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Abstract: Presently, many users are involved in multiple social networks. Identifying the same user in
different networks, also known as anchor link prediction, becomes an important problem, which can
serve numerous applications, e.g., cross-network recommendation, user profiling, etc. Previous
studies mainly use hand-crafted structure features, which, if not carefully designed, may fail to reflect
the intrinsic structure regularities. Moreover, most of the methods neglect the attribute information
of social networks. In this paper, we propose a novel semi-supervised network-embedding model to
address the problem. In the model, each node of the multiple networks is represented by a vector for
anchor link prediction, which is learnt with awareness of observed anchor links as semi-supervised
information, and topology structure and attributes as input. Experimental results on the real-world
data sets demonstrate the superiority of the proposed model compared to state-of-the-art techniques.

Keywords: anchor link prediction; network embedding; attributed network

1. Introduction

In recent years, with the popularity of various social network platforms, a user is usually involved
in multiple social networks simultaneously [1]. Due to the function diversity, users in different
platforms may express their opinions on various topics, share distinct types of content or follow
different users. For example, a user may use Facebook to follow and share entertainment news, and
use Quora to gain and share knowledge. The social network platforms profile users from different
points of view. If we can identify the same user in different social networks, her profile can be better
characterized for a more accurate classification or recommendation. The problem of identification of
the same users across multiple networks is known as anchor link prediction, where the associations
are termed as anchor links [2].

Despite great application values, solving the problem is challenging, because of the complex
network structures, the rich attribute information, and few observed anchor links. Early studies mainly
solve the problem by exploiting user profiles (e.g., user name, location, gender) [3,4], demographical
features [5] or user generated contents, such as, tweets, posts and reviews [6]. Recently, network
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structures are also leveraged to address the problem. Particularly, methods of this type rely on
hand-crafted network features. For example, match degree can be computed using the number of
shared identified friends [7], in/out neighbors and in/out degree [8], and Dice coefficient [9]. However,
the hand-crafted features only partially reflect the intrinsic structure regularities of networks, thereby
producing less satisfactory performance for anchor link prediction.

Recently, network-embedding techniques have been used to learn latent network features, which
can better preserve the structural regularity of a network [10,11]. To match users in different social
platforms, Liu et al. [12] proposed IONE. The algorithm learns the embedding of a user by predicting
her network contexts, i.e., the follower-ship/followee-ship, where observed anchor links are used
to transfer contexts between networks. Man et al. [13] proposed a supervised model PALE, which
maps each user into a low dimension space for the identification of anchor links. However, the two
models use only the network topology without considering node attributes, which are not applicable
to attributed networks. Moreover, in practice the observed anchor links are very few and thus
a semi-supervised solution is quite advisable and desirable.

In this paper, we propose a novel semi-supervised model (APAN) to tackle the Anchor lLink
Prediction across Attributed Networks. The key idea of APAN is learning the embedding of each
network to represent its users into a low-dimensional space. On the one hand, the low-dimensional
representation of each user is used to predict her contexts in the network, i.e., the random-walk
sequences generated via network topology and the neighboring nodes that share same attribute
information. On the other hand, it is leveraged to predict the anchor links (semi-supervised
information) between networks. By doing so, the nodes (users) that have similar structure contexts
and attributed information will be close in the embedding space. Also, the anchor link predictor is
simultaneously trained as the embeddings are learnt. The real-world data sets are used to evaluate
the performance of the proposed APAN model. Experimental results show that APAN outperforms
state-of-the-art competitors.

