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Abstract: In this study, simulations are conducted using a network model to examine how the
macroscopic network in the brain is related to the complexity of activity for each region. The network
model is composed of multiple neuron groups, each of which consists of spiking neurons with
different topological properties of a macroscopic network based on the Watts and Strogatz model.
The complexity of spontaneous activity is analyzed using multiscale entropy, and the structural
properties of the network are analyzed using complex network theory. Experimental results show
that a macroscopic structure with high clustering and high degree centrality increases the firing rates
of neurons in a neuron group and enhances intraconnections from the excitatory neurons to inhibitory
neurons in a neuron group. As a result, the intensity of the specific frequency components of neural
activity increases. This decreases the complexity of neural activity. Finally, we discuss the research
relevance of the complexity of the brain activity.

Keywords: computational model; complexity; network structure; complex network theory; spiking
neuron; self-organization

1. Introduction

A macroscopic structure shapes its microscopic activity. A good building structure keeps intensity
of reinforcing steels for a long time. Human society influences individual activities. What about a
brain that has macroscopic anatomical structures and microscopic spiking activities?

The brain is a complex network composed of a large number of neurons and their connections,
which are modified based on the activation of neurons [1,2]. Complex network theory shows that a
macroscopic anatomical brain network, which is constructed based on the anatomical connections
between brain regions, has unique structural properties that are similar to a small-world network [3].
A small-world network is characterized by a high clustering coefficient and low shortest path length.
The clustering coefficient indicates the density of the number of the connections between nodes that are
closed triangles in the network, and the shortest path length indicates the averaged shortest distance
between arbitrary nodes (detailed in Section 2.3.3). The high clustering coefficient and low shortest
path length in the small-world network enhance the local and global information transmission from
one node to other nodes [4–6]. Therefore, the smallworldness of the brain network may allow for
efficient information transmission and processing in local and global brain regions [7]. However, it is
unclear how the structural properties of the small-world network affect the macroscopic activity of a
brain region, the microscopic activities of individual neurons, and the functional network.
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Complexity has been used to characterize the dynamics of biological signals, which have different
dynamical properties at each time scale. In numerous cases, complexity refers to the unpredictability
of time-series signals on multiple time scales based on sample entropy [8]; this is referred to as
multiscale entropy (MSE) [9,10]. Studies on the autism spectrum disorder (ASD) suggested that the
complexity of the brain activity is closely related to certain structural properties of the anatomical
network. Bosl et al. [11] showed that the complexity of electroencephalogram (EEG) signals during the
resting state of ASD children is lower than that of typically developing (TD) children in certain brain
regions. Moreover, several studies suggested that the anatomical network in the brain of ASD has
excessive connections in certain local regions [12] and the disconnection of the long-ranged shortcut
path between regions [13] (i.e., high clustering coefficient and high shortest path length). In addition,
these studies discussed that these kinds of atypical structures may cause different brain dynamics and
cognitive functions of ASD [13,14].

Computational studies have shown the relationship between the complexity of a brain activity
and an anatomical network. Friston [15] showed that the dimensional complexity of network activity
decreases with an increase in the strength of the connections between neuron groups in a network
model. Nakagawa et al. [16] showed that reduction in the strength of the connections between the
groups of spiking neuron models reduces MSE at slow time scales. However, these studies did not
consider any macroscopic network structures. Sporns et al. [17] optimized the connections between
neuron models to maximize various information-theoretical measures (entropy, functional segregation,
which is an indicator of the complexity of a systems, increases when a subnetwork within a network has
independent activity from other subnetworks. This concept is different from MSE, which measures the
unpredictability of a one-dimensional time-series signal. In this study, we employ MSE as a measure
of complexity to consider the correspondence with existing EEG and magnetoencephalography (MEG)
studies, and integration) of network activity and analyzed the relationship between a network structure
and activity. In particular, they found that a small-world structure emerges when the functional
segregation of network activity is maximized. However, the neural network models in the existing
studies do not have a mechanism of neural plasticity. Synaptic connections can be modified by the
activities of neurons, e.g., spike-timing-dependent plasticity (STDP) [2], in biological neural networks.
Therefore, the neural activities may affect changes of macroscopic structural properties. Moreover,
microscopic connectivity is modified by the synaptic plasticity. The complexity of neural activity may
change owing to self-organization of macro and microscopic connectivities.

