t∈T is observable on the set S0 via this communication channel in the sense of Definition 2.

The observation schemes proposed in [39,40] can sometimes work under the channel rates smaller
than that given in Theorem 1. This improved rate comes at a price: these schemes are not robust against
losses in the communication channel.

In [7], the observer requires some feedback in the channel and a channel rate of the form n log2 L,
where L is the Lipschitz constant of the mapping ϕ1. The estimate (23) is less conservative, both because
L ≥ Λ/2 (if L is related to a norm of the form ‖ · ‖P) and n ≥ d̄B(S), with ≥7→> in some cases. Moreover,
the scheme from [7] does not enjoy robustness against losses in the communication channel.

Finally, Corollary 6.2.1 of [29] provides an estimate for the topological entropy by using a result
from [41], which is identical to our estimate of the rate c with identical assumptions.

5.3. Analytical Bounds on the Upper Box Dimension and Final Conditions for Observability

A drawback of Theorem 1 is that it uses the upper box dimension, whereas there are no general
techniques to compute this dimension analytically. To compensate for this drawback, we will use results
from [28,30] to replace the upper box dimension by its upper estimate in the form of another well-known
kind of dimension, i.e., the so-called Lyapunov dimension. The benefit from this is that the latter can be
estimated analytically.

We start by introducing the necessary definitions, including those of the Lyapunov dimension of a
map in a point, of a map over a set, and of a dynamical system. Next, we will recall the required results
from [28,30], and finally, we will provide the general results of this paper, which offers analytical conditions
for observability under a finite communication bit-rate.

Definition 4. For any t ∈ T, the singular value function of At(x) of order d ∈ [0, n] at point x ∈ Rn is defined as

ωd (At(x)) :=


1, d = 0,
σ1(At(x)) . . . σd(At(x)), d ∈ {1, .., n},
σ1(At(x)) . . . σbdc+1(At(x))d−bdc, d ∈ (0, n) \ {1, .., n− 1}.

Here σ1(A) ≥ . . . ≥ σn(A) are the singular values of the n× n-matrix A.

Definition 5 ([30]). For any t ∈ T, the Lyapunov dimension of the map ϕt(·) at the point x ∈ S is given by

dL(ϕt, x) := sup{d ∈ [0, n] : ωd (At(x)) ≥ 1}.
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Definition 6 ([30]). For any t ∈ T, the Lyapunov dimension of the map ϕt(·) with respect to the invariant set S0

is given by

dL(ϕt, S0) := sup
x∈S0

dL(ϕt, x) = sup
x∈S0

sup{d ∈ [0, n] : ωd (At(x)) ≥ 1}.

Definition 7 ([30]). The Lyapunov dimension of the dynamical system {ϕt}t≥0 with respect to the invariant set
S0, is defined as

dL({ϕt}t∈T , S0) := inf
t∈T

sup
x∈S0

dL(ϕt, x) = inf
t∈T

sup
x∈S0

sup{d ∈ [0, n] : ωd (At(x)) ≥ 1}.

For the sake of completeness, we provide the results that we borrowed from [28,30].

Theorem 2 ([28]). Let Assumptions 1–3 hold. Then,

d̄B(S0) ≤ dL(ϕ1, S0).

Corollary 1 ([28]). Let the hypotheses of Theorem 2 be true. Then for all t ∈ T : t ≥ 1,

d̄B(S0) ≤ dL(ϕt, S0).

The following proposition is essentially a reformulation of Theorem 2 from [30].

Proposition 5. Let Assumptions 1–3 be true. Suppose also that Assumption 4 holds with some d ∈ [0, n] and
Λ = 0. Then, for sufficiently large l > 0, the following inequality is valid:

dL({ϕt}t∈T , S0) ≤ dL(ϕl , S0) ≤ d. (24)

The proof of this proposition is provided in Appendix B.
In some cases, the inequalities in Equation (24) take place as equalities. Specifically, the following

proposition is valid, which is a reformulation of Proposition 3 and Corollary 3 from [30].

Proposition 6 ([30]). Suppose that at one of the equilibrium points of the dynamical system {ϕt}t∈T : xeq ≡
ϕt(xeq), the matrix A1(xeq) has the simple real eigenvalues λ1(xeq), . . . , λn(xeq). Let us consider a non-singular
matrix U, such that

UA(xeq)U−1 = diag(λ1(xeq), . . . , λn(xeq)) (25)

where |λ1(xeq)| ≥ · · · ≥ |λn(xeq)|, which matrix does exist thanks to the first assumption of the proposition.
Let ϕU : w→ Uϕ1(U−1w) be the transition mapping after the linear coordinate change. Suppose that Assumption 4
holds with some d and Λ = 0, and additionally, we have

dL(ϕU , Uxeq) = d.

Then, for any compact invariant set S0 3 xeq of {ϕt}t∈T , the following equation holds

dL({ϕt}t∈T , S0) = d.
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Now we are in a position to state the main result of the paper, which is clear from Theorem 1 and
Proposition 5.