2. Related Work

Recently, network embedding has aroused a lot of research interest. Network embedding
aims to learn low-dimensional representations of network nodes, while effectively preserving
network topology structure, node content, and other side information. Inspired by the idea of word
representation learning [14], Perozzi el al. [10] developed DeepWalk to learn the representations of
nodes in a network, which can preserve the neighbor structures of nodes. Node2vec [15] further
exploits a biased random-walk strategy to capture more flexible contextual structure. Network
structures include first-order structure and higher-order structure. LINE [11] is proposed to preserve
the first-order and second-order proximities. The first-order proximity is the observed pairwise
proximity between two nodes. The second-order proximity is determined by the similarity of the
neighbors of two nodes. Besides network structures, node content is another important information
source for network embedding. With content information incorporated, the learnt node representations
are expected to be more informative. Yang et al. [16] propose TADW that takes the rich information
(e.g., text) associated with nodes into account when they learn the low-dimensional representations
of nodes. Pan et al. [17] propose TriDNR which is a coupled deep model that incorporates network
structure, node attributes, and node labels into network embedding. LANE [18] is also proposed
to incorporate the label information into the attributed network embedding. The task of linking
users accounts on multiple social networks, is a challenging task, because social network structures
for a specific user can be rather diverse on different social media platforms. Since the traditional
network-embedding methods are designed for single network, they cannot handle the anchor link
prediction problem. Moreover, the network embeddings are usually learnt in an unsupervised manner,
and hence cannot leverage the observed anchor links in anchor link prediction.

Conventional methods for finding correspondence between networks can be mainly divided into
two categories. The first category is called network alignment. It works in an unsupervised manner
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and does not leverage the existing correspondence. Specifically, the type of methods aligns nodes by
finding structural similarity between nodes across networks. Network alignment has been widely used
in many fields such as bioinformatics [19], computer vision [20], database matching [21], etc. However,
ignoring the observed correspondence is obviously a waste of knowledge. The second category belongs
to supervised methods, which learns a predictor relying on the observed anchor links [22]. Most of
studies train the predictor directly using the hand-crafted network features, such as common neighbors
[7], degree [8], clustering coefficient [9], etc. However, the hand-crafted features may not capture all
the intrinsic structural regularities of the networks, thereby producing less satisfactory performance.

With the advancement of deep learning, network-embedding techniques are developed to identify
the same users in different platforms. For example, Liu et al. [12] proposed IONE algorithm, which
embeds users into a low-dimensional space for anchor link prediction. Man et al. [13] proposed an
embedding and matching-based model PALE. However, different from our approach, the network
embedding in PALE is purely unsupervised and does not leverage observed anchor links when
encoding the network structure into embeddings. Moreover, the two approaches cannot make use of
network attributes. Recently, Zhang et al. [23] proposed an attributed network alignment algorithm,
called FINAL. The method leverages the node attribute information to guide the topology-based
alignment. In FINAL, a nice alignment consistency principle is designed and developed, i.e., the
alignments between two pairs of nodes across the networks should be “similar/consistent” with each
other. However, this algorithm works in an unsupervised manner and cannot leverage the observed
anchor links.

3. Methods

3.1. Problem Formulation

Assume we are given an attributed network G = (X, E, A), where X = {x1, . . . , xN} is a set of
nodes, E is the adjacent matrix, Eij is the weight of the edge between nodes xi and xj. If there is
a connection between xi and xj, Eij = 1, otherwise Eij = 0. A = {a1, . . . , aN} denotes the attributes of
N nodes. The scenario considered here is that one user has two accounts registered on two different
social networks, and the two accounts are connected through an anchor link. Without loss of generality,
we use one network as source network and the other as target network, denoted with Gs and Gt

respectively. As shown in the Figure 1, some anchor links are already known between Gs and Gt.
For each node that has no anchor links in the source network Gs, the purpose of this paper is to find
its corresponding node in the target network Gt. This can be formalized as the following anchor link
prediction problem:

Definition 1. (Anchor Link Prediction) Given two attributed networks Gs = (Xs, Es, As) and Gt =

(Xt, Et, At), and the existing anchor links T = {(xs, xt)|xs ∈ Gs, xt ∈ Gt}. The anchor link prediction
problem is to predict potential anchor links across Gs and Gt.

