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Abstract: Brain–computer interfaces (BCI) have traditionally worked using synchronous paradigms.
In recent years, much effort has been put into reaching asynchronous management, providing
users with the ability to decide when a command should be selected. However, to the best of
our knowledge, entropy metrics have not yet been explored. The present study has a twofold
purpose: (i) to characterize both control and non-control states by examining the regularity of
electroencephalography (EEG) signals; and (ii) to assess the efficacy of a scaled version of the sample
entropy algorithm to provide asynchronous control for BCI systems. Ten healthy subjects participated
in the study, who were asked to spell words through a visual oddball-based paradigm, attending
(i.e., control) and ignoring (i.e., non-control) the stimuli. An optimization stage was performed for
determining a common combination of hyperparameters for all subjects. Afterwards, these values
were used to discern between both states using a linear classifier. Results show that control signals
are more complex and irregular than non-control ones, reaching an average accuracy of 94.40% in
classification. In conclusion, the present study demonstrates that the proposed framework is useful
in monitoring the attention of a user, and granting the asynchrony of the BCI system.

Keywords: sample entropy; multiscale entropy; brain–computer interfaces; asynchrony; event-related
potentials; P300-evoked potentials; oddball paradigm

1. Introduction

Brain–computer interfaces (BCI) are able to detect users’ intentions from brain signals and convert
them into artificial commands that control an external device. BCI applications are intended to replace,
restore, enhance, supplement, or improve the natural central-nervous-system activity of the user [1].
Such purposes make BCI systems especially suited for improving the quality of life of motor-disabled
people, reducing their dependence, and favoring their social and labor integration. These disabilities
may be caused by traumas, neurodegenerative diseases, muscle disorders, or any illness that impairs
the neural pathways that control muscles or the muscles themselves [2]. Although there are several
ways to monitor the brain activity of a user, electroencephalography (EEG) is generally used due to its
noninvasiveness, portability, and low cost. Therefore, electric brain activity is recorded by placing a set
of electrodes on the user’s scalp [2].

Since a user’s intentions are not directly reflected in the raw EEG signal, BCI systems rely on the
processing of measurable changes related to cognitive tasks, known as control signals [3]. Event-related
potentials, such as P300 responses, are commonly used to assure the robustness of the system regardless
of disability. P300-evoked potentials are the brain’s natural responses to infrequent and significant
stimuli, elicited approximately 300 ms after their onset [2,3]. Owing to their exogenous nature, previous
training is not necessary, which makes a P300-based BCI suitable for any person who presents a certain
degree of gaze control. In this sense, the row-col paradigm (RCP), a particularization of the oddball
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visual paradigm, is the most common setup to aid users in spelling words or commands [4]. In this
paradigm, a matrix containing alphanumeric characters or commands is displayed. Users just need to
focus their attention on the desired command while the matrix’s rows and columns randomly flash.
Whenever the target’s row or column is intensified, P300 potential is generated. Hence, the desired
command can be determined by identifying when these potentials have been elicited [2,4].

The RCP is a synchronous process. Due to continuous stimulation, the system makes a selection
even if the user does not pay attention to the visual stimuli [5]. In a real application, it is desirable that
users voluntarily decide when they want to select a command and when they do not. For instance,
if the purpose of the BCI system is to provide disabled users with an assistive tool to surf the
Internet, the application should be able to detect if the user wants to select a navigation command
or, by contrast, to calmly read a webpage or watch a video [6]. A conventional synchronous BCI
could not monitor users’ attention; thus, it continues selecting random commands while users ignore
the visual stimulation. Therefore, the default synchronous mode of the RCP severely restricts the
applicability of a BCI system in a real environment, requiring an external supervisor or the inclusion
of a read-mode command that pauses the RCP for a fixed time. In order to overcome this limitation,
the system should be able to discern between the control state (i.e., when users pay attention to the
stimuli) and the non-control state (i.e., idle state, when users ignore the stimuli). In other words,
the RCP-based system must become an asynchronous application. In recent years, several efforts
have been made to achieve real asynchronous control [7]. Most related P300-based BCI studies rely
on a threshold derived from classifiers’ scores, which are expected to be higher in the control state
than in the non-control state. These scores were obtained from support vector machines (SVM) [8–10]
or linear discriminant analysis (LDA) [6,11–16] classifiers using downsampled raw signals from the
stimuli onset as features [3,5,6,8,9,16–20]. Aydin et al. also used classifier labels instead of scores to
design different criteria to identify the idle state [20]. Other studies proposed spectral features to
detect both states, such as relative powers [9,17,21] or sums of spectral components [5]. Among these
complementary metrics, recent studies have proposed modified BCI frameworks. Panicker et al.
and Li et al. proposed novel asynchronous paradigms that involve steady-state visually evoked
potentials (SSVEP) and P300 responses at the same time, using SSVEP to identify the idle state, and
P300 responses to determine the desired commands in real time [9,17]. Breitwieser et al. provided
asynchronous control in a tactile-based BCI system to detect both steady-state somatosensory evoked
potentials (SSSEP) and transient event-related potentials (tERP) [13]. Lastly, Yu et al. presented a
hybrid system that manages asynchronous control using motor imagery, while an RCP matrix controls
the command selection [18,22].