Theorem 3. Let Assumptions 1–3 be true. Suppose also that Assumption 4 holds twice: first, with d = 1 and
some Λ = Λ̄ ≥ 0 and second, with Λ = 0 and some d = d̄ ∈ [0, n]. Consider a communication channel with
capacity c. If

c >
Λ̄d̄
2

, (26)

the system {ϕt}t∈T is observable on the set S0 via this communication channel in the sense of Definition 2.

6. Examples

In this section, we apply the previous theory to two celebrated prototypical chaotic systems: the
smoothened Lozi map and the Lorenz system. For the smoothened Lozi map, we will compute the
Lyapunov dimension and provide a bound on the channel rate above where the associated dynamical
system is observable via the channel at hand. We will then test this bound via computer simulations of
the proposed observer to show that the established theoretical rates are close to the actual practical rates.
For the Lorenz system, we borrow upper estimates of the Lyapunov dimension and the largest singular
value of the Jacobian from [39,42], respectively, to provide a bound on the channel rate by using Theorem 3.
Like in the previous example, we will also test this bound via computer simulations.

6.1. The Smoothened Lozi Map

The Lozi map [43,44] is a modification of the Henon map. The Lozi map is not continuously
differentiable, and so does not meet Assumption 3. We examine its continuously differentiable analog
introduced in [45] by smoothing the Lozi map at the fracture point. The respective smoothened map acts
according to the following formula

ϕα :

(
x1

x2

)
→
(

1− a fα(x1) + bx2

x1

)
, (27)

where a, b, and α� 1 are positive parameters and

fα(x) =

{
|x|, if |x| ≥ α;

x2

2α + α
2 , if |x| < α.

(28)

If 1 + a− b > 0 and α < (a + 1− b)−1, the smoothened Lozi map has an equilibrium

x+ =

(
1

1 + a− b
,

1
1 + a− b

)
.

If 1 − a − b < 0 and α < (a − b − 1)−1 in addition to the previous inequalities, there exists a
second equilibrium

x− =

(
1

1− a− b
,

1
1− a− b

)
.

In this section, we adopt the following.
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Assumption 5. The following inequalities hold:

a, b, α > 0,

1− a < b < 1,

α < (a + 1− b)−1.

This assumption implies that two equilibria exist, and that they are unstable. Moreover, b < 1 ensures
dL({ϕt

α}t≥0, K) < 2 for the associated discrete-time dynamical system. We start by giving more insight
into the Lyapunov dimension of the smoothened Lozi map.

Theorem 4. Let Assumption 5 hold. Then, for any compact invariant set S0 of the map (27), the following inequality
is valid

dL({ϕt
α}t∈T , S0) ≤ d := 2−

log2 b

log2

(√
a2 + 4b− a

)
− 1

(29)

and Assumption 4 holds with Λ = 0 and d = d. Moreover, if x+ ∈ S0, inequality (29) holds as equality:

dL({ϕt
α}t∈T , S0) = 2−

log2 b

log2

(√
a2 + 4b− a

)
− 1

.

The proof of this theorem is provided in Appendix C.
In order to use the observer from Section 3 for the smoothened Lozi map (27), we need to choose a

compact and invariant set S0. For the original (i.e., non-smooth) Lozi map, such a set exists whenever the
following conditions are met: [46]

0 < b < 1, (30)

a > 0, (31)

2a + b < 4, (32)

b <
a2 − 1
2a + 1

, (33)

a
√

2 > b + 2. (34)

Moreover, when the previous inequalities hold, the set S0 is the closure of the unstable manifold of
the unstable equilibrium x+. It is still unknown whether they guarantee the same for the smoothened Lozi
map (27). To the best of the authors’ knowledge, no conditions that guarantee the existence of such a set for
the map (27) are available in the literature. In the following, we will assume that Equations (30)–(34) are
sufficient to ensure the existence of a compact and invariant set S0. Our simulations with the parameters
a = 1.7 and b = 0.3, α = 10−5, which verify Equations (30)–(34), provide evidence, illustrated in Figure 2,
in favor of this hypothesis.
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Figure 2. Typical trajectory with 10,000 steps of the smoothened Lozi map with a = 1.7, b = 0.3, and
b = 10−5.

By combining Theorem 3 with Theorem 4 and an estimate of the largest singular value of the concerned
Jacobian given in [40], we arrive at the following.

Corollary 2. Let Assumption 5 hold, and let S0 be a compact invariant set of the smoothened Lozi map (27). Then,
the associated dynamical system is observable on the set S0 via any communication channel whose capacity

c >

[
2 log2

(√
a2+4b−a

2

)
− log2 b

] [
log2

(√
a2+4b+a

2

)]
log2

(√
a2+4b−a

2

) .

Proof. Theorem 13 from [18] yields that Assumption 4 holds with d = 1 and

Λ = 2 log2

(√
a2 + 4b + a

)
− 2.

Theorems 3 and 4 complete the proof.