As aforementioned in the introduction, our approach consists of two important components: one
is the attributed network embedding and the other is the semi-supervised anchor link predictor. Next,
we will introduce our APAN approach by elaborating them, respectively.
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Figure 1. The anchor link prediction problem.

3.2. Learning Attributed Network Embedding

Skip-gram is a popular framework of embedding representation learning [14], which was first
developed to capture the word semantic correlations. Given a word and its context {(xi, xc)}, xi denotes
the current word, and the context xc is a neighbor word around xi within a fixed window size.
Skip-gram uses the embedding vector ei of word xi as input feature, and then predicts its context xc by
minimizing the following log loss function:

− ∑
(xi ,xc)

log P(xc|xi) = − ∑
(xi ,xc)

(
wT

c ei − log ∑
c′∈C

exp(wT
c′ei)

)
(1)

where C denotes the entire context space, which includes all the vocabularies of the corpus; {wc}c∈C
are the model parameters.

Inspired by Skip-gram, Perozzi et al. [10] developed DeepWalk to model the node correlation
from the topology point of view. In DeepWalk, the embedding vector of a node is used to predict its
network context, i.e., the node sequences generated by random walk regarding the node. Specifically,
in each training node pair (xi, xc), xi is the current node, and the context xc is each of the neighboring
nodes within a fixed window size regarding xi in the random-walk sequences. Here the context space
C includes all the nodes in the network.

Next, we introduce how to extend the idea of DeepWalk for attributed network embedding. Let
first assume that the embeddings for the source network Gs and the target network Gt are learnt
independently here (In next subsection, we will discuss how to build connections between them).
Suppose each node in the two networks is embedded into an e-dimensional vector.

To design the attributed network-embedding algorithm, we first need to understand the
optimization strategy for Equation (1). A direct optimization to the objective is costly, because
the second term must be normalized over the entire context space C, which is huge. In [14],
a negative sampling strategy is used to tackle the problem. Specifically, the method re-casts the
normalization-based optimization problem into a sampling-based binary classification problem.
Assume (xi, xc, γ) is a random sample drawn from a given probability distribution P(xi, xc, γ). Here
xi and xc represent the current node and a context, respectively. γ = +1 represents (xi, xc) is a positive
pair, where xc is a node in the context of xi. γ = −1 represents (xi, xc) is a negative pair that xc is not
in the context of xi. Given (xi, xc, γ), we aim to minimize the cross-entropy loss to the binary class γ:

− I(γ = 1) log σ(wT
c ei)− I(γ = −1) log σ(−wT

c ei) (2)
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where σ is the sigmoid function, defined as σ(x) = 1/(1+ e−x); I(·) is the indicator function; when the
argument is true it outputs 1, otherwise it outputs 0. As the samples follow the distribution P(xi, xc, γ),
the overall loss function can thus be expressed as:

− E(xi ,xc ,γ) log σ(γwT
c ei) (3)

where E indicates the expectation operator.
In our attributed network-embedding scenario, the key issue now becomes generating samples

with the distribution P(xi, xcγ). We give the concrete implementation in Algorithm 1. Two types of
contexts are sampled in the algorithm. The first type is based on the network structure and the second
type based on the node attributes A. By doing so, the learnt embeddings not only reflect the structure
context, but also the attribute context.

Algorithm 1 Sampling context algorithm
Input: Network G, node attributes A, parameters r1, r2, q, e and d;
Output: (xi, xc, γ);

1: if random1 < r1 then
2: γ← +1;
3: else
4: γ← −1;
5: end if
6: if random2 < r2 then
7: Uniformly sample a random-walk sequence S of length q;
8: if γ = +1 then
9: Under the condition |i− c| < d, sample (xi, xc) in S;

10: else
11: Sample xc in C;
12: end if
13: else
14: if γ = +1 then
15: Uniformly sample (xi, xc) which satisfies ai = ac;
16: else
17: Uniformly sample (xi, xc) which satisfies ai 6= ac;
18: end if
19: end if