Despite the recent interest in providing asynchronous control in RCP-based BCI systems, to the
best of our knowledge, entropy metrics have not yet been explored. In this context, we hypothesize that
different entropy metrics could provide insight into the dynamics of attended and nonattended EEG
signals, providing complementary information to discern between both states. Particularly, multiscale
entropy (MSE) based on sample entropy (SampEn) has demonstrated to be effective in estimating the
complexity and regularity of physiological time series [23–26]. Thus, differences between the regularity
of control and non-control EEG signals could be expected to be found. Therefore, the present study
has a twofold purpose: (i) to characterize control and non-control states by examining the regularity
of EEG signals; and (ii) to assess the efficacy of a scaled version of SampEn to provide asynchronous
control in P300-based BCI systems.

2. Materials and Methods

EEG signals show high intersubject variability and, thus, BCI systems must be optimized for
each subject [2–4,6,19]. The amplitude and latency of P300 responses have been demonstrated to
vary depending on individual differences, such as age or personality, pharmacological aspects,
or even clinical disorders [27]. Therefore, channel and feature selection methods, as well as classifiers,
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are always optimized in the first session of each user. According to this rationale, classifiers of the
present study are separately trained and tested, returning a final accuracy for each subject.

The methodological structure of the study is depicted in the flowchart of Figure 1. Once the dataset
was registered and preprocessed, it was randomly divided into optimization (30%) and validation (70%)
datasets. The optimization set was used to characterize the asynchronous states and find an optimal
combination of the required hyperparameters that could work with all subjects. These global values
were thereafter used to test the validation set for each user and assess the ability of the framework
to discriminate between control and non-control states. Training and testing were employed under a
leave-one-out (LOO) procedure, intended to provide a final accuracy for each user.

Figure 1. Methodological flowchart of the study. Once trials were extracted, the dataset was divided
into optimization and validation sets. The former was intended to optimize a global combination of
hyperparameters m, r, and τ; in the latter, these values were applied to compute the final accuracy of
each user.

2.1. Dataset and Experimental Protocol

Ten control subjects (mean age 25.7± 3.09 years; 6 males, 4 females) were included in this study.
All of them gave their informed written consent to participate. Subjects were asked to perform spelling
tasks using a 6× 6 RCP matrix in two different sessions, shown in the Figure 2a. In the RCP paradigm,
the matrix’s rows and columns randomly flash [4]. Users, who were asked to stare at the desired
command, elicited P300 responses when the row and the column that contained that command were



Entropy 2019, 21, 230 4 of 14

illuminated. Therefore, the desired command could be determined by identifying these responses [2,4].
In order to favor their concentration, users were also asked to count how many times the desired
command flashed. For each user, a total of 120 characters were spelled. Half of them were recorded
following the aforementioned protocol, intended to get the signal in the control state. For the other half,
users were asked to read a text while ignoring the flashings. Hence, these characters were intended
to record the non-control state. Note that a character comprised 15 sequences (i.e., repetitions) of
flashings, where a sequence comprises all flashes that are required to highlight each row and column
of the matrix. Each flashing lasted 75 ms, followed by an interstimuli interval of 100 ms. EEG signals
were recorded using a g.USBamp amplifier (g.Tec, Austria) with a sampling rate of 256 Hz. In all,
16 active electrodes were placed on Fz, F3, F4, Cz, C3, C4, CPz, Pz, P3, P4, POz, PO3, PO4, PO7,
PO8, and Oz, using Fpz as a ground and the earlobe as a reference according to the International
10–20 System distribution [28]. Since P300 responses are thought to be more prominent over the
visual cortex and related with cognitive processing, electrodes were mainly placed on the occipital and
parietal lobes [2,3].

