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Abstract: A numerical study on natural convection in a cubical cavity with partial top and bottom
openings is performed in this paper. One of the vertical walls of the cavity has higher temperature than
that of the opposite one; the remaining walls are insulated perfectly. Three-dimensional simulations of
governing equations have been performed using a finite volume technique. The results are presented
for different parameters such as opening length and Rayleigh number. It is observed that heat transfer
rate and fluid flow can be controlled via opening ratio size and Rayleigh number.

Keywords: open cavity; natural convection; entropy; 3D flow

1. Introduction

Convective heat transfer represents an important issue for various practical and engineering fields
such as electronic cooling, solar heaters or building design. To make an efficient design, heat transfer
and fluid flow are highly important parameters for these kinds of thermal systems.

Abib and Jaluria [1] computationally studied the free convection in cavities with partial openings.
They solved the governing equation using the stream-function vorticity formulation based on the
Boussinesq approximation. They noted that an increase of Ra causes a decrease in size of the
recirculation cell that moves toward the vertical wall. Based on the Finite Volume Method (FVM),
Polat and Bilgen [2] solved governing equation of natural convection in an opened tilted shallow
cavitiy. Bilgen and Oztop [3] studied numerically the natural convection in an inclined cavity having
partial opening. They observed that the inclination angle can be a means of control of heat transfer
and flow structure inside the cavity. Bondareva et al. [4] used the heat-line visualization to analyze
the flow structure and heat transfer in an open cavity filled with nanofluid and equipped with
thick walls. Specifically, they solved a conjugate problem. Koufi et al. [5] studied numerically the
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mixed convection in open cavities. The authors considered the turbulent regime and tested the
effects of the openings. Malekshah and Salari [6] performed both numerical and experimental
analyses of free convection in cuboid geometries containing two immiscible fluids. Singh and
Singh [7] investigated the combined radiation natural convection in inclined open cavities using
the FVM. They concluded that the inclination is strongly determinant on heat transfer. Based on the
Lattice Boltzmann Method (LBM), Sheikholeslami [8] investigated the hydrothermal behavior of the
Magnetohydrodynamic (MHD) convection of nanofluid in an open cavity filled with porous media.
He concluded that the rate of fluid exiting the cavity through the openings increases with Da and
Ra. Bondareva et al. [9] used heat-line visualization to study the MHD flow in a wavy open cavity.
Oztop et al. [10] considered three-dimensional partially open enclosures and performed a numerical
investigation on three-dimensional natural convection with an evaluation of the different kinds of
entropy generations.

Oztop et al. [11] studied the 2D natural convection in partially open cavities filled with
porous media. They found that the increase of Grashof number increases the rate of heat transfer.
Hinojosa et al. [12] analyzed the irreversibility generated by the natural convective flow and surface
thermal radiation in a square open cavity. The surface thermal radiation was found to cause an
important increase of the overall entropy generation. Hussain and Mustafa [13] studied the natural
convection of a nanofluid in a locally heated parallelogrammic cavity having openings in its walls.

Singh and Singh [14] made a numerical solution on 2D natural convection in cavities with opened
top wall considering the surface radiation. The effect of the volumetric heat generating source location
on temperature field was studied. Correlations allowing the estimation of the maximum dimensionless
temperature were proposed.

Bilgen and Muftuoglu [15] imposed a uniform heat flux on bouandries of open cavities. They
found that heat transfer and the volume flow rates increases with Ra. Also, other studies related
with open cavities and natural convection can be found in the literature, e.g., Prakash et al. [16],
Gonzalez et al. [17] and Mohamad et al. [18]. Entropy generation can be calculated from the obtained
data of temperature and velocities. It gives an opportunity to obtain energy losses inside the system. A
numerical analysis of entropy production in an open cavity with pulsating flow in a horizontal channel