In the algorithm, we use a parameter r1 ∈ (0, 1) to control the proportion of positive and negative
nodes, and use a parameter r2 ∈ (0, 1) to control the ratio of two types of contexts. As shown in
lines 1∼5, we first determine whether to sample a positive sample or negative sample, in terms of r1.
Then in line 6, we generate a random number to determine whether to sample from the structure or
the attribute context. If the number is smaller than r2, structure context is chosen. We first produce
a random-walk sequence S in line 7. If our previous decision is to sample a positive example, we
produce the context xc such that it is within the window size of d regarding xi (lines 8∼10), otherwise
we randomly choose an example from C (lines 10∼12). When sampling attribute context (lines 13∼19),
positive examples are randomly chosen from the nodes that have the same attribute values, while
negative examples are from the ones that have different attribute values.
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3.3. Semi-Supervised Anchor Link Prediction

In the subsection, we introduce how to use the observed anchor links for the embedding learning.
Given a potential anchor link pair (xs

l , xt
n) ∈ T and the corresponding embedding vectors es

l and et
n,

the probability that the anchor link exists can be expressed as:

P(xs
l , xt

n) = σ(es
l
T · et

n) = 1/(1 + e−es
l

T ·et
n) (4)

where σ is sigmoid function. To capture more complex associations, we can build a k layers
feed-forward neural network as our predictor. The k-th layer hk of the neural network is a nonlinear
function of the previous hidden layer hk−1, defined as

hk(e) = ReLU(Wkhk−1(e) + bk) (5)

where ReLU(x) = max(x, 0), Wk and bk are parameters of k-th layer, and h0(e) = e. By using the
complex predictor, Equation (4) is rewritten as:

P(xs
l , xt

n) = σ(hk(es
l )

T · hk(et
n))

= 1/(1 + e−hk(es
l )

T ·hk(et
n))

(6)

Combining Equation (6) with Equation (3), we obtain the following objective function for the
anchor link prediction problem:

− ∑
(xs

l ,xt
n)∈T

log P(xs
l , xt

n)− λ1E{(xs
i ,xs

c ,γ)|xs
i ,xs

c∈Gs} log σ(γws
c

Tes
i )

− λ2E{(xt
i ,x

t
c ,γ)|xt

i ,x
t
c∈Gt} log σ(γwt

c
Tet

i)

(7)

where λ1 and λ2 are two parameters. In Equation (7), the first item is the loss of anchor link prediction,
the second item is the loss of context predictions in source network Gs, and the third item is the loss
of context predictions in target network Gt. The network structure of APAN algorithm is shown in
Figure 2.
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Figure 2. APAN network architecture.

By optimizing Equation (7), we ultimately obtain the embedding vectors e of all nodes in the
source network Gs and the target network Gt. When predicting anchor links, given a node xs

l in the
source network Gs, we can calculate the probabilities that xs

l has anchor links with all the nodes in the



Entropy 2019, 21, 254 7 of 13

target network Gt, by using Equation (6). Sorting them in terms of the probabilities offers us a list of
potential anchor links.

When training the proposed APAN, a stochastic gradient descent in the mini-batch mode is
adopted [24]. In each iteration, a set of node pairs in the anchor links set T is first sampled and
a gradient calculation is performed to optimize the loss of anchor link prediction. Subsequently, we
sample a set of context (xs

i , xs
c, γ) in the source network Gs and perform a gradient calculation to

optimize the loss function of predicting context in Gs. Similarly, we sample a set of context (xt
i , xt

c, γ)

in the target network Gt and perform a gradient calculation to optimize the loss of predicting context
in Gt. The model training procedure is implemented as Algorithm 2.