As a preprocessing stage, a band-pass filter in the range of 0.1–30 Hz and a common average
reference (CAR) spatial filter were applied to the raw signals [2,6,19]. Afterward, trials were extracted
from the EEG signals for each channel following the procedure that is depicted in Figure 2b. As can be
seen, each trial integrates the signal from the first sample to the last onset that belongs to the maximum
considered sequence. For instance, the i-th trial comprises the raw signal of all electrodes since the
very first recording sample of the character until the end of the i-th sequence. Then, the dataset was
randomly split up into optimization (30%) and validation (70%) sets. These ratios were maintained
for each user, resulting in a total of 36 characters for the optimization set and 84 characters for the
validation set per user. It is noteworthy that both sets were also balanced, including the same number
of control and non-control characters of each user.

Figure 2. (a) Row-col paradigm matrix employed in this study. Currently, the fifth column is being
flashed; (b) Trial extraction procedure of a single character in function of the number of sequences.
Considering the i-th sequence, trial si is composed of the signal from the first sample to the last onset
of the i-th sequence. Therefore, a total of 15 trials were extracted for each character.

2.2. Optimization Stage

The optimization stage was intended to find a global combination of hyperparameters that
favor the discrimination between control and non-control states for all users. To this end, features
were first extracted by means of MSE, and then classified with an LDA following a LOO procedure.
As indicated in Figure 1, the combination of parameters was finally selected under a criterion of
maximum performance.

MSE is a well-known nonlinear method that estimates the complexity of a signal according
to entropy changes along multiple time scales [24]. The algorithm sequentially computes the
entropy of a coarse-grained version of the original signal, providing information about its dynamical
structure [24,25]. If MSE is applied on two different time series, and one of them provides higher
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entropy values for most scales, it is considered to be more complex [24,25]. Typically, the τ-th scaled
coarse-grained signal is obtained by averaging the samples of the time series inside consecutive but
nonoverlapped segments of length N/τ, where N denotes the length of the signal [24]. However, it was
shown that this procedure may cause aliasing and, thus, spurious components in the low-frequency
range [26,29]. In order to overcome this limitation, we decimated the original signal by a factor of τ.
That is, high frequencies were reduced with a low-pass least-squares linear-phase FIR filter, followed
by a downsampling procedure that only kept every τ-th sample [26,29]. Therefore, the MSE algorithm
computes the entropy of each signal as a function of τ from the original time series (i.e., τ = 1), to the
highest considered scale (i.e., τ = 25) [26].

SampEn is a single-scale entropy measure that estimates the irregularity of one-dimensional
temporal signals, assigning higher values to series that show larger degrees of disorder [23]. Compared
to the approximate entropy algorithm, SampEn eliminates the inherent bias caused by self-matching
and provides a result less dependent on signal length [23]. For this reason, SampEn has been widely
used to compute the MSE and its variants [26]. Briefly, the algorithm provides a conditional probability
measure that quantifies the likelihood that a template of m consecutive samples, which already matches
another sequence, still matches it if their lengths are increased in one sample [26]. Therefore, SampEn
is defined as:

SampEn(m, r, N) = lim
N→∞

−ln
Am(r, N)

Bm(r, N)
, (1)

where m is the embedding dimension, r is the tolerance factor, N is the length of the signal,
and Am(r, N) and Bm(r, N) are the probabilities of template matching for m + 1 and m points,
respectively. Considering a time series x = [x1, x2, . . . , xN ], where template vectors of length m
are defined as xm(i) = [xi, xi+1, . . . xi+m−1], a match between two templates xm(i) and xm(j) occur if
the distance between them is less than a certain tolerance value: d[xm(i), xm(j)] < R. Although there
are a variety of distance measures, Chebyshev distance is commonly used [23]. Moreover, tolerance
is used to be dependent of the standard deviation of the signal (i.e., R = r · σx) [23,26]. In practice,
SampEn is estimated as follows:

SampEn(m, r, N) = −ln
(N −m + 1

N −m− 1
· A

B

)
, (2)

where A and B are the total number of templates of lengths m + 1 and m that meet the distance
criterion for each different combination of i and j, given i 6= j, respectively. Since the total number
of possible templates of lengths m + 1 and m along the signal are N − m + 1 and N − m − 1,
respectively; normalization is also applied to correct the estimation. As a result of the approximation
of Equation (1), the variance of the entropy estimator grows as the length of the signal decreases [26].
Therefore, the longer the signal length, the more reliable the outcome is. As a general rule of thumb,
the estimation of SampEn is considered accurate if N ≥ 10m [23,26].