In this study, we aim to comprehend how the structural properties of the macroscopic brain
network influence the complexity of brain activity in each region using a spiking neural network
model. Here, we control the clustering coefficient and path length of networks based on the Watts
and Strogatz model (hereafter, WS model). The WS model can adjust them without changing the
number of connections. This approach would enable us to identify dominant structural properties
that may affect the complexity of brain activity. We hypothesize that a macroscopic network with
high clustering coefficient and high shortest path length presents low complexity of brain activity in
each region. Finally, we discuss the correspondence between our simulation results and existing ASD
studies. The main procedures and analyses for verifying our hypothesis are as follows (see Figure 1):

1. Construct neuron groups consisting of spiking neurons that have weighted connections to
randomly selected neurons in the same neuron group (intraconnections). We assumed that
a neuron group and the intraconnections inside it correspond to a brain region and the
intraconnections in the regions, respectively.

2. Determine the initial macroscopic network structure of neuron groups (fundamental network)
based on the WS model. Then, if an edge exists between two neuron groups in the fundamental
network, construct synaptic connections from the neurons in the group to the neurons in the
other group (interconnections). We assumed that the average of interconnections between neuron
groups correspond to the long-ranged interconnectivity between brain regions (synaptic network,
Figure 1b).
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3. Apply a plasticity rule to synaptic weights and self-organize the network (Figure 1c). If an edge
does not exist between two neuron groups in the fundamental network, the weights between
them remain zero to keep the given small-world structure.

4. Analyze the complexity of the activity and structural properties of the self-organized synaptic
network using MSE and complex network theory to show their relationship (Figure 1d).

5. Investigate the frequency characteristics, firing rate, and intraconnections in each neuron group
to explore the possible mechanisms of decrease in the complexity of neural activity.

Figure 1. Hypothesis and assumptions about relationships among the fundamental network, synaptic
network and the complexity of neural activity in this study. The black node and empty black circle
represent a neuron group and a neuron in the group, respectively. The black and green lines indicate
an intraconnection between neurons in a neuron group and an interconnection between neurons in
different neuron groups, respectively. The red and blue dots show neuron groups with and without
high clustering coefficient and high shortest path length, respectively.

2. Materials and Methods

2.1. Spiking Neural Network Model

Figure 2 shows an overview of the spiking neural network model used in this study. The network
model consists of 100 neuron groups, and each neuron group contains 1000 spiking neurons.
These neuron groups are macroscopically interconnected based on the macroscopic network
constructed according to the WS model (fundamental network). A neuron in a neuron group is
randomly intraconnected with the neurons in the same group (intraconnections) and interconnected
with neurons of the neuron groups (interconnections) connected as the edges of the fundamental
network. Each connection between neurons has a weight, which is modulated by activity-dependent
plasticity. Therefore, the network self-organizes based on the neural activities. Here, we use an
STDP [18] rule, which has been known as a biologically plausible rule [19], in order to update the
weights of connections. Parameters of STDP are the same as those used in the previous study [20].
Hereafter, we assume that the average of the weighted interconnections between neurons corresponds
to macroscopic connections between neuron groups (synaptic network).
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Figure 2. Overview of the spiking neural network model. A network is created using 100 neuron groups
with macroscopic connections between neuron groups based on the Watts and Strogatz model [21].
The black nodes and green edge represent the neuron groups and macroscopic connections, respectively.
(a) a lattice network where each node connected with neighboring nodes has local over-connectivity.
All connections are rewired with rewiring probability pWS, and larger pWS yields more random
network; (b) a small-world network with a large number of clusters and shorter path length compared
with other networks; (c) a random network where nodes are completely randomly connected to each
other; (d) each neuron group contains 800 excitatory (red circles) and 200 inhibitory (blue circles)
spiking neurons, and each neuron has intra- (black arrow) and inter-connections (green arrow).

2.1.1. Neuron Model

In this study, we employed the Izhikevich spiking neuron model [22]. This model can represent
various firing patterns (e.g., regular, bursting, and chattering), and their synchronization at various
frequencies represents activity patterns. Furthermore, this model provides computational efficiency;
therefore, a large network can be efficiently constructed. In this study, excitatory and inhibitory neurons
are used to increase and suppress the firing of postsynaptic neurons, respectively. These parameters
are the same as those used in the Izhikevich model [22].

2.1.2. Construction of Fundamental Network Using the Watts and Strogatz Model

The initial interconnections in the synaptic network are determined by the edges of the
fundamental network. The fundamental network is constructed by the WS model to change the
structural properties of interconnections without changing the number of connections. The WS model
is one method of constructing a small-world network, and it can adjust the clustering coefficient and
average of shortest path length. The construction procedure of the fundamental network is as follows:

1. Construct a lattice (regular) network, where each neuron group is connected to k neighboring
neuron groups (Figure 2a). the lattice network has numerous clusters and a long path length.