Algorithm 2 Model training

Require: Attributed networks Gs and Gt, parameters λ1 and λ2, batch sizes K1, K2 and K3;
1: for it = 1→ Max_It do

2: Sample a group of node pairs of size K1 in the anchor links set T;
3: Let R1 = − 1

K1
∑(xs

l ,xt
n)

log P(xs
l , xt

n), perform a gradient calculation on R1;
4: Sample a group of contexts (xs

i , xs
c, γ) of size K2 in the source network Gs;

5: Let R2 = − λ1
K2

∑(xs
i ,xs

c ,γ) log σ(γws
c

Tes
i ), perform a gradient calculation on R2;

6: Sample a group of contexts (xt
i , xt

c, γ) of size K3 in the target network Gt;
7: Let R3 = − λ2

K3
∑(xt

i ,x
t
c ,γ) log σ(γwt

c
Tet

i), perform a gradient calculation on R3.
8: end for

4. Experiments

In this section, we conduct experiments to compare the proposed APAN algorithm with
state-of-the-art techniques.

4.1. Datasets and Baselines

In the experiments, we use three real-world attributed networks, which are Flickr and Lastfm
datasets from [25], and Douban dataset from [26]. Following [23], we adopt the following ways to
construct our datasets (Table 1).

Table 1. Statistics of the datasets.

Datasets #Nodes #Edges

Flickr 4935 15,884
Lastfm 4496 10,628

Douban Online 3906 16,328
Douban Offline 1118 3022

Flickr vs. Lastfm. We extract the subnetworks from Flickr and Lastfm, which contain 4935 nodes
and 4496 nodes, respectively. The edges in the two networks are who-follow-whom relationship.
We consider the gender of a user as node attribute. For the users whose gender information is missing,
we fill in the values of ’unknown’.

Douban Online vs. Douban Offline. The offline network is constructed according to users’
co-occurrence in social gatherings. There is an edge in the offline network between two users if they
participate in the same offline events more than ten times. The constructed offline network includes
1118 users and we extract a subnetwork with 3906 nodes from the provided online network that
contains all these offline users. We treat the location of a user as the node attribute.

We compare APAN algorithm with the following baselines:

• PALE [13]: This algorithm is a network-embedding-based anchor link prediction algorithm. PALE
employs network embedding with awareness of observed anchor links as supervised information
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to capture the structural regularities and further learns a stable cross-network mapping for anchor
link prediction.

• ULink [27]: ULink is a projection algorithm designed based on latent user space modelling. They
build the latent user space through projection matrix.

• FINAL [23]: FINAL is proposed to solve the attributed network alignment problem. It leverages
the node attribute information to guide (topology-based) alignment process.

• APAN-N: This algorithm is a variant of our proposed APAN algorithm. When predicting context
using negative sampling, APAN-N only predicts context based on network structure and does
not use nodes’ attributes.

In the comparison, we implemented the PALE method and use the original implementations of
ULink and FINAL methods.

For the anchor link prediction problem, the widely used evaluation metric is to compare the top-k
ranking list of a potential matching account. The higher the rank of the ground-truth account in the
list, the better. In this paper, we evaluate all methods by computing top-k precision [27] for each test
user as follows:

h(x) =
k− (hit(x)− 1)

k
(8)

where hit(x) represents the position of ground-truth account in the returned top-k users. We report
the average precision of all the tested users xi as the result: ∑N

i=1 h(xi)/N, which is denoted by
“Hit-precision”.

In our experiments, we randomly partition the ground-truth anchor links into five groups and
conduct five-fold cross-validation and report the average results. We set the model parameters to
r1 = 2/3, q = 10, e = 50, d = 3, K1 = 1000, K2 = 2000 and K3 = 2000. We found that our model is not
very sensitive to these parameters. We tune r2, λ1 and λ2 via cross-validation method.