MSE using a SampEn estimator was then applied to the optimization dataset. Hyperparameters
were varied according to common ranges widely used in physiological signals: embedding dimensions
m = 1, 2; tolerances r from 0.1 to 0.3 in steps of 0.05; and scales τ from 1 to 25 [23]. Scales that did
not meet the Richman & Moorman criterion (i.e., N ≥ 10m) were not computed [23]. Since entropies
should be estimated in one-dimensional signals, MSE was calculated for each channel, returning a
final value per channel and trial. Note that trials were extracted following the procedure described
in Section 2.1, computing the MSE using different number of RCP sequences, from 1 to 15. Figure 3
depicts the MSE results of the user U05 for illustrative purposes.

In order to determine a common optimal combination of τ, m, and r for all users, an LOO
procedure was performed. LOO cross-validation is a deterministic technique that estimates how the
results of a statistical model generalize to an independent dataset [30]. The algorithm sequentially
classifies an observation with a model trained with the remaining ones. This process is repeated until
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all observations have been tested, returning the average of the prediction outcomes as an estimation of
the accuracy [30]. In this case, the LOO procedure integrated an LDA that classified control versus
non-control observations, where MSE results of each channel were included as features. The accuracies
for all trials, s1, s2, . . . , s15, were averaged in order to get a single accuracy value for each combination
of τ, m, and r. Lastly, the combination of hyperparameters that reached maximum accuracy was
thereafter considered optimal. Owing to the mix of users that composes the optimization dataset,
the optimal m, r, and τ are expected to work properly regardless of subject.

Figure 3. Multiscale sample entropy values from the optimization dataset corresponding to U05 across
channels. Solid lines indicate the average values for control (blue) and non-control (red) trials, whereas
shaded areas indicate standard deviation. Embedding dimension and tolerance parameters were fixed
to m = 1 and r = 0.3, respectively.

2.3. Validation Stage

The validation stage was intended to assess the performance of the proposed framework to
determine the state of the user and achieve asynchronous control of the system. As can be noticed,
since MSE was not computed to consider any geometric feature of the curve, but to determine an
optimal scale τ, there is no point in calculating the MSE in the validation dataset. Instead, validation
signals for each user are first downsampled to optimal scale τ. Afterward, features are the SampEn
outcomes of each channel using optimal m and r hyperparameters. An LDA-based LOO procedure is
finally used to estimate the accuracy of the classification per user and sequence.

3. Results

Optimization results are depicted in Figure 4. As can be seen, the estimated accuracies show
a decreasing tendency as the scale increases regardless of embedding dimension. According to the
maximum-accuracy criterion, the optimal combination of hyperparameters was found to be m = 1,
r = 0.3, and τ = 2. Figure 5 depicts the spatial distribution of the significant differences that were
found between control and non-control SampEn features in the optimization dataset (Wilcoxon signed
rank test), using the aforementioned optimal parameters. It is noteworthy that the Benjamini–Hochberg
False Discovery Rate (FDR) correction was applied to counteract the problem of multiple comparisons
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(i.e., 16 channels) [31]. As shown, significant differences were mainly found in prefrontal and
occipital electrodes.

Figure 4. Accuracy results of the optimization stage in function of different values of embedding
dimension m, tolerance r, and scale τ. Optimal combination of hyperparameters is marked with a cross,
which corresponds to m = 1, r = 0.3, and τ = 2.

Figure 5. Wilcoxon signed-rank test p-values that show significant differences (i.e., from 0 to 0.05)
between control and non-control SampEn features in the optimization dataset. Hyperparameters were
fixed to their optimal values. Note that p-values were adjusted using the Benjamini–Hochberg False
Discovery Rate (FDR) step-up procedure.

The results of the validation stage are displayed in Table 1 and Figure 6. The proposed framework
reached a mean accuracy of 94.40%± 2.81% across subjects for 15 sequences. Figure 6 depicts the
cumulative testing accuracies (control vs. non-control) as the number of sequence increases for each
subject. As can be seen, users generally showed an improvement in performance as more sequences are
considered, reaching more than 90% of accuracy in every case. In order to guarantee the application of
the proposed framework in real time, computational cost analysis is shown in the Table 2, which details
the required time to compute the SampEn algorithm using different numbers of sequences. Analysis
was made using an Intel Core i7-7700 CPU @ 3.60GHz (32 GB RAM, Windows 10, MATLAB R©2018a),
performing an average of 1000 iterations of the algorithm.
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Figure 6. Cumulative testing accuracies (control vs. non-control) as sequences increase for each subject.
Lines indicate the number of sequences, where a solid line implies an increase and a dashed line implies
a decrease of accuracy.