Corollary 2 implies that for these parameters, the associated dynamical system is observable for
any channel rate above 1.2013 bits/s. To verify whether this lower bound on the channel rate can be
improved, we employed the observer from Section 3 whose parameters were experimentally tuned to
ensure a pre-specified exactness of observation ε during the first 1000 steps. The following values were
considered: ε = 0.5, 0.2, 0.1, 0.05. An accompanying objective of experimentally tuning was to minimize
the size of the alphabet K employed for data encoding, or, in other words, the channel capacity c∗ requested
by the observer. The best values of the capacity can be found in Table 1. It shows that for high exactness,
the system can be observed with a channel rate slightly below the theoretical estimate. For the lowest
exactness, the experimental rate barely exceeds the theoretical bound. However, in any case, this bound
seems to be pretty close to the experimental result.

Table 1. Results of the simulations on the smoothened Lozi map.

ε = 0.2 ε = 0.1 ε = 0.075 ε = 0.05

K (1) 1× 106 2× 106 2× 107 3.5× 107

c∗ (bits/s) 1.0924 1.1499 1.169431 1.212770
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6.2. The Lorenz System

In this section, we apply our previous theoretical results to the Lorenz system. The Lorenz system [47]
is a well-known example of a continuous-time system where, for certain values of its parameters, it displays
chaotic behavior. The system equations are:

ẋ1 = −σx1 + σx2,
ẋ2 = ρx1 − x1x3 − x2,
ẋ3 = x1x2 − βx3,

(35)

where σ, ρ, and β are positive parameters. If ρ < 1, the system has a single globally asymptotically stable
equilibrium: the origin. For ρ > 1, this equilibrium becomes a hyperbolically unstable saddle-point.
In addition, two equilibria appear. In this paper, we assume ρ > 1. We will apply our findings to the
system with a chaotic attractor as an invariant set. As is well-known [48], the conditions on the parameters
(σ > 0, β > 0, ρ > 1) suffice to ensure the presence of a compact invariant set. Moreover, to compute the
Lyapunov dimension, we adopt the following assumption which is taken from [42].

Assumption 6. Let the following hold:

ρ > 1,

ρ ≥ β3 − 2β2 + 6β2σ− 3βσ2 − 6βσ + β

3σ2 + 1,

σρ > (β + 1)(β + σ),

and either

σ2(ρ− 1)(β− 4) ≤ 4σ(σβ + β− β2)− β(β + σ− 1)2,

or the following equation has two distinct solutions, ν

(2σ− β + ν)2(β(β + σ− 1)2 − 4σ(σβ + β− β2) + σ2(ρ− 1)(β− 4)) + 4βν(σ + 1)(β(β + σ− 1)2

− 4σ(σβ + β− β2)− 3σ2(ρ− 1)) = 0 (36)

and {
σ2(ρ− 1)(β− 4) > 4σ(σβ + β− β2)− β(β + σ− 1)2

ν1 > 0
,

where ν1 is the largest root of Equation (36).

Any solution of the Lorenz system that starts at t = 0 can be extended on [0, ∞) [29], and thus has the
extendability property discussed just after Equation (2). Hence, the differential Equations (35) give rise to
a dynamical system on S := R3 in the sense of Section 2.1.
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Proposition 7. Let Assumption 6 hold, and let S0 be a compact invariant set of the Lorenz system. Then, this system
is observable on the set S0 via any communication channel whose capacity is:

c>

[√
(σ− 1)2 + 4ρσ− σ− 1

] [
3
√
(σ− 1)2 + 4ρσ− 2β + σ + 1

]
2 ln 2

[√
(σ− 1)2 + 4ρσ + σ + 1

] .

Proof. Since the right-hand side of the equations in Equation (35) are polynomial, Assumptions 1 and 3
hold by Proposition 1; Assumption 2 is true due to the choice of S0. It is easy to see by inspection of the
proof of Theorem 4.3 from [39] that the assumptions of Proposition 3 hold with d = 1,

Γ =
√
(σ− 1)2 + 4ρσ− σ− 1,

and the matrix P defined by (16) in [39]. So Proposition 3 guarantees that Assumption 4 holds with d = 1
and Λ = 1

2 ln 2

[√
(σ− 1)2 + 4ρσ− σ− 1

]
. As is shown in Section 4 from [42], Assumption 4 also holds

with Λ = 0 and

d = d = 3− 2(σ + β + 1)√
(σ− 1)2 + 4σρ + σ + 1

.

Theorem 3 completes the proof.

We have performed simulation studies similar to those carried out for the previous example. Starting
from various initial conditions in S0, we have simulated the observer for various chosen ε, each with its
own chosen δ and associated covering. In our simulations, we used σ = 10, ρ = 28, β = 8

3 , which verify
Assumption 6. For these parameters, the theoretical rate bound is c > 40.975 bit/s. The results of the
simulations can be seen in Table 2. Once again, it can be seen that the experimentally found rate is below
or very close to the theoretical rate. This confirms that our theoretical results correctly predict the rate.