2. Randomly rewire each edge according to a rewiring probability, pWS. This creates a shortcut
between neuron groups, as shown by the red line in Figure 2b. The network structure becomes
random, and the number of clusters and path length decrease as pWS increases (Figure 2c).
The typical value of pWS used to construct the small-world network is between 0.01 and 0.1.

2.2. Parameters and Simulation Setting

Table 1 summarizes the model parameters used in this study. These parameters are determined
based on previous studies [20,22,23]. The model consists of Ngroup (=100) neuron groups, and
each neuron group contains NE (=800) excitatory neurons and NI (=200) inhibitory neurons. Here,
an excitatory neuron is intraconnected with Cintra (=100) randomly selected neurons in the same
group and interconnected with Cinter (=3) randomly selected neurons of the connected neuron group.
An inhibitory neuron is intraconnected with Cintra (=100) randomly selected excitatory neurons in the
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same group; however, there are no interconnections for inhibitory neurons. Cintra and Cinter are fixed
through simulation. Ngroup and k (=6) are experimentally determined, so that a fundamental network
shows difference in its structural properties according to rewiring probability pWS. In this study, we
used {0.0, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} as the values of pWS.

Table 1. Parameters of the simulation model used in this study.

Parameters Values Descriptions Notes

Dintra,exc [0, 20] Transfer delay of excitatory synapse in neuron group (uniform dist., ms)
Dintra,inh 1 Transfer delay of inhibitory synapse in neuron group (ms)

winit,exc 6.0 Initial weight of excitatory synapse -
winit,inh −5.0 Initial weight of inhibitory synapse -
wupper 10.0 Maximum value of weight -

NE 800 Number of excitatory neurons in a neuron group -
NI 200 Number of inhibitory neurons in a neuron group -
N 1000 Number of neurons in a neuron group = NE + NI

Cintra 100 Number of intraconnections of a neuron -
Dinter,exc [10, 30] Transfer delay of excitatory synapse between neuron groups (uniform dist., ms)
Ngroup 100 Number of neuron groups -

k 6 Number of edges for each neuron group -
Cinter 3 Number of interconnections of a excitatory neuron -
pWS [0.0, 1.0] Rewiring probability -

tstep 1 Time step (ms)
Ttotal 1200 Total simulation time (s)
Ttonic 1100 Time length of tonic input (s)
TSTDP 1000 Time length of self-organization through STDP (s)

Nsim 10 Number of independent simulations -

The simulation schedule is shown in Figure 3. The total simulation time is 1200 s, and one time
step is 1 ms. The duration for self-organization through STDP is set as 1000 s. Furthermore, the tonic
input duration, Ttonic, is set as 1100 s to drive neural activity after self-organization. Then, the activity
without any external inputs, like a resting state, during 1100 s to 1200 s is analyzed as the neural
activity of the network model. The simulation is independently conducted ten times for each pWS.

Figure 3. Time schedule for simulation. Each colored area indicates the period for which the event
occurred. Neural activities during 1110 s to 1200 s were analyzed to determine the relationship among
the structural properties of the synaptic network and neural activity.

2.3. Analysis Method for Neural Activity and Network Structure

2.3.1. Analysis Method for Complexity of Neural Activity

In this study, we utilize local averaged potential (LAP) [24] as the representative activity of a
neuron group. LAP is the average of the membrane potentials of the excitatory neurons within a
neuron group. The LAP is not directly equivalent to local field potential, which is recorded in the
extracellular space around neurons, or to the EEG signals in the brain, which are typically used as an
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index for electric potentials. Nevertheless, LAP can directly reflect the collective activity and can be
considered as an indicator of the synchronous activity of a neuron group.

MSE analysis was proposed by Costa et al. [9,10] to calculate the complexity (degree of irregularity)
of biological series signals over multiple time scales. MSE can be obtained by calculating sample
entropy, which shows the unpredictability of time-series signals, for each coarse-grained signal at
multiple time scales. First, an original signal, x(t), is down sampled by multiple time scales to obtain
coarse-grained signals, y(t). In this study, an LAP signal is used for x(t), and MSE is calculated for
each neuron group:

y(t) =
1
ε

i=tε

∑
i=(t−1)ε+1

x(i) (1 ≤ t ≤ N/ε), (1)

where ε indicates the scale factor. Sample entropy is calculated using the following equation for each
coarse-grained signal:

SampEn(r, m, N) = − ln[Cm+1(r)/Cm(r)], (2)