Table 1. Testing accuracies of control vs. non-control states for each subject in function of the number
of sequences.

Ns 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

U01 71.43% 77.38% 80.95% 85.71% 88.10% 88.10% 89.29% 90.48% 94.05% 94.05% 92.86% 92.86% 94.05% 95.24% 94.05%
U02 83.33% 88.10% 89.29% 85.71% 89.29% 89.29% 91.67% 91.67% 91.67% 90.48% 92.86% 91.67% 92.86% 94.05% 92.86%
U03 83.33% 82.14% 88.10% 83.33% 86.90% 90.48% 88.10% 90.48% 94.05% 92.86% 92.86% 92.86% 92.86% 92.86% 92.86%
U04 61.90% 78.57% 80.95% 75.00% 75.00% 75.00% 80.95% 80.95% 79.76% 80.95% 83.33% 90.48% 89.29% 91.67% 91.67%
U05 72.62% 70.24% 72.62% 78.57% 78.57% 82.14% 89.29% 89.29% 91.67% 91.67% 91.67% 94.05% 95.24% 96.43% 96.43%
U06 89.29% 94.05% 96.43% 96.43% 95.24% 94.05% 96.43% 95.24% 94.05% 95.24% 96.43% 96.43% 96.43% 97.62% 98.81%
U07 75.00% 89.29% 92.86% 95.24% 96.43% 96.43% 95.24% 95.24% 92.86% 94.05% 95.24% 95.24% 96.43% 96.43% 95.24%
U08 77.38% 80.95% 85.71% 86.90% 86.90% 88.10% 86.90% 84.52% 89.29% 89.29% 86.90% 89.29% 90.48% 89.29% 89.29%
U09 78.57% 90.48% 91.67% 88.10% 94.05% 90.48% 92.86% 95.24% 95.24% 92.86% 95.24% 95.24% 97.62% 95.24% 96.43%
U10 76.19% 86.90% 91.67% 95.24% 95.24% 92.86% 94.05% 92.86% 95.24% 97.62% 97.62% 96.43% 96.43% 96.43% 96.43%

Mean 76.90% 83.81% 87.02% 87.02% 88.57% 88.69% 90.48% 90.60% 91.79% 91.90% 92.50% 93.45% 94.17% 94.52% 94.40%
SD 7.58% 7.23% 7.11% 7.13% 7.23% 6.18% 4.59% 4.74% 4.61% 4.52% 4.38% 2.46% 2.77% 2.58% 2.81%

Ns indicates number of sequences.

Table 2. Computational cost in milliseconds of the sample entropy algorithm in function of the number
of sequences.

Ns 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mean 0.82 3.46 8.24 14.64 22.57 32.51 43.66 54.92 69.70 86.33 104.87 125.24 146.41 170.58 196.78
SD 0.99 0.28 0.82 1.03 1.40 2.00 3.10 3.30 3.84 4.69 5.56 5.96 6.50 7.20 8.64

Ns indicates the number of sequences. These results are obtained after running the sample entropy algorithm 1000 times.

4. Discussion

Significant differences were found between control and non-control states using features derived
from MSE and SampEn. Since the depicted behavior of Figure 3 is representative of all subjects,
SampEn values of control states were slightly higher than those obtained in non-control states.
Moreover, this behavior is almost constant as scales increase (i.e., amount of decimation). The MSE
values of both states show an increasing trend until τ = 4, steadying themselves after that point.
On the one hand, this tendency implies that attending to an RCP paradigm produces more irregular
signals than ignoring the stimuli [23]. On the other hand, although both states show a similar response
to dynamical changes in different scales, control signals present a steeper slope. Therefore, control-state
signals can be considered more complex than non-control ones because they are more irregular in most
scales [24,25]. It is also noteworthy that SampEn values of nonattending signals become more unstable
as the scale increases, raising the standard deviation. By contrast, attending signals are generally more
defined, showing smaller values of standard deviation.
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Regarding the optimization stage, it is noteworthy that the performance of the method depends
on the hyperparameters. Although MSE values do not seem to be affected by tolerance, the embedding
dimension and the scale play an important role in the proposed framework. As can be seen in
Figure 4, performance showed a decreasing tendency as τ increased, regardless of the value of r.
As aforementioned, the standard deviation of non-control MSE values increases with τ, while control
MSE values remain almost constant. Hence, the decrease in performance for high scales is expected.
Although accuracy values when m = 1 are not appreciably affected by r, performance decays as r
decreases when m = 2. This behavior is also expected according to the SampEn algorithm, since higher
tolerance values increment the probability of finding template matchings and, thus, increasing
variability between different runs of the LOO procedure. In summary, the optimal embedding
dimension and tolerance parameters were found to be m = 1 and r = 0.3, respectively, in accordance
with previous studies that used physiological signals [23]. Concerning the optimal τ = 2 scale, it is
equivalent to reducing the sampling rate of the EEG signal by half before applying the SampEn
algorithm. This procedure can be addressed as a feature-extraction stage that is common in P300-based
BCI studies [3,5,6,8,9,16–20].