4.2. Experimental Results

Table 2, Figures 3 and 4 show the Hit-precision@k results of different compared algorithms with
different k. From the Figures, we can easily judge the performance trend when varying the number
labeled data, whereas the detailed performed can be easily observed from the table. As can be seen
from the experimental results, APAN and APAN-N achieve better performance than the baseline
methods in most cases. Specifically, APAN outperforms PALE, ULink and FINAL by more than
6%. For instance, the Hit-precision of APAN is 19.42% while the result of PALE is 13.65% when
k equals to 10 for Flickr-Lastfm networks; the Hit-precision of APAN is 46.53% while the result of
PALE is 39.98% when k equals to 1 for Douban online-offline networks. Moreover, we observe that
APAN which uses node attributes yields better performance than APAN-N that leverages only the
network structure. The observation suggests that APAN can effectively exploit network structure
and node attributes. This implies that the node attributes and network structure contain useful
information to give a comprehensive view about the user. An effective model for network data
should thus consider both the node attributes and network structure in the anchor link prediction
task. Also, we find that the results of APAN and APAN-N are very close. This is because there are
many missing values in the node attributes. In the datasets, the gender and the location are used as
attributes of the nodes. For the users whose attributes information are missing, we fill in the values of
’unknown’. The loss of attribute information degenerates the performance of APAN method. We find
that network-embedding-based methods APAN, APAN-N, and PALE deliver better results than the
other methods. In particular, an accuracy improvement of 17% against other algorithms is observed
when k = 5 in Douban online-offline networks (PALE with Hit-precision 61.66% versus ULink with
43.93%). The observation demonstrates the effectiveness and merits of network-embedding methods.
Compared to the conventional approaches, network-embedding-based methods represent each node
into a continuous real-value vector. By doing so, the network structure regularities and attribute
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information can be summarized into the vector, which is better than the hand-crafted features in
conventional methods.

Table 2. Performance of different models on real datasets (%), boldface indicates the best performance.

Dataset Evaluation Metric APAN APAN-N PALE ULink FINAL

Hit-p@1 9.51 ± 2.82 10.63 ± 1.17 5.53 ± 1.57 4.10 ± 1.22 2.43 ± 0.90
Hit-p@5 15.35 ± 2.58 16.12 ± 2.25 9.91 ± 2.73 7.79 ± 2.06 7.10 ± 0.60

Hit-p@10 19.42 ± 2.73 18.93 ± 2.37 13.65 ± 3.00 12.07 ± 1.92 12.18 ± 1.76
Flickr-Lastfm Hit-p@15 22.18 ± 2.70 21.75 ± 2.41 16.70 ± 2.81 15.55 ± 3.24 15.95 ± 2.45

Hit-p@20 24.98 ± 2.57 24.48 ± 2.41 19.57 ± 2.51 18.20 ± 2.91 19.28 ± 3.04
Hit-p@25 27.57 ± 2.25 26.92 ± 2.23 22.42 ± 2.20 21.42 ± 2.88 22.51 ± 3.28
Hit-p@30 30.09 ± 1.94 29.36 ± 2.04 25.08 ± 2.07 24.93 ± 1.81 25.65 ± 3.63

Hit-p@1 46.53 ± 2.80 47.49 ± 2.98 39.98 ± 3.30 24.95 ± 3.05 25.93 ± 2.17
Hit-p@5 66.31 ± 3.23 67.12 ± 1.29 61.66 ± 2.04 43.93 ± 4.03 43.90 ± 1.20
Hit-p@10 76.91 ± 3.09 76.38 ± 0.95 71.72 ± 2.06 50.95 ± 2.74 55.19 ± 2.27