Table 2. Results of the simulations on the Lorenz system.

ε = 0.2 ε = 0.1 ε = 0.075 ε = 0.05

K (1) 364, 758 714, 701 1, 448, 880 3.5× 107

c∗ (bits/s) 19.814 30.739 34.614 43.714

7. Conclusions

In this paper, we have presented an observer for both discrete and continuous-time nonlinear systems.
We have provided bounds on the necessary data-rates to implement the observer. We have proven
that this observer can be implemented on any channel with a finite delay parameter and a channel rate
c > Λd̄B(S0)/2, where Λ/2 is an upper bound on the largest singular value of the Jacobian and d̄B(S0),
the upper box dimension of the compact invariant set of the system. By combining results from several
other papers, we have provided an analytical bound to the channel rate that depends on the Lyapunov
dimension, rather than the upper box dimension. These analytical bounds have been computed for the
smoothened Lozi map and the Lorenz system. For the smoothened Lozi map, we computed the Lyapunov
dimension. Simulations of the observer on both of these systems have proven that the theoretical rate is
closely related to the actual rate required to implement the observer.
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Abbreviations

The following notations are used in this manuscript:

Z+: the set of nonnegative integers;
R+: the set of nonnegative real numbers;
|x|: the absolute value of x;
card(F): the cardinality of a set F;
bsc = maxt∈Z t, s.t. t ≤ s;
In: the identity matrix of dimension n× n;
Mᵀ: the conjugate transpose of the matrix M;
M−ᵀ: the inverse of the transpose of the matrix M;
‖x‖2 =

√
xᵀx;

‖x‖P =
√

xᵀPx, with P symmetric and positive definite;
Bδ(x): the ball in ‖·‖2 of radius δ centered in x;
BP

δ (x): the ball in ‖·‖P of radius δ centered in x.

Appendix A. Proofs of Section 4

In this appendix, we present the proofs of of the results stated in Section 4.

Appendix A.1. Proof of Lemma 3

We introduce the P-associated spectral norm of a n× n-matrix: ‖A‖P = maxx:‖x‖P=1 ‖Ax‖P. Based
on Equation (15), Lemma 2, and the remark following that lemma, we first pick δ0 > 0 such that Bδ0(x) ⊂
S ∀x ∈ S0 and

lim
t→∞

t−1 log2 sup
θ∈T:θ≤t

sup
x∈B

δ0 (y),y∈S0

∥∥∥∥∂ϕθ

∂x
(x)
∥∥∥∥

P
< ĝ.

Based on this inequality, we then pick ς ∈ T so that for all t ∈ T, t ≥ ς, we have∥∥∥∥∂ϕθ

∂x
(x)
∥∥∥∥

P
< 2ĝt if θ ∈ T, θ ≤ t, x ∈ Bδ0(y), y ∈ S0. (A1)

Now, we consider ε ≤ δ0, s+ ≥ ς, and δ = δ(ε, s+) defined in Equation (16). Let the context of
Equation (10) holds, i.e., x̂, x ∈ S0 and ‖x̂− x‖P ≤ δ(ε, s+) = ε2−ĝs+ ∈ (0, δ0]. Then, the segment
[x, x̂] = {(1− θ)x + θx̂ : 0 ≤ θ ≤ 1} lies in the balls Bδ0(x), and so in S by the choice of δ0. By using the
mean value inequality Theorem 9.19 from [49], we have for any θ ∈ T, θ ≤ s+,

.
∥∥∥ϕθ(x̂)− ϕθ(x)

∥∥∥
P
≤ sup

z∈[x,x̂]

∥∥∥∥∂ϕθ

∂x
(z)[x̂− x]

∥∥∥∥
P
≤ ‖x− x̂‖P sup

z∈[x,x̂]

∥∥∥∥∂ϕθ

∂x
(z)
∥∥∥∥

P
.
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Now, we note that the conditions from Equation (A1) are fulfilled for t := s+, x := z, and y := x̂. Hence∥∥∥ϕθ(x̂)− ϕθ(x)
∥∥∥

P
≤ ε2−ĝs+ × 2ĝs+ = ε.

Thus, we see that Equation (10) is true. It remains to extend the function δ(ε, s+) from ε ∈ (0, δ0], s+ ∈
T, s+ ≥ ς on all ε > 0 and s+ ∈ T by putting δ(ε, s+) := δ

(
min{ε, δ0}, max{s+, ς}

)
.