Cm(r) =
number of pairs(i, j) (|zm

i − zm
j | < r, i 6= j)

(N −m + 1)(N −m)
, (3)

where zm
i = {yi, yi+1, · · · , yi+m−1} denotes a subsequence of the coarse-grained signals from the ith to

the (i + m− 1)th data point of y(t), m denotes the length of the subsequence, Y = {y1, · · · , yi, · · · , yN}
denotes the coarse-grained signals, and N denotes the length of Y. Sample entropy evaluates the
unpredictability of time-series signals as the logarithmic ratio of probabilities, Cm+1(r) and Cm(r).
In this study, we use m = 2 and r = 0.15, which are commonly used for MSE analysis.

2.3.2. Analysis Method for Neural Activation in Neuron Groups

We analyze the frequency characteristics of LAP signals to clarify the effect of the frequency
components of neural activity on MSE values. LAP signals are decomposed into frequency components
using the fast Fourier transform (FFT), and the peak frequency with the highest intensity is obtained
as the robust frequency components in neuronal activity. In addition, we investigate the firing rates
to elucidate how the microscopic activation of neurons affects the complexity of the activity in a
neuron group (see Supplementary Materials).

2.3.3. Complex Network Analyses of Structural Properties

To investigate how the structural properties of the fundamental network affect the
self-organization of the network and the complexity of neural activity, we considered following features
of the network using complex network theory: the graph to be analyzed is composed of 100 nodes,
and each node corresponds to a neuron group. The average of weights of the interconnections of
neurons between neuron groups is used as the weight of the edge between nodes. We evaluate the
clustering coefficient, shortest path length, and degree centrality of the weighted directed networks.

• Clustering coefficient: The proportion of connections with the shape of a closed triplet over all
possible combinations of triplets formed by three nodes in a network. This is defined as follows:

Ci =
number of closed triangles

number of possible triangles
. (4)

As we consider a directed weighted network, we use the algorithm of [25]. A node with a
high clustering coefficient indicates that the node interacts with neighboring nodes more locally,
and this may induce a synchronized behavior between nodes [5,6].

• Average shortest path length: the shortest path length is defined as the minimum number of steps
required to pass from one node to another node in a network [26].

• Degree centrality: it refers to the number of connections of a node [27].
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In the WS model, the average clustering coefficient and the average shortest path length in the
network are decreased if pWS is increased. However, in the case of degree centrality, the average
value is not changed but the variance is increased with pWS. We show the relationship between
these complex network measures and MSE. In addition, intraconnections are organized under inputs
through interconnections, which are specified in accordance with the fundamental network. Hence,
this self-organization of interconnections and intraconnections may affect the complexity of the activity
of a neuron group. Therefore, we investigate the average intraconnection in a neuron group and
examine its relationship with the structural properties and MSE of activity for each neuron group after
self-organization.

3. Results

In our model, the self-organized synaptic network showed spontaneous activity even after
stopping the tonic input. However, the network did not show spontaneous activity if we did not use
STDP for self-organization; these were also reported in previous studies [20,28]. We assumed that
the spontaneous activity corresponds to the brain activity in the resting state. Hereafter, we mainly
analyze this spontaneous activity.

We present the result of the analyses in this section. The main results are as follows:

1. The analysis of MSE showed that each neuron group had different levels of the complexity of
neural activity and the average complexity of all neuron groups decreased if the fundamental
network had small pWS (Section 3.1).

2. The analysis of neural activity in neuron groups with different values of MSE showed that a
neuron group with low complexity exhibited increased signal amplitude in two frequency bands
(20–40 and 40–60 Hz) of neural activity (Section 3.2).

3. The complex network analyses for each neuron group showed that the local over-connectivity
(the clustering coefficient and degree centrality were high) and complexity of a neuron group had
a negative relationship (Section 3.3).

3.1. Relationship between MSE and WS Model

Figure 4 shows the sample entropy of a LAP signal according to pWS of the fundamental network
(see Section 2.3.1 for the method). According to the figure, the average of sample entropy of all neuron
groups increases with pWS at any time scales and decreases at large scale factors of MSE (see Figure A1
for curves of sample entropy on all scale factors). Therefore, the average of sample entropy decreases
if the clustering coefficient and shortest path length are high. Moreover, as the down sampling in
Equation (1) acts like a low-pass filter, the complexity of the low frequency component appears to be
smaller than that of the high frequency component. Furthermore, as shown in the figure, the average
sample entropy of the synaptic network shows variance even when the same fundamental network is
used for the lattice network. Therefore, the interconnections and neural activities in several neuron
groups differ from those in the initial network because of self-organization.
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Figure 4. Relationship between sample entropy and pWS of the WS model. The x-axis in all graphs
represents pWS. (a–f) average sample entropy of all neuron groups with ten independent simulations
at scale factors (ε in Equation (1)) of multiscale entropy (MSE) at 1, 10, 20, 40, 60, and 80. The error bars
indicate the standard deviation.

