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Abstract: Recently, high-entropy alloy thin films (HEATFs) with nanocrystalline structures and
high hardness were developed by magnetron sputtering technique and have exciting potential
to make small structure devices and precision instruments with sizes ranging from nanometers
to micrometers. However, the strength and deformation mechanisms are still unclear. In this
work, nanocrystalline Al0.3CoCrFeNi HEATFs with a thickness of ~4 µm were prepared. The
microstructures of the thin films were comprehensively characterized, and the mechanical properties
were systematically studied. It was found that the thin film was smooth, with a roughness of less than
5 nm. The chemical composition of the high entropy alloy thin film was homogeneous with a main
single face-centered cubic (FCC) structure. Furthermore, it was observed that the hardness and the
yield strength of the high-entropy alloy thin film was about three times that of the bulk samples, and
the plastic deformation was inhomogeneous. Our results could provide an in-depth understanding
of the mechanics and deformation mechanism for future design of nanocrystalline HEATFs with
desired properties.
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1. Introduction

It is well known that among all the alloy composition design systems, high-entropy alloys (HEAs)
are a brand-new concept based on novel multi-component system composition designs. They contain
at least four or five principal metal components and simply form a single face-centered cubic (FCC),
body-centered cubic (BCC) or hexagonal close-packed (HCP) phase [1–6]. This novel concept is an
important breakthrough of the past 25 years [7,8], as it is completely different from the traditional alloy
design concepts in which one major component was selected, and other minor components were added
to improve their related physical and chemical performances. It is worth mentioning that HEAs not
only have simple phase structures, but also possess many excellent mechanical and physical properties,
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such as high tensile strength [9–11], good ductility at ambient and cryogenic temperatures [12,13],
superior wear and fatigue resistance [14], and strong radiation tolerance [15,16]. These unique features
qualify HEAs as potential engineering materials to meet the demanding requirements for complex and
harsh environment applications, particularly in the turbine, aerospace, and nuclear industries [17–21].
However, the chemical composition of HEAs contains multiple elements which would naturally raise
the cost for industrial application, and limit HEAs extensive development. As a consequence, to reduce
the cost for future industrial applications and take full advantage of the above excellent comprehensive
properties, HEA thin films (HEATFs) can be efficiently prepared and simultaneously coated on the
surface of industrial components, especially for those complex geometry components. In these cases,
the HEATFs will play an important role. The initial research of HEATFs is associated with the recent
rapid development of HEAs and the high throughput preparation idea [22–26]. As the geometric
size and microstructures of the thin films are different from the three-dimensional bulk samples, their
performances under loading and service conditions could be completely different [27,28]. So far,
HEATFs were verified to have remarkable effects on the hardness [24]. A series work on HEATFs was
done not only on the high throughput fabrication but also on the mechanical properties, including the
hardness and corrosion properties [29–36]. The previous work has greatly promoted the industrial
application of HEATFs. Unfortunately, the related deformation behaviors have not been clearly
revealed until now. To facilitate the use of HEATFs and provide a continuous coating technique, the
deformation behaviors and reliability of HEATFs merit further investigation. Therefore, in this study
we prepared the Al0.3CoCrFeNi HEATFs with a main simple FCC structure by magnetron sputtering,
and fabricated nano-scaled pillars on the surface of the thin film by focus ion beams (FIBs), then
utilized in situ scanning electron microscopy (SEM) compression to study the deformation behaviors
of the HEATFs.

2. Materials and Methods

The target with a composition of Al0.3CoCrFeNi was prepared by metallurgy with high-purity
(>99.99%) raw metal materials of aluminum, cobalt, chromium, iron, and nickel. The size of the target
is φ76.2 × 3.175 mm. The Al0.3CoCrFeNi HEATFs were deposited on silicon wafer substrates by
magnetron sputtering. Before putting the target in the vacuum chamber, it was cleaned by argon
ion bombardment for about 2 min to remove the oxide or contaminants on the surface. To ensure
a uniform deposition a rotation speed of the silicon wafer substrate was set at 2 rpm. The surface
roughness of the as-deposited HEATFs was determined by white light interferometry (WLI) using
Wyko NT9300 Surface Profiler (Veeco Instruments, Plainview, NY, USA), while the surface morphology
and detail nanostructures were characterized by scanning electron microscopy (SEM) and atomic
force microscopy (AFM) (Bruker Dimension IconTM, Billerica, MA, USA) with ScanAsyst (Bruker
Dimension IconTM, Billerica, MA, USA) at room temperature. To investigate the phase structure of the
as-deposited HEATFs, high-energy synchrotron radiation X-ray in transmission mode at 11-ID-C of
Advanced Photon Source (APS) was used. The X-ray beam wavelength was 0.117418 Å. The detail
microstructures of the as-deposited HEATFs were observed by high-resolution transmission electron
microscopy (HRTEM) using a JEOL JEM-2100F instrument (JEOL, Akishima, Tokyo, Japan) operated
at 200 kV. The chemical composition was analyzed by the energy dispersive X-ray spectrometer
(EDS) equipped in the transmission electron microscopy (TEM). Nanoindentation experiments were
performed using a Hysitron TI750 nanoindenter (Hysitron, Inc., Minneapolis, MN, USA) with a
Berkovich tip. To avoid any potential effects of the substrate on the experiment, the indentation depth
was kept to be less than 10% of the whole thickness of the HEATFs. Micropillars were fabricated out of
the Al0.3CoCrFeNi HEAHFs by using a FEI Scios focused ion beam (FIB) (USA) (Thermo Scientific™,
Hillsboro, OR, USA) at 30 kV/10pA as the final etching condition. The height of the nanopillars was
kept to be less than the thickness of the Al0.3CoCrFeNi HEATFs. The in situ SEM compression tests
were conducted at room temperature using a PI 85 PicoIndenter (Hysitron Inc.) with a flat punch
diamond tip inside a FEI Quanta 450 FEG (USA) (Thermo Scientific™, Hillsboro, OR, USA), under
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displacement-control mode and at a strain rate of around 5×10-3 s-1. Raw load-displacement data
were used to calculate the engineering stress and strain.