Appendix A.2. Proof of Proposition 2

We first pick ĝ > g(S0) and κ > 0 so close to g(S0) and 0, respectively, that

c > ĝ[d̄B(S0) +κ]. (A2)

We also pick a positive definite n × n-matrix P and borrow the function δ(ε, s+) from Lemma 3.
We also consider ε > 0 and s+ ∈ T so small and large, respectively, that Equation (16) holds. As was
remarked just after Definition 3, the set S0 can be covered by no more than δ−(d̄B(S0)+κ) δ-balls centered in
S0 for all small enough δ > 0. By reducing ε > 0, if necessary, we make δ = δ(ε, s+) small enough in this
sense irrespective of s+ ∈ T. Then, no more than

δ(ε, s+)−(d̄B(S0)+κ) = ε−(d̄B(So)+κ)2ĝ[d̄B(S0)+κ]s+

δ-balls centered in S0 are needed to cover S0. Hence, the integer floor of the right-hand side of this equation
is the function K(ε, s+) from e.4). So, the condition (13) for the correct operation of the observer from
Section 3 takes the form

−(d̄B(S0) +κ) log2 ε + ĝ[d̄B(S0) +κ](τpr + τtr
+) ≤ b(τpr)

⇔
ĝ[d̄B(S0) +κ]τtr

+ − (d̄B(S0) +κ) log2 ε

τpr + ĝ[d̄B(S0) +κ] ≤ b(τpr)

τpr .

By invoking Equations (8) and (A2), we see that the last inequality can be satisfied by picking τpr

which is large enough. Then, by picking s+ ≥ τpr + τtr
+ in accordance with Equation (12), we ensure the

correct operation of the observer. The statement ii) from Observation 1 completes the proof.

Appendix B. Proofs of Section 5

Appendix B.1. Proof of Proposition 3

For the dynamical system given by Equation (2), the matrices At(x) defined in Equation (15) obey the
equations

∂At

∂t
(x) = J[ϕt(x)]At(x), A0(x) = In. (A3)

Hence,
A∆(x) = In + ∆J(x) + ∆Mx(∆), ∀∆ > 0, (A4)
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where Mx(∆)→ 0 as ∆→ 0. Moreover, this convergence is uniform over x from any compact subset K of
S. Indeed, for x ∈ K, Equation (A3) yields that

Mx(∆) = ∆−1[A∆(x)− A0(x)]− J(x) = ∆−1
∫ ∆

0

∂At

∂t
(x) dt− J(x)

= ∆−1
∫ ∆

0

[
J[ϕt(x)]At(x)− J(x)

]
dt = ∆−1

∫ ∆

0

[
Ψ(t, x)]−Ψ(0, x)

]
dt,

where Ψ(t, x) := J[ϕt(x)]At(x). Due to the last claim of Proposition 1, the function Ψ(t, x) is continuous.
Hence it is uniformly continuous on the compact set [0, 1]× K and so

µK(∆) := max
t∈[0,∆],x∈K

‖Ψ(t, x)−Ψ(0, x)‖ → 0 as ∆→ 0.

It remains to note that for all x ∈ K,

‖Mx(∆)‖ ≤ ∆−1
∥∥∥∥∫ ∆

0

[
Ψ(t, x)−Ψ(0, x)

]
dt
∥∥∥∥ ≤ ∆−1

∫ ∆

0

∥∥∥Ψ(t, x)−Ψ(0, x)
∥∥∥ dt ≤ µK(∆).

By invoking Equation (A4), we see that

A∆(x)ᵀPA∆(x) = P + ∆ [J(x)ᵀP + PJ(x)] + ∆Qx(∆), (A5)

where

Qx(∆) := ∆J(x)ᵀPJ(x) + ∆Mx(∆)ᵀPMx(∆) + PMx(∆) + Mx(∆)ᵀP

+ ∆J(x)ᵀPMx(∆) + ∆Mx(∆)ᵀPJ(x)→ 0 as ∆→ 0

uniformly over x ∈ K due to the foregoing since the continuous function J(x) is bounded on the compact
set K. Let U = Uᵀ > 0 be the positive definite square root P = U2 of P. Equation (20) with t := ∆ can be
rewritten by virtue of Equation (A5) as follows

0 = det[A∆(x)ᵀPA∆(x)− λP] = det
{

∆ [J(x)ᵀP + PJ(x)] + ∆Qx(∆)− (λ̄− 1)P
}

m
det

{
[J(x)ᵀP + PJ(x)] + Qx(∆)− λ̄−1

∆ P
}
= 0

m
det

{ [
U−1 J(x)ᵀU + UJ(x)U−1]+ U−1Qx(∆)U−1 − λ̄−1

∆ In

}
= 0.