In this context, the estimation of SampEn could be considered accurate when signal length is
greater than ten to the power of the embedding dimension (i.e., N ≥ 10m) [23,26]. According to Figure 2,
signal length depends on the number of sequences that are considered, as well as on the amount
of decimation. Since this limitation takes into account the amount of raw samples, the maximum
number of scales that can be computed in a reliable way are thus limited by the number of sequences,
the sampling rate, the stimuli duration, the number of commands and, in general, by any parameter
that affects the duration of a character trial. In a P300-based BCI common setup, this constraint is
not usually present for a high number of sequences (i.e., Ns), but it is recommended to compute the
maximal scale in each situation. In our study, the entire number of 25 scales could be computed if
Ns > 4, reaching a maximum of four scales using only one sequence. Owing to fixing the optimal scale
to τ = 2, the constraint did not even limit the number of sequences in our case.

Topographic results show significant differences for almost all users between the entropy values
of control and non-control states, mainly in the prefrontal lobe. The prefrontal cortex is commonly
associated with planning complex cognitive behavior, personality expression, decision making,
and selective attention [32]. The latter is consistent with the oddball task, which implies a constant
attention of the user to identify the target stimuli among other background stimuli [3]. In fact,
it was demonstrated that visual oddball tasks produce hemodynamic changes in the dorsolateral
prefrontal cortex, associated with the mapping of stimuli to responses (e.g., response strategies) [33].
Moreover, a recent study suggested that complex processes such as memory, attention, or decision
making are linked to the elicitation of the P300 component, which could be modulated by frequency
dynamics [34]. There are also slight differences in the occipital lobe, which comprises most of the
anatomical region of the visual cortex. Neurons of the primary visual cortex fire action potentials
when visual stimuli appear in the receptive field [35]. It is therefore expected that a higher number of
neurons are activated in the control state, when a user not only perceives the target stimuli, but also
repetitive flickering stimuli. The task elicits P300-evoked potentials in the parietal cortex when target
stimuli are processed [2,3]. However, since we extract features using the entire raw control EEG signal,
P300 are surpassed by nontarget stimuli. Recent studies suggest that peripheral flickering stimuli
in the RCP task produce SSVEP responses [5,17,21], which propagate from occipital to prefrontal
electrodes [36]. Note that these topographic results measure significant differences between the
irregularity of control- and non-control-state EEG signals. According to previous analysis, attending to
a RCP task should activate a greater number of neurons than ignoring the stimuli, spreading electrical
activity across the frequency spectrum. Therefore, entropy measures follow that spectral activation,
increasing the irregularity of the control signals.

One of the most crucial obstacles of BCI systems is to find methods that can be applied in
real time. In relation to this, we consider important to analyze the potential of the proposed
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framework to determine the asynchronous state upon which a character is selected. As indicated in
Table 2, the maximal computational time of the SampEn algorithm is approximately 197 ms using
15 sequences. Since most P300-based BCI studies use pauses of at least two seconds after each character,
the computational cost of the proposed framework is perfectly acceptable [6,16,19,37].

Concerning the validation stage, Figure 6 and Table 1 show an increasing tendency of the final
accuracies for all subjects as the number of sequences increases. Therefore, it is clear that the proposed
asynchrony approach is dependent on the length of the signals, reaching an average accuracy of
94.40% for all subjects using 15 sequences. In particular, all subjects except U04 and U08 reached more
than 90% accuracy using nine sequences. Furthermore, U06, U07, and U09 were even able to reach it
using only three sequences. Even though the increasing tendency is clear for all subjects, the slope
appreciably varies among them. Some users present a sequential increase (e.g., U01, U05, U08, U09),
while others reach a standstill (e.g., U03, U10). These results reinforce the fact that it is important to
perform individual calibrations and separately optimize BCI applications to each subject [2,3,19].