Douban online-offline Hit-p@15 81.84 ± 2.79 81.54 ± 0.98 77.49 ± 2.24 54.62 ± 1.85 62.44 ± 2.81
Hit-p@20 83.76 ± 2.39 83.43 ± 1.00 81.25 ± 2.24 59.94 ± 2.36 67.86 ± 2.77
Hit-p@25 86.62 ± 2.12 85.55 ± 1.12 83.99 ± 2.17 66.11 ± 3.22 72.08 ± 2.64
Hit-p@30 87.12 ± 1.99 87.09 ± 1.03 85.98 ± 2.14 69.92 ± 4.39 75.49 ± 2.34
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Figure 3. The average Hit-precision@k performance on real datasets. (a) Flickr-Lastfm networks;
(b) Douban online-offline networks.
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Next, we compare APAN-N and PALE algorithms, which are all based on network-embedding
learning and use only network structure. We can see APAN-N performs better than PALE in most
cases. APAN-N achieves an accuracy improvement of 6% against PALE when k equals to 5 for Douban
online-offline networks. There are two main reasons. On the one hand, the proposed APAN-N works
in a semi-supervised manner. During the training phase, three objectives, namely, the anchor link
prediction, the context prediction in the source network and the one in the target network, are iterated.
Hence, the produced node embeddings incorporate both the supervised and unsupervised information.
However, PALE breaks up the network-embedding learning and exist anchor link prediction into two
independent phases. As a result, the node embedding vectors produced by PALE are only related to
the network structure. Hence, the embeddings produced by our APAN-N are more helpful for the
anchor link prediction task. On the other hand, PALE uses the first-order proximity structure in the
network-embedding learning process [11]. The method only models the local adjacency of each node,
but ignores the global connection property in the network. Therefore, PALE is not sufficient to preserve
the intrinsic structure regularities of networks. Instead, our APAN-N uses the truncated random-walk
sequences to learn the embeddings, which can capture both the local and global structure properties.
This can also be verified by Figure 5, which depicts the performance changes of APAN-N and PALE.
A big gap can be found as the number of iterations increases. Due to the reasons, APAN-N works
better than PALE.
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Figure 5. Comparison of APAN-N and PALE in different iterations on Flickr-Lastfm networks.

4.3. Parameter Study

In this subsection, we investigate how different values of the parameter r2 and the dimension of
the embedding vectors affect the performance of APAN.

For our proposed APAN method, we use parameter r2 to control the ratio of two types of contexts.
The larger r2 is, the more important network structure is. Figure 6 shows the Hit-precision@30 of APAN
using different values of parameter r2 on Flickr-Lastfm networks. From the figure, we observe that the
accuracy is very low when r2 is small, and the accuracy increases when r2 becomes large. It achieves
good performance with the r2 varying from 0.8 to 0.9. The large value of r2 indicates the importance of
network structure. In the datasets, the node attribute includes the gender and the location. Since there
are many missing values in the attributes, and these two kinds of attribute are not strong enough to
link users, the structural information is more discriminative than the attribute information.

We investigate the sensitivity of the dimension of the embedding vectors. Figure 7 shows the
Hit-precision@30 of APAN with various dimensions on Flickr-Lastfm networks. We observe the
performance is poor when the dimensionality is under 30. APAN reaches a relatively stable and
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promising performance after the dimensionality is higher than 50. This indicates that APAN model is
robust with the tuning of dimensions.
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Figure 6. The tuning of r2 on Flickr-Lastfm networks.
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Figure 7. Tuning the dimension of the embedding vectors on Flickr-Lastfm networks.

5. Conclusions

In this paper, we propose a novel semi-supervised network-embedding model (APAN) to tackle
the anchor link prediction across attributed networks. APAN represents each node (user) of the
multiple networks by a low-dimensional vector, which is learnt with awareness of observed anchor
links as semi-supervised information, and topology structure and attributes as input. By doing
so, the nodes that have similar structure contexts and attributed information will have similar
embedding vectors. Also, the anchor link predictor is simultaneously trained as the embeddings are
learnt. The real-world data sets are used to evaluate the performance of the proposed APAN model.
Experimental results show that APAN outperforms state-of-the-art competitors.

APAN has two limitations. Firstly, since the node embedding vectors produced by APAN
are related to the network structure, the accuracy will be low when the topology structures of the
two networks are widely distinct. Secondly, social networks are dynamically changing over time.
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The APAN method cannot extract features dynamically. Our next work will solve the above two
problems, we may consider integrating more types of information, such as the temporal information,
into APAN so that the method can be more robust, and develop a dynamic anchor link prediction
algorithm to take advantage of incremental data for improving the performance.
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