Thus we see that [λi(∆, x]− 1)/∆ are the ordinary eigenvalues of the symmetric matrix U−1 J(x)ᵀU +

UJ(x)U−1 + U−1Qx(∆)U−1, which goes to U−1 J(x)ᵀU + UJ(x)U−1 as ∆ → 0 uniformly over x ∈ K.
Meanwhile the eigenvalues continuously depend of the symmetric matrix by Corollary 6.3.8 [50].
It follows that

[λi(∆, x)− 1]/∆ = ηi(x) + ωi(x, ∆),

where ωi(x, ∆)→ 0 as ∆→ 0 uniformly over x ∈ K and ηi(x) are the solutions for the eigenvalue problem

det
[
U−1 J(x)ᵀU + UJ(x)U−1 − η In

]
= 0⇔ det

[
J(x)ᵀP + PJ(x)− ηP

]
= 0.
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The last equation is identical to Equation (22), and so ηi(x) = γi(x). By using the previous equations
together, we see that

λi(∆, x) = 1 + ∆γi(x) + ∆ωi(x, ∆), Ωi(K, ∆) := sup
x∈K
|ωi(x, ∆)| → 0 as ∆→ 0. (A6)

Now we invoke d from Proposition 3. For any n× n matrix B, we denote by λ̄i(B) the roots of the
algebraic equation

det[BᵀPB− λP] = 0 (A7)

enumerated from large to small, and put

ω̄d(B) := λ̄1(B) · · · λ̄bdc(B)[λ̄bdc+1(B)]d−bdc

By combining the generalized Horn inequality [29] with Lemma 8.1 in [39] (which relates to the roots
of Equation (A7) with the concept of the singular value of a matrix), we infer that ω̄d(BC) ≤ ω̄d(B)ω̄d(C)
for any n× n matrices B, C. It follows that for any sequence B0, . . . , Bm of such matrices

ω̄d(BmBm−1 · · · B0) ≤
m

∏
j=0

ω̄d(Bj).

Now we pick an arbitrary t > 0 and denote ∆r := t/r, tr(j) := j∆r for any natural r and j ∈ Z+. Since
the system is time-invariant, we have

At(x) = A∆r [ϕ
tr(r−1)(x)]A∆r [ϕ

tr(r−2)(x)] · · · A∆r [ϕ
tr(1)(x)]A∆r [ϕ

tr(0)(x)].

As a result, we see that in Equation (19),

A :=
bdc

∑
i=1

log2 λi(t, x) + (d− bdc) log2 λbdc+1(t, x) = log2 ω̄d[At(x)] ≤
r−1

∑
j=0

log2 ω̄d
{

A∆r [ϕ
tr(j)(x)]

}
=

r−1

∑
j=0

{bdc
∑
i=1

log2 λi[∆r, ϕtr(j)(x)] + (d− bdc) log2 λbdc+1[∆r, ϕtr(j)(x)]

}

=
bdc

∑
i=1

r−1

∑
j=0

log2 λi[∆r, ϕtr(j)(x)] + (d− bdc)
r−1

∑
j=0

log2 λbdc+1[∆r, ϕtr(j)(x)]

=
bdc

∑
i=1

r−1

∑
j=0

log2
{

1 + ∆rγi[ϕ
tr(j)(x)] + ∆rωi[ϕ

tr(j)(x), ∆r]
}

+(d− bdc)
r−1

∑
j=0

log2
{

1 + ∆rγbdc+1[ϕ
tr(j)(x)] + ∆rωbdc+1[ϕ

tr(j)(x), ∆r]
}

.
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We proceed by using the elementary inequality log2(1 + x) ≤ x/ ln 2 and the quantity Ωi(K, ∆)
defined in Equation (A6) for the compact set K := {ϕθ(x) : 0 ≤ θ ≤ t}, which contains all points of the
form ϕtr(j)(x), j = 0, . . . , r,

r−1

∑
j=0

log2
{

1 + ∆rγi[ϕ
tr(j)(x)] + ∆rωi[ϕ

tr(j)(x), ∆r]
}

≤ ∆r

ln 2

r−1

∑
j=0

γi[ϕ
tr(j)(x)] +

∆r

ln 2

r−1

∑
j=0

ωi[ϕ
tr(j)(x), ∆r] ≤

∆r

ln 2

r−1

∑
j=0

γi[ϕ
tr(j)(x)] +

r∆r

ln 2
Ωi(K, ∆r),

where r∆r = t by the definition of ∆r = t/r. Thus

A ≤ ∆r

ln 2

r−1

∑
j=0

bdc

∑
i=1

γi[ϕ
tr(j)(x)] + (d− bdc)γbdc+1[ϕ

tr(j)(x)]︸ ︷︷ ︸
B

+Ω(∆r), where

Ω(∆) :=
t

ln 2

[bdc
∑
i=1

Ωi(K, ∆) + (d− bdc)Ωbdc+1(K, ∆)

]
→ 0 as ∆→ 0.

Now we estimate B by employing Equation (21)

A ≤ ∆r

ln 2

r−1

∑
j=0

{
Γ− ẇ([ϕtr(j)(x)]

}
+ Ω(∆r) = t

Γ
ln 2
− 1

ln 2

r−1

∑
j=0

∆rẇ([ϕtr(j)(x)] + Ω(∆r).