Table 3 depicts a comparison between previous asynchronous P300-based state-of-the-art
applications. As shown, most of them follow a thresholding approach to discern between control and
non-control states [5,6,8,9,11–16,20,21]. These thresholds are usually derived from receiver operating
characteristic (ROC) curves that were fed using output scores of SVM [8,9] or LDA [5,6,11,13,15,16]
classifiers. Note that these classifiers use downsampled raw signals from the stimuli onset as input
features [3,5,6,8,9,16–20]. Since they were trained in a calibration session to detect P300 responses,
these studies hypothesize that output scores of non-control characters are lower than those spelled in
the control state. Therefore, the classifier that is intended to detect the P300 responses is also intended
to discern between both asynchronous states. Notwithstanding their usefulness as computationally
simple solutions, these approaches entail a clear drawback. Owing to the high intersession variability
of the EEG signals, classifier weights should be updated from time to time to assure suitable
performance [2,3,6,10,16]. Since threshold values depend on classifier scores, they are no longer useful
if these weights are modified. Hence, additional control and non-control characters should be recorded
in order to update the thresholds, which would entail a great amount of time. Other approaches
add complementary spectral features [5,21] or implement hybrid paradigms [9,17,18] to develop filter
methods that are independent of the P300 classifier. Some of the hybrid paradigms superimpose the
RCP oddball technique, intended to generate P300 responses, with a flickering visual effect, intended
to generate SSVEPs when users are paying attention to the visual stimuli [9,17]. Therefore, asynchrony
is handled by the detection of SSVEPs using relative powers: control state if SSVEPs are present,
non-control state if SSVEPs are missing [9,17]. Pinegger et al., and Ma & Qiu also used SSVEP detection
techniques to reach asynchronous control, but their approach is utterly different [5,21]. By contrast, they
hypothesized that inherent RCP flashings also generate residual SSVEP components when the stimuli
are displayed using a constant rate. These components were identified in the frequency spectrum,
providing supplementary features to the LDA scores [5]. Finally, it is also worthy to mention the
contribution of Yu et al., who implemented a hybrid approach to reach a semiasynchronous BCI
application [18]. Users activated the RCP flashings by regulating their cortical activity through motor
imagery. However, stopping RCP was handled by a “stop” command, which increases the required
time to manage the asynchrony and makes the system more demanding. Since the vast majority of
these previous studies were intended to provide an asynchronous assistive application, instead of
just evaluating a novel method to reach asynchronous control, the provided accuracies reflect the
final performance of the system. In other words, results depict the performance of the system to
predict correct characters, while ignoring those than are considered non-control. Unfortunately, control
versus non-control accuracies are not reported and, thus, quantitative and statistical comparisons
cannot be performed with the present study. Despite this issue, it is noteworthy that, to the best of our
knowledge, there are no studies that have previously investigated the ability of entropy-based features
to discern between both asynchronous states. Moreover, since our approach is independent of classifier,
weights updates do not affect asynchronous management, avoiding the need to record extra EEG
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signals [5,6,8,9,11–16,20]. We also believe that further endeavors could be aimed at complementing
our proposed entropy features with SSVEP-based ones, which could presumably improve the final
performance of asynchronous P300-based BCI systems [5,21].

Table 3. Comparison between previous asynchronous P300-based brain–computer interface (BCI)
applications.

Study Control Signal Experimental Paradigm Asynchrony Technique No. Subjects

Zhang et al., 2008 [8] P300 Single cell ROC thresholding using SVM scores 4 CS

Panicker et al., 2010 [17] P300 and SSVEP Hybrid: RCP-based Detection of SSVEPs using relative peak
amplitude in PSD 10 CS

Aloise et al., 2011 [11] P300 RCP ROC thresholding using LDA scores 11 CS

Li et al., 2013 [9] P300 & SSVEP Hybrid: oddball & SSVEP ROC thresholding using SVM scores
(P300) and relative powers (SSVEP) 8 CS

Pinegger et al., 2015 [5] P300 RCP Thresholding using LDA scores and
sum of spectral components 10 CS