3.2. Neural Activities in Neuron Groups with Different Levels of Complexity

Figure 5 shows the spectra in neuron groups with high and low complexity (summation of MSE
for 80 scale factors) during (0–100 s) and after self-organization (1100–1200 s) in a lattice and random
network. As shown in Figure 5a,b, neuron groups in the lattice and random networks show similar
frequency distributions. However, as shown in Figure 5c, after self-organization, the neuron groups
with low complexity in the lattice exhibit increased signal amplitude in the two frequency bands
(20–40 and 40–60 Hz) as compared with the neuron groups with high complexity in the network (see
Figure A2 for data distribution and statistical differences). On the other hand, as shown in Figure 5d,
both neuron groups in the random network also show increased signal amplitude but show similar
curves to the neuron groups with high complexity in the lattice network. Therefore, neuron groups
in the random network, which has higher average and lower standard deviation of sample entropy
than the lattice network (see Figure 4), have similar frequency properties to the neuron group with
high complexity in the lattice network. This result indicates that the initial macroscopic network
structure affects the self-organization of synaptic connections, resulting in neural activities in different
frequency bands.

We show the relationship between the complexity and peak frequency of neural activity in all
neuron groups in Figure A4. The figure shows the peak frequency and their amplitude in the three
frequency bands (0–20, 20–40 and 40–60 Hz) in which many changes occurred in Figure 5. We observed
the same tendency with Figure 5 that amplitude increases as the complexity of neural activity decreases
in 20–40 Hz and 40–60 Hz bands.
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Figure 5. Amplitude of each frequency spectrum sampled from the local averaged potentials of the 10
neuron groups with low complexity (blue) and high complexity (red) in a network. The peak envelopes
is used to plot the curve in the figure. Color curves and color-shaded areas represent average and
standard deviation values for ten simulations, respectively. (a) the lattice network (pWS = 0.0) during
self-organization by spike-timing-dependent plasticity (STDP) (0–100 s); (b) the random network
(pWS = 1.0) during self-organization by STDP (0–100 s); (c) the lattice network (pWS = 0.0) after
self-organization by STDP (1100–1200 s); (d) the random network (pWS = 1.0) after self-organization
by STDP (1100–1200 s).

3.3. Relationship between Neural Activity and Structural Properties

Complex network analyses were performed for each neuron group after self-organization to
clarify the factor that induced different values of the complexity of neural activity among neuron
groups (see Section 2.3.3 for the method). Here, we show the results only for the cases where the pWS
of the WS model is 0.0, 0.1, and 1.0 of one simulation; the results for all values of pWS of ten simulations
are shown in Figures A3–A7. Figure 6 shows the relationship between the structural properties and
complexity of neural activity for each neuron group in the synaptic network. As shown in this figure,
the complexity of neural activity tends to decrease with increase in the clustering coefficient and degree
centrality. As the cluster organizations of nodes originate from the lattice network in the WS model,
they are constructed by neighboring (or local) neuron groups. Hereafter, we refer to the structural
property in which the clustering coefficient and degree centrality are large as local over-connectivity
(in the WS model, local-over connectivity is high when pWS is close to 0.0). In contrast, we could not
find a relationship between the shortest path length and complexity (see Figure A7). We found no clear
relationship between complexity of neural activity with tonic input (i.e., neural activities in the network
are induced by external input instead of spontaneous activation) and structural properties of synaptic
network without STDP compared to the activity after self-organization by STDP (see Appendix B and
Figure A8).

The analyses performed until now targeted interconnections. Next, we investigate the average
weight of intraconnections in a neuron group and the average firing rates of neurons. According to
Figure 7, the firing rates of excitatory neurons and inhibitory neurons in a neuron group increase
in local over-connectivity. Furthermore, as shown in Figure 8, the average of the weights of the
intraconnections from one excitatory neuron to another excitatory (inhibitory) neuron had a positive
(negative) relationship with the average of the sample entropy and negative (positive) relationship with
the local over-connectivity of the synaptic network. That is, the neuron groups with low complexity
with local over-connectivity have small intraconnections from excitatory to excitatory neurons and
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large intraconnections from excitatory to inhibitory neurons, and they have increased firing rates of
both types of neurons. Since the weights of connections from the inhibitory neurons to the excitatory
ones had not changed by STDP, we omitted the results about the weights.