Here, the sum is the Riemann sum of the continuous function ẇ([ϕθ(x)] of θ ∈ [0, t], and A does not
depend on r. So be letting r → ∞ and by invoking that ẇ(x) = ∂w

∂x (x) f (x), we get

bdc

∑
i=1

log2 λi(t, x) + (d− bdc) log2 λbdc+1(t, x) ≤ t
Γ

ln 2
− 1

ln 2

∫ t

0

∂w
∂x

[ϕθ(x)] f [ϕθ(x)] dθ

= t
Γ

ln 2
− 1

ln 2
{

w[ϕθ(x)]− w[ϕ0(x)]
}

Thus we have arrived at Equation (19) modulo the definitions of Λ = Γ/ ln 2 and v(x) = w(x)/ ln 2
from Proposition 3. It remains to note that the function v(x) is bounded since w(x) has this property by
the assumptions of Proposition 3.

Appendix B.2. Proof of Proposition 4

We first note that Equation (19) with d = 1 means that whenever x ∈ S, t ∈ T, 1 ≥ t > 0, we have

∆tv(x) + 2 log2 ‖At(x)‖P ≤ Λt. (A8)

We are going to show that for any natural r, Equation (A8) holds whenever t ∈ T, 0 < t ≤ r, arguing
by induction on r. As a result, we will show that Equation (A8) is valid for all t ∈ T, t > 0.
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For r = 1, this claim is initially given. Suppose that it is true for some r, and consider t ∈ T ∩ (0, r + 1].
If t ∈ T ∩ (0, r], Equation (A8) is true by the induction hypothesis. Let t > r. Then t = r + θ, where
θ ∈ T, 0 < θ ≤ 1. By putting y := ϕr(x) and invoking Assumption 1 and Equation (15), we see that

ϕt = ϕθ ◦ ϕr ⇒ At(x) = Aθ(y)Ar(x)⇒ ‖At(x)‖P ≤ ‖Aθ(y)‖P‖Ar(x)‖P

⇒ log2 ‖At(x)‖P ≤ log2 ‖Aθ(y)‖P + log2 ‖Ar(x)‖P;

∆tv(x) = v(ϕt(x))− v(x) = v(ϕr+θ(x))− v(ϕr(x)) + v(ϕr(x))− v(x) = ∆θv(y) + ∆rv(x),

where the start of the second line is due to Equation (18). By using these relations, we arrive at Equation (A8)
via adding Equation (A8) with t := θ to the inequality

∆rv(x) + 2 log2 ‖Ar(x)‖P ≤ Λr,

which holds by the induction hypothesis. Thus, Equation (A8) is true whenever t ∈ T, t > 0.
Now we introduce a finite upper bound v ≥ |v(x)| ∀x ∈ S on the bounded function |v(·)|. Let x ∈ S.

Then ϕt(x) ∈ S and so Equation (18) yields that |∆tv(x)| ≤ 2v. By Equation (A8),

log2 ‖At(x)‖P ≤ Λt/2 + v.

As was remarked, g(S0) does not depend on the matrix norm ‖ · ‖ in Equation (15). Meanwhile,
Lemma 2 ensures that x ∈ Bδ(y), y ∈ S0 ⇒ x ∈ S for all small enough δ > 0. Hence

g(S0) = lim
δ→0

lim
t→∞

t−1 sup
θ∈T:θ≤t

sup
x∈Bδ(y),y∈S0

log2 ‖Aθ(x)‖P

≤ lim
δ→0

lim
t→∞

t−1 sup
θ∈T:θ≤t

sup
x∈Bδ(y),y∈S0

[Λθ/2 + v] = Λ/2.

Appendix B.3. Proof of Proposition 5

Proof. From Assumption 4, we have that λi(t, x) are the roots of the equation

det(At(x)ᵀPAt(x)− λP) = 0. (A9)

Since P is positive definite and symmetric, we can decompose it as

P = UᵀU,

where U is nonsingular. Equation (A9) can thus be rewritten as

det(At(x)ᵀUᵀUAt(x)− λUᵀU) = 0.

If we premultiply with U−ᵀ and postmultiply with U−1, the solutions λi are unchanged and the
equation becomes

det(U−ᵀAt(x)ᵀUᵀUAt(x)U−1 − λIn) = 0.
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We thus know that λi(t, x) are the eigenvalues of the matrix U−ᵀAt(x)ᵀUᵀUAt(x)U−1 or the square of
the singular values of the matrix UAt(x)U−1. From Equation (4) with the same d and Λ = 0, we have that

∆tv(x) +
bdc

∑
i=1

log2 λi(t, x) + (d− bdc) log2 λd+1(t, x) < 0, ∀x ∈ S, t ∈ T : 0 < t ≤ 1,

which thus also implies that

1
log2 e

(
1
2

∆tv(x) +
bdc

∑
i=1

1
2

log2 λi(t, x) +
(d− bdc)

2
log2 λd+1(t, x)

)
< 0, ∀x ∈ S, t ∈ T : 0 < t ≤ 1,

where e is Euler’s number. This can be rewritten as

1
2 log2 e

∆tu(x) +
bdc

∑
i=1

ln
√

λi(t, x) + (d− bdc) ln
√

λd+1(t, x) < 0, ∀x ∈ S, t ∈ T : 0 < t ≤ 1.