Breitwieser et al., 2016 [13] P300 and SSSEP Hybrid: tactile & oddball Thresholding using multi-class LDA 14 CS
Martínez-Cagigal et al., 2017 [6] P300 RCP ROC thresholding using LDA scores 5 CS, 16 MS
He [10] P300 RCP Combination of two different SVM 8 CS
Yu et al., 2017 [18,22] P300 and MI MI monitoring & RCP MI signal activates the RCP 11 CS, 8 CS

Alcaide-Aguirre et al., 2017 [12,14] P300 RCP Certainty algorithm: t-test over
LDA scores 11 CS, 19 CP

Ma & Qiu, 2018 [21] P300 RCP ROC thresholding using relative powers 4 CS
Aydin et al., 2018 [20] P300 Hex-o-Spell ROC thresholding using classifier labels 10 CS
Tang et al., 2018 [15] P300 RCP ROC thresholding using LDA scores 4 CS
Martínez-Cagigal et al., 2019 [16] P300 RCP ROC thresholding using LDA scores 18 CS, 10 MD

Present study P300 RCP LDA classification using
SampEn features 10 CS

SSVEP: steady-state visual evoked potentials, SSSEP: somatosensory evoked potentials, MI: motor imagery,
RCP: row-col paradigm, ROC: receiver operating characteristic, SVM: support vector machines, PSD: power
spectral density, LDA: linear discriminant analysis, SampEn: sample entropy, CS: control subjects, MS: multiple
sclerosis, CP: cerebral palsy, MD: motor-disabled.

Owing to these outcomes, several insightful implications can be derived. First, it was demonstrated
that a scaled version of SampEn can follow the dynamic changes of control and non-control EEG signals,
providing a useful tool to monitor the attention of the user. Furthermore, the proposed framework
is not only able to work in real time for P300-based BCI systems, but also may be considered as a
filter method. In other words, the metric is independent of the classifier that determines the selected
command, in contrast with previous approaches [5,6,8,9,11–16,20,21]. Since our proposal does not rely
on the classifier’s scores, the command-oriented classifier can be updated without requiring a further
training of the asynchrony method. Moreover, both states were also analyzed in this study, showing
that control-state signals are more irregular and complex than non-control ones. Finally, a combination
of user-independent hyperparameters were determined. To summarize, it was demonstrated that the
proposed SampEn-based framework is suitable for providing asynchronous control in P300-based
BCI systems.

In spite of these results, the present study has several limitations. The proposed framework only
employed temporal features derived from the SampEn algorithm to classify between control and
non-control states. The performance of this approach could be extended in the future by integrating
complementary spectral features in order to improve its performance [5,9,13,17]. It is also noteworthy
that the global combination of hyperparameters was defined using 10 control subjects who are not the
target users of BCI systems. A future endeavor should be aimed at incrementing the database with both
control and motor-disabled users in order to improve the generalization of these results. Furthermore,
the variability of the optimal hyperparameters was not addressed in this study. Finally, it should
be noted that the validation stage was applied under an LOO procedure. Although this method is
excellent to estimate the performance of a statistical model, it requires more training trials in each
iteration than those that are commonly used in practice. Moreover, owing to the limited number of
subjects and characters in the database, optimization could not be performed using different users
than in the validation procedure.
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5. Conclusions

In this study, differences between control and non-control signal was analyzed using entropy
metrics. Furthermore, a method to discern between both states and provide an asynchronous control of
a P300-based BCI has been proposed. Dataset was composed of the EEG signals of ten healthy subjects
who were asked to perform spelling tasks in a row-col paradigm, attending and ignoring the stimuli.
Signals were then subdivided into optimization and validation sets. The former was used to determine
a common optimal combination of hyperparameters by applying MSE features in a LOO procedure.
These parameters were thereafter fixed at m = 1, r = 0.3, and τ = 2 for all subjects. Then, the latter was
used to test the ability of a scaled version of SampEn to characterize both states. Multiscale analysis
results showed that control signals are more irregular and complex than non-control ones, regardless
of scale. These features were also demonstrated to be suitable for classifying both states, reaching an
average accuracy of 94.40%. From the experimental outcomes of this exploratory research, we conclude
that: (i) MSE measures could follow the dynamic changes of control and non-control signals; (ii) the
optimal combination of hyperparameters favors the discrimination between both states for all control
subjects; (iii) the proposed framework has the potential to provide asynchronous control with high
accuracies; and (iv) the computational cost of the method is negligible, reaching real-time processing.
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