Figure 6. Relationship between the connectivity structure and complexity of neural activity. Each
marker corresponds to a neuron group in the network, and its color indicates the summation of the
sample entropy for all 80 scale factors. The x-axis indicates the degree centrality, and the y-axis indicates
the clustering coefficient.

Figure 7. Relationship between the connectivity structure and firing rate of excitatory and inhibitory
neurons. Each marker corresponds to a neuron group in the network, and its color indicates the average
firing rate of excitatory and inhibitory neurons. The x-axis indicates the degree centrality, and the y-axis
indicates the clustering coefficient. (a) relationship between structural properties and firing rate of
excitatory neurons; (b) relationship between structural properties and firing rate of inhibitory neurons.
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Figure 8. Relationship among the weight of intraconnection, structural properties of the synaptic
network, and complexity of neural activity. (a) relationship among the average weight of intraconnections
from excitatory neurons to excitatory neurons, clustering coefficient based on the interconnection, and
complexity; (b) relationship among the average weight of intraconnections from excitatory neurons to
inhibitory neurons, clustering coefficient based on the interconnection, and complexity; (c) relationship
among the average weight of intraconnections from excitatory neurons to excitatory neurons, degree
centrality based on the interconnection, and complexity; (d) relationship among the average weight
of intraconnections from excitatory neurons to inhibitory neurons, degree centrality based on the
interconnection, and complexity. Each marker corresponds to a neuron group in the network, and its
color indicates the summation of the sample entropy for all 80 scale factors. The x-axis indicates the
average weight of interconnection, and the y-axis the structural properties of interconnection.

4. Discussion

We constructed a network model consisting of multiple spiking neuron groups to investigate how
the macroscopic (inter-neuron groups) fundamental network structure influences its self-organization
of the microscopic (synaptic) network and its activity from the perspective of the complexity of neural
activity for each neuron group. We only controlled the structural properties of the macroscopic
fundamental network using the rewiring probability of the WS model. Our simulation showed that
self-organization under the macroscopic structure led to a change in the intraconnections in a neuron
group, and, therefore, the complexity of neural activity decreased. Our complex network analyses
implied that a higher clustering coefficient and degree centrality, which are indicators of the degree of
local over-connectivity, might result in lower complexity.



Entropy 2019, 21, 214 12 of 20

4.1. Hypothetical Mechanism of Low Complexity because of Local Over-Connectivity

As shown in Figure 6, the complexity of neural activity in a neuron group decreases with the
degree of local over-connectivity, i.e., the clustering coefficient and degree centrality. We suppose
that this result is because the intraconnections change along with self-organization under the
macrostructure. As shown in Figure 8, a neuron group with low complexity of neural activity shows
increased average weights of intraconnections from excitatory to inhibitory neurons and decreased
average weights of intraconnections between excitatory neurons. This indicates that a microstructure
that suppresses the activity of excitatory neurons appear as a result of self-organization under local
over-connectivity in the macroscopic network. However, as shown in Figure 7, the firing rates of
excitatory and inhibitory neurons with the low complexity increase, i.e., a neuron group takes excessive
input from other neuron groups. We suppose that the intraconnections might be self-organized through
STDP to maintain a certain amount of neural activity (homeostasis) against excessive input from the
other neuron groups [29]. As a result of self-organization, the strength of intraconnections from
excitatory neurons to inhibitory neurons increases, which might cause oscillation of neural activities
with two peaks within frequency bands (see Figure 5). Several studies have reported that inhibitory
activation contributes to the induction of periodic patterns in brain activity [30,31].

Based on these results, we hypothesize a possible mechanism of the reduction in the complexity
of neural activity in the synaptic network with local over-connectivity, as follows:

1. The firing rates of neurons in a neuron group with local over-connectivity increases because of
excessive input from the connected neuron groups (see Figure 7). As a result, to maintain a certain
amount of the activities of neurons, strengthened intraconnections from excitatory to inhibitory
neurons and weakened intraconnections between excitatory neurons are self-organized by STDP
(see Figure 8).

2. The increase in the strength of intraconnections to inhibitory neurons induces the oscillation of
excitatory neurons, which increases the intensity of the several specific frequency components of
neural activity (see Figure 5).