We now apply Theorem 2 from [30] with t = 1, S = U, λi(x, S) =
√

λi(1, x) and V(x) = 1
2 log2 e v(x)

to obtain

dL({ϕt}t≥0, S0) ≤ dL(ϕT , S0) ≤ d,

for T sufficiently large.

Appendix C. Proofs of Section 6

Proof of Theorem 4

Proof. Proposition 5 yields that to prove the first sentence from the conclusion of Theorem 4, it suffices
to justify Assumptions 1–3 and Assumption 4 with Λ = 0 and d := d̄ defined in Equation (29) for the
discrete-time dynamical system associated with the smoothened Lozi map. Assumptions 1–3 do hold
since the map (27) is smooth and S0 is a compact invariant set by the assumptions of Theorem 4. It remains
to check Assumption 4, where t = 1 in Equation (19) since we are in discrete time now.

We are going to justify Assumption 4 with P = diag{1, b}. Since we have that

A(x) =

(
−a f ′α(x) b

1 0

)
,

Equation (20) becomes

det (A(x)ᵀPA(x)− λP) = det

[(
a2 ( f ′α(x))2 + b −a f ′α(x)b
−a f ′α(x)b b2

)
−
(

λ 0
0 bλ

)]
= 0. (A10)

To simplify the notations, we introduce f̄ := f ′α(x). Equation (A10) admits two solutions

λ1(x) =
1
4

(√
a2 f̄ 2 + 4b + a| f̄ |

)2
, λ2(x) =

1
4

(√
a2 f̄ 2 + 4b− a| f̄ |

)2
. (A11)
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Since by Equation (28),

1 ≥ | f̄ | ≥ 0, (A12)

given Assumption 5, we know that maxx∈S0 λ1(x) is always larger than one (in particular, for all |x| ≥ α,
f̄ = 1). This implies that dL({ϕt

α}t∈T , S0) > 1 and that 1 < d < 2. Note that the latter inequality is strict
as a result of Assumption 5. After some computations and due to Equation (A11), the left-hand side of
Equation (19) becomes

log2(λ1(x)) + (d− bdc) log(λ2(x))

= 2
[

1− (d− bdc) + log2 b + (d− bdc − 1) log2

(√
a2 f̄ 2 + 4b− a| f̄ |

)]
.

Which, using Equation (A12) can be upper bounded in the following way

log2(λ1(x)) + (d− bdc) log(λ2(x)) ≤ 2
[
1− (d− bdc) + log2 b + (d− bdc − 1) log2

(√
a2 + 4b− a

)]
.

To satisfy Assumption 4 with some d and Λ = 0, we are looking for d− bdc such that the left-hand
side of the previous equation is negative. We thus obtain the following sufficient condition

2
(

1− (d− bdc) + log2 b + (d− bdc − 1) log2

(√
a2 + 4b− a

))
< 0

which, using Assumption 5, can be rewritten as

(d− bdc) > 1−
log2 b

log2

(√
a2 + 4b− a

)
− 1

.

Note that from the conditions from Assumption 5, the following is always true 0 < (d− bdc) < 1.
Since Assumption 4 with d = d̄ and Λ = 0 is verified, the proof is completed by applying Proposition 5
which yields

dL({ϕt
α}t≥0, S0) ≤ d̄ = 2−

log2 b

log2

(√
a2 + 4b− a

)
− 1

.

To prove the second part of this theorem, we will use Proposition 6. We consider the following
diagonalizing coordinate change matrix

U =

 1√
a2+4b

a+
√

a2+4b
2
√

a2+4b
−1√

a2+4b
−a+

√
a2+4b

2
√

a2+4b


which is nonsingular and well-defined for all parameters satisfying Assumption 5.
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To compute dL(ϕU , Uxeq), we first compute

λ1(x+) =

√
a2 + 2b + a

√
a2 + 4b

2
, (A13)

λ2(x+) =

√
a2 + 2b− a

√
a2 + 4b

2
. (A14)

From Assumption 4 with d = d̄ and Λ = 0, we have λ1(x+) > 1 and λ2(x+) < 1 which means we
have d̄ ∈ [1, 2). We thus compute

dL(ϕU , Ux+) = sup{d ∈ [0, n] : ωd(UA(Ux+)U−1) > 1}

⇔ λ1(x+) [λ2(x+)]
(d̄−bd̄c) = 1.

Using Equations (A13) and (A14), and after some computations, we obtain that

d̄−
⌊
d̄
⌋
=

− log2

(√
a2+2b+a

√
a2+4b

2

)
log2

(√
a2+2b−a

√
a2+4b

2

) .

This latter equation can be rewritten as

d̄−
⌊
d̄
⌋
= 1−

log2 b

log2

(√
a2 + 4b− a

)
− 1

.

Since we assumed x+ ∈ S0, all conditions of Proposition 5 are verified. We thus obtain

dL({ϕt
α}t≥0, S0) = 2−

log2 b

log2

(√
a2 + 4b− a

)
− 1

.
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