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On behalf of the Editor-in-Chief, Prof. Dr. Kevin H. Knuth, we are pleased to announce the
Entropy Best Paper Award for 2018.

Papers published in 2017 were preselected by the Entropy Editorial Office based on the number
of citations and downloads from the website. The winner nominations were made by a selection
committee, which was chaired by the Editor-in-Chief and supported by twelve Editorial Board
Members. The two top-voted papers have won the 2018 Entropy Best Paper Award and are shown
below (in no particular order):

Critical Behavior in Physics and Probabilistic Formal Languages
Henry W. Lin and Max Tegmark
Entropy 2017, 19(7), 299; doi:10.3390/e19070299
Available online: https://www.mdpi.com/1099-4300/19/7/299
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Henry W. Lin Max Tegmark 

Critical behavior, which describes the delay in long-range correlations as a power law with 
distance, is an interesting phenomenon that occurs in a wide variety of systems, physical or otherwise. 
We explore how natural language exhibits this phenomenon. Empirically, the mutual information 
decays in a similar way to a power law between symbols over a wide variety of texts. Theoretically, 
we analyze the decay of mutual information in various probabilistic models of natural language and 
find some broad criteria under which models may be expected to exhibit criticality. Our theorems are 
closely related to the results in statistical physics. Although the most naive models fail to reproduce 
power law correlations, more realistic models, such as context-free grammars, capture these 
correlations. Based on these ideas, we propose a simple quantitative test of any generative model of 
natural language. Interestingly, even modern recurrent neural networks with so-called long short-
term memory (LSTM), which were designed to capture long-range correlations, struggle to ace our 
test. 
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distance, is an interesting phenomenon that occurs in a wide variety of systems, physical or otherwise.
We explore how natural language exhibits this phenomenon. Empirically, the mutual information
decays in a similar way to a power law between symbols over a wide variety of texts. Theoretically, we
analyze the decay of mutual information in various probabilistic models of natural language and find
some broad criteria under which models may be expected to exhibit criticality. Our theorems are closely
related to the results in statistical physics. Although the most naive models fail to reproduce power law
correlations, more realistic models, such as context-free grammars, capture these correlations. Based on
these ideas, we propose a simple quantitative test of any generative model of natural language.
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Luca Faes Daniele Marinazzo Sebastiano Stramaglia 

The dynamics of several real-world network systems in physics, neuroscience, climatology, 
biology, econometrics and other fields often arise from complex interactions among different 
subsystems. To study these interactions, information-theoretic approaches are often applied to the 
multivariate stochastic processes representing the system dynamics. In particular, information 
decomposition methods allow to quantify the entropy produced by each individual process or stored 
in it, the entropy transferred between processes and the synergetic or redundant amounts of entropy 
shared by two sources that transfer information towards a target process. 

Moreover, a common trait of these network processes is that they typically exhibit dynamics 
spanning several temporal scales, which can range from milliseconds to thousands of years. In this 
context, our study addresses the fundamental problem of performing information decomposition 
across multiple time scales. This problem is currently unsolved because the change in the scale alters 
the causal relations between systems in a way that is still unknown. This is further complicated by 
the fact that the empirical approaches proposed so far to quantify causality for rescaled dynamics 
basically fail due to evident estimation issues. These issues actually constitute a bottleneck that needs 
to be settled in order to open the new research area of multiscale analysis of multivariate dynamic 
systems. 

Our study serves exactly this purpose as it introduces the first theoretical framework that allows 
for an exact multiscale analysis of information transfer, redundancy and synergy in networks of 
multiple interacting stochastic processes. Under the assumption of linearity, we describe the process 
dynamics exploiting the state-space representation of multivariate autoregressive processes and 
derive exact expressions for the information that groups of source processes convey individually 
(unique information), redundantly (shared information) or only jointly (synergistic information) 
about an assigned output process. 

These exact formulations result in a high computational reliability of the associated estimation 
framework, which is demonstrated in exemplary simulated systems. After this, the framework is 
applied to cortical neural signals measured in a patient with drug-resistant epilepsy. This illustrated 
that epilepsy is a network phenomenon associated with the emergence of information flowing from 
subcortical to cortical regions, wherein multiscale information decomposition helps to detect the 
localization of epileptogenic areas. Nevertheless, we emphasize the high generality of our approach, 
which is currently used to analyze climatological and physiological multivariate time series, and can 
be potentially applied to any context where multivariate time series can be measured from multiple 
interacting dynamic systems. Such a generality, together with the highly interdisciplinary nature of 
the topics treated in the work and with the availability of the algorithms implemented in a Matlab 
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The dynamics of several real-world network systems in physics, neuroscience, climatology,
biology, econometrics and other fields often arise from complex interactions among different
subsystems. To study these interactions, information-theoretic approaches are often applied to the
multivariate stochastic processes representing the system dynamics. In particular, information
decomposition methods allow to quantify the entropy produced by each individual process or stored
in it, the entropy transferred between processes and the synergetic or redundant amounts of entropy
shared by two sources that transfer information towards a target process.

Moreover, a common trait of these network processes is that they typically exhibit dynamics
spanning several temporal scales, which can range from milliseconds to thousands of years. In this
context, our study addresses the fundamental problem of performing information decomposition
across multiple time scales. This problem is currently unsolved because the change in the scale alters
the causal relations between systems in a way that is still unknown. This is further complicated by the
fact that the empirical approaches proposed so far to quantify causality for rescaled dynamics basically
fail due to evident estimation issues. These issues actually constitute a bottleneck that needs to be
settled in order to open the new research area of multiscale analysis of multivariate dynamic systems.

Our study serves exactly this purpose as it introduces the first theoretical framework that allows
for an exact multiscale analysis of information transfer, redundancy and synergy in networks of
multiple interacting stochastic processes. Under the assumption of linearity, we describe the process
dynamics exploiting the state-space representation of multivariate autoregressive processes and derive
exact expressions for the information that groups of source processes convey individually (unique
information), redundantly (shared information) or only jointly (synergistic information) about an
assigned output process.

These exact formulations result in a high computational reliability of the associated estimation
framework, which is demonstrated in exemplary simulated systems. After this, the framework is
applied to cortical neural signals measured in a patient with drug-resistant epilepsy. This illustrated
that epilepsy is a network phenomenon associated with the emergence of information flowing from
subcortical to cortical regions, wherein multiscale information decomposition helps to detect the
localization of epileptogenic areas. Nevertheless, we emphasize the high generality of our approach,
which is currently used to analyze climatological and physiological multivariate time series, and can
be potentially applied to any context where multivariate time series can be measured from multiple
interacting dynamic systems. Such a generality, together with the highly interdisciplinary nature of the
topics treated in the work and with the availability of the algorithms implemented in a Matlab toolbox
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freely distributed with the article, will hopefully encourage the diffusion of multiscale information
decomposition in a wide range of applicative fields.
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