3. Results and Discussion

Figure 1a,b show the two-dimensional (2D) and the three-dimensional (3D) surface roughness and
profiles of the as-deposited Al0.3CoCrFeNi HEATFs, respectively, and Figure 1c,d show the X-profile
and Y-profile of the corresponding positions selected on the HEATFs as marked in Figure 1a. It can be
clearly seen that there are fine undulating nanostructures on the surface of the Al0.3CoCrFeNi HEATFs
prepared by the magnetron sputtering deposition technique; however, the entire surface is very flat
and smooth, with a roughness Ra of less than 3.5 nm.
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Figure 1. Surface profiles of the Al0.3CoCrFeNi high-entropy alloy thin films (HEATFs) characterized
by white light interferometry (WLI) technique. (a) 2D surface profiles, (b) 3D surface profiles, (c,d): the
profiles of the x-axis and y-axis as marked in (a) respectively.

The SEM surface morphology and the specific fine nanostructures of the as-deposited
Al0.3CoCrFeNi HEATFs with a magnification of 50,000 times are shown in Figure 2a. It demonstrates
that these fine nanostructures are well-knit and compact. The thickness of the HEATFs is about 4 µm,
as shown in Figure 2b. To characterize the feature of the HEATFs in more detail, AFM scanning
experiments were further conducted. Figure 2c,d show the 2D and 3D AFM images of the surface
feature of the Al0.3CoCrFeNi HEATFs. Uniform nanostructures are clearly observed, and the heights
of these undulating nanostructures were less than 5 nm, which is well consistent with that typically
observed by the surface profile. All these experimental data verified that there were a lot of fine
nanostructures on the surface of the Al0.3CoCrFeNi HEATFs, and the surface was very smooth as a
whole, with a roughness Ra of less than 5 nm.

Figure 3a shows the TEM images and the corresponding EDS analysis of the Al0.3CoCrFeNi
HEATFs. It can be seen that there are a lot of nanocrystalline structures in the HEATFs, with a
grain size order of ~10 nm. The elemental distribution of the as-deposited HEATFs is homogenous.
The bright and dark places shown in the TEM-EDS images are ascribed to the uneven sample thickness.
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Quantitative analysis by EDS confirms that the chemical composition is nearly the same as the
composition of the sputtering target, as shown in Table 1.Entropy 2019, 21, x FOR PEER REVIEW 4 of 9 
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Figure 2. Surface morphologies and microstructures of the Al0.3CoCrFeNi HEATFs characterized in
detail by scanning electron microscopy (SEM) and atomic force microscopy (AFM). (a) The SEM image
of the surface morphologies, (b) the cross-section the HEATFs deposited on the silicon substrate, (c) the
AFM image of the surface structure, and (d) 3D surface structures of the HEATFs.
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Figure 3. Element distribution mapping for the Al0.3CoCrFeNi HEATFs by TEM-EDS. The top TEM
image shows the region analyzed. (a) Explanations for subfigure a; (b) explanations for subfigure
b; (c) explanations for subfigure c; (d) explanations for subfigure d; (e) explanations for subfigure e;
(f) explanations for subfigure f.
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Table 1. The chemical composition of the as-deposited Al0.3CoCrFeNi HEATFs compared with that of
the sputtering target.