3. The signals of specific frequency components become robust. As a result, complexity decreases
(Figure 6).

4.2. Relationship with Studies on ASD

In the current study, we found that the complexity of neural activity in a neuron group with local
over-connectivity in the synaptic network decreases. This result aligns with the lower complexity of the
EEG signals of ASD children (2 to 24 months) [11]. Therefore, in our model, the ASD-like low complexity
of neural activity occurs when a neuron group in the synaptic network has local over-connectivity,
as shown in Figure 6. Ghanbari et al. [32] showed that the complexity of MEG signals in several
regions of the brain of ASD children (6–15 years) increased. We suppose that this discrepancy may
be related to developmental changes in the anatomical network structure. Solso et al. [12] showed
that over-connectivity was mainly found in the extremely early stages of development; this was
not observed in ASD children aged 3–4 years. Therefore, our model shows the possibility that the
local over-connectivity decreases the complexity of neural activity in ASD children aged 2–24 months.
However, in the case of children aged 6–15 years, who were the research targets in the study of Ghabari
et al. [32], we estimate that fluctuations in the complexity of brain activity in ASD may occur owing to
factors other than local over-connectivity. Future studies may clarify the exact relationship between the
structure of the anatomical network and the brain activity in ASD using a computational model that
includes the developmental changes in the anatomical network structure with time.
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4.3. Limitations and Future Work

Several limitations of this study should be acknowledged. A fundamental network was constructed
based on the WS model to focus on the topological structure of a macroscopic network. However, it is
well known that the anatomical network is a scale-free [33] network, which has a heavy-tailed distribution
of the degree of nodes, or rich-club networks [34], which have connections between the nodes that have
high degree centrality. As shown in Figure 6, our results show that the degree centrality in a synaptic
network is an important factor for inducing different complexities of neural activity. Investigating
neural activities when such network structures are used as a fundamental network is an interesting
point. In addition, we did not consider distance between neuron groups in the macroscopic network.
Considering the relative distance between neuron groups which may relate to information transmission
delay is also an interesting topic [35]. Moreover, in our study, a randomly connected structure was used
for the neuron groups in the network model; however, it is well known that the cortex has various
laminar structures. Furthermore, numerous studies on ASD have suggested that the atypical balance of
excitatory to inhibitory neurons in the cortex induces altered neural connectivity and activity in brains
with ASD [36–38]. In the future, we should consider changing these kinds of parameters or structures.
This approach would provide a deep understanding about the relationship between the structure and
activity of the brain, at least for a few areas of the brain.

In the current model, we have not yet introduced external input or attached a body because the
purpose of our research was to understand the relationship between the brain structures related to the
complexity of spontaneous activity in the brain. However, the brains of humans and animals perceive
sensory signals and exhibit behaviors throughout the body. How the brain network is self-organized
through interactions with the environment, and how it influences behaviors are cutting-edge topics of
research in developmental science. Several studies have used computational modelling and shown
the importance of the interaction between the body and brain to exhibit diverse behavior [39,40],
to self-organize the brain [41], or to learn a task [42,43]. Furthermore, several studies have shown the
low complexity of brain activity or the abnormal structure of a functional network during a task [44]
while watching a video [45] or based on the video-EEG data [46]. It would be interesting to understand
how different anatomical network structures influence the flow of external information from between
different regions of a network. This would highly enrich this approach from the view of informational
theory. In any case, we believe that this study could help in achieving deeper understanding of the
mechanisms underlying the atypical behavior or brain activity of ASD by examining how neural
activity or behavior may change by connecting a body or external input to a physical network.

5. Conclusions

The purpose of this study was to understand how the structure of a macroscopic network structure
relates to the microscopic activity of a spiking neural network. In particular, we hypothesized that the
structural properties of a macroscopic anatomical brain network would induce lower complexity of
brain activity. To address this issue, we constructed a neural network using multiple neuron groups
that consisted of spiking neurons, and changed the clustering coefficient and shortest path length
in the network using the WS model. Then, we analyzed their spontaneous activity based on MSE.
The results of complex network theory analysis and neural activity for each neuron group in a synaptic
network showed that the local over-connectivity in the synaptic network decreased complexity and
enhanced the intensity of specific frequency components of brain activity.

Based on the experimental results, we proposed the hypothetical mechanism that a neuron
group with local over-connectivity self-organizes the intraconnections to maintain a certain amount
of neural activity against excessive external input from the connected neuron groups. As a result of
the hypothesis, the intensity of the specific frequency components of neural activity increases and,
therefore, the complexity of neural activity decreases.
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Appendix A

Figure A1. Multiscale entropy (MSE)-based complexity curves of each neuron group in a synaptic
network. (a) lattice network (pWS = 0.0); (b) a small-world network (pWS = 0.1); (c) a random network
(pWS = 1.0). The y-axis indicates sample entropy, and the x-axis indicates scale factor ε.

Figure A2. The differences of peak amplitude of spontaneous neural activity in some frequency
bands between neuron groups with low and high complexity when pWS = 0.0. We used 10
neuron groups with high and low complexity in each simulation as comparison data. The number
on above each violin plot denotes the average value for ten simulations. Wilcoxon signed-rank
test was used for statistical test. (a) amplitude in the 20–40 Hz band (Wilcoxon signed-rank test,
statistic = 6.0, p-value = 4.6706 × 10−18); (b) amplitude in the 40–60 Hz band (Wilcoxon signed-rank
test, statistic = 11.0, p-value = 5.4302 × 10−18).

http://www.mdpi.com/1099-4300/21/2/214/s1


Entropy 2019, 21, 214 15 of 20

Figure A3. Relationship between the connectivity structure and the complexity of neural activity.
Each marker corresponds to a neuron group in the network, and its color indicates the summation of
the sample entropy for all 80 scale factors. The x-axis indicates the degree centrality, and the y-axis
indicates the clustering coefficient.

Figure A4. Relationship between the peak frequency and the complexity of neural activity. (a) relationship
in the 0–20 Hz band; (b) relationship in the 20–40 Hz band; (c) relationship in the 40–60 Hz band. Each
marker corresponds to a neuron group in the network, and its color indicates the summation of the
sample entropy for all 80 scale factors. The x-axis indicates the peak frequency of the neural activity,
and the y-axis indicates the amplitude. Figure shows that the amplitude in increases as the complexity
of neural activity decreases in 20–40 Hz and 40–60 Hz bands. Furthermore, the peak frequency increases
as the complexity of neural activity decreases in the 40–60 Hz band. However, amplitude decreases as
the complexity of neural activity decreases in the 0–20 Hz band. This result indicates that the robust
frequency components in neural activity of the neuron groups with low complexity shifted to the high
frequency bands (20–40 Hz and 40–60Hz) from the low frequency bands (0–20 Hz).
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Figure A5. Relationship between the connectivity structure and the firing rate of excitatory and
inhibitory neurons. Each marker corresponds to a neuron group in the network, and its color indicates
the average firing rate of excitatory and inhibitory neurons. The x-axis indicates the degree centrality,
and the y-axis indicates the clustering coefficient. (a) relationship between structural properties and
firing rate of excitatory neurons; (b) relationship between structural properties and firing rate of
inhibitory neurons.

Figure A6. Relationship among the weight of intraconnection, structural properties, and complexity
of neural activity. (a) relationship among the weight of intraconnection from excitatory to excitatory
neuron, clustering coefficient based on the interconnection, and complexity; (b) relationship among
the weight of intraconnection from excitatory to inhibitory neuron, clustering coefficient based on the
interconnection, and complexity; (c) relationship among the weight of intraconnection from excitatory
to excitatory neuron, degree centrality based on the interconnection, and complexity; (d) relationship
among the weight of intraconnection from excitatory to inhibitory neuron, degree centrality based on
the interconnection, and complexity. Each marker corresponds to a neuron group in the network, and
its color indicates the summation of the sample entropy for all 80 scale factors. The x-axis indicates the
average of weight of interconnection, and the y-axis the structural properties of interconnection.
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Figure A7. Relationship between shortest path length and complexity for each neuron group. The x-axis
is the shortest path length, and the y-axis is the summation of the sample entropy for all 80 scale factors.

Appendix B. Complexity of Neural Activity without STDP

We conduct experiments of the complexity index for the network before the self-organization
by STDP to clarify the role of the self-organization while no spontaneous activity without tonic
input occurs before the self-organization. We analyze the activity with all network structures that
we adopted above with the random tonic inputs and the fixed initial weights. Figure A8 shows
the result of complexity index with clustering coefficient and degree centrality. There is no clear
relationship between the complexity and structural properties of synaptic network compared to
Figure A3. Therefore, the relationship between structural properties and complexity must be induced
by the self-organization under the macroscopic structure through STDP.

Figure A8. Relationship between the connectivity structure without STDP and the complexity of
neural activity with the tonic input. Duration for tonic input was set as 100 s. Here, we used the same
initial weights of the synaptic networks in Figure A3 and fixed the weights during the tonic input.
Each marker corresponds to a neuron group in the network, and its color indicates the summation of
the sample entropy for all 80 scale factors. The x-axis indicates the degree centrality, and the y-axis
indicates the clustering coefficient.
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