Elements (at. %) Al Co Cr Fe Ni

Nominal target 6.977 23.256 23.256 23.256 23.256
As-deposited HEATFs 6.452 23.436 24.602 23.623 21.887

To obtain the phase structural information of the Al0.3CoCrFeNi HEATFs, high-energy
synchrotron radiation X-ray studies were undertaken. Figure 4a shows the X-ray line profiles of
the HEATFs. The (111), (200), (220), and (311) phase peaks were observed and identified to be a typical
FCC crystalline structure, whilst a small peak appeared before the (111) peak, which means that a
minor ordered BCC NiAl type phase structure was in the HEATFs [37]. The corresponding diffraction
patterns are exhibited in Figure 4b. The weak continuous rings certify that there are tiny polycrystalline
structures in the HEATFs. Interestingly, the diffraction rings of the HEATFs were discrete, with obvious
intensity differences, indicating that there were strong textures in the HEATFs. This event could be
ascribed to the preferred growth of the thin film induced by the silicon substrate. It should be noted
that a rigorous diffraction-intensity-distribution calculation of the solid solution phases responsible for
certain orientations in the HEATFs is worthy of a focused topic. However, it is beyond the scope of
this work. The synchrotron X-ray experimental results provide cogent evidence that the magnetron
sputtering technique is an effect way to prepare the HEATFs with a simple phase structure. Moreover,
it could also lead to a wide research range of HEAs, studying the corresponding properties from meso-
to nanometer regimes.
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Figure 5a shows the nanoindentation properties of the as-deposited HEATFs. Since a series of 4
× 4 matrix array indentation points were tested in sequence, the average values of elastic modulus
and hardness were accurately calculated and were identified to be about 186.01 GPa and 11.09 GPa,
respectively. It should be noted that the hardness of the HEATFs is about three times higher than that
of the as-cast bulk Al0.3CoCrFeNi HEA sample, but the elastic modulus is nearly the same [38,39]. This
enhanced hardness can be ascribed to the nanocrystalline strengthening mechanism which induced
the hardening by a large number of grain boundaries observed in Figure 3a. Figure 5b is the typical
nanoindentation load-depth curve of the HEATFs. It can be seen that as the loading force increases, the
depth of the indenter pressed into the film gradually increases. After unloading, an irreversible depth
was retained, indicating a plastic deformation has occurred on the surface of the HEATFs. Figure 5c
exhibits the SEM image of the impression mark. The indentation profiles are self-similar. A remarkable
pile-up (marked with red arrows) around the indentation can be clearly observed, suggesting that high
localized plastic deformation occurred during nanoindentation.
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To further characterize the mechanical properties of the Al0.3CoCrFeNi HEATFs, a nanopillar
sample with a diameter of 738 nm was fabricated from the HEATFs, and in situ SEM compression tests
were conducted on the nanopillar sample, as shown in Figure 6. The entire compression deformation
process of the nanopillar can be divided into the following stages. Initially, the nanopillar was
deformed elastically, and no significant trace appeared on the surface of the nanopillar, as shown
in Figure 6a. Secondly, with the increase of the compressive stress, a large localized metal flow and
plastic deformation occurred at the top part of the nanopillar, as marked with a red arrow in Figure 6b.
It indicates that the deformation of the Al0.3CoCrFeNi HEA nanopillar was inhomogeneous. After
that, it can be observed that a slip was generated at the top part of the nanopillar, which was marked
with a red arrow in Figure 6c. The occurrence of the slip is not only related to the plastic deformation,
but also has an impact on the work hardening and the serration behavior of the HEAs [40]. The
corresponding compression engineering stress–strain curve of the Al0.3CoCrFeNi HEA nanopillar is
shown in Figure 6d. The yield strength of the nanopillar is about 1024 MPa, which is also about three
times that of the bulk sample [38]. It is consistent with the above experimental results obtained by
nanoindentation, as the strength is directly proportion with the hardness. After yielding the nanopillar
exhibits work-hardening up to an ultrahigh strength. The compressive strength and corresponding
strain were ~2075 MPa and ~11.39%, respectively. Following this, softening dominates until final
fracture at a strain of ~12.14%. In general, the compression results further confirmed that the yield
strength of the Al0.3CoCrFeNi HEATFs is about three times that of the bulk samples, and the plastic
deformation is inhomogeneous.
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Figure 6. Compression properties for the Al0.3CoCrFeNi pillar with a diameter of 738 nm prepared
from the HEATFs. (a) Elastic deformation stage, (b) localized plastic deformation occurred at the top
of the pillar, (c) a slip generated at the top part of the pillar, (d) a typical compression engineering
stress–strain curve of the pillar.

4. Conclusions

In conclusion, the Al0.3CoCrFeNi HEATFs prepared by the magnetron sputtering technique were
smooth, with a surface roughness Ra of less than ~5 nm. The chemical composition was homogeneous
and amounts of nanocrystallines with a main single FCC phase structure formed in the HEATFs. The
hardness of the HEATFs was ~11.09 GPa, and the yield strength of the nanopillar prepared from
the HEATFs was ~1024 MPa. Both the hardness and the yield strength were about three times that
of the bulk samples. Simultaneously, it was found that the plastic deformation of the HEATFs was
inhomogeneous and localized. The present study could provide useful insights in the design and
application of HEATFs for functional micro- and nano-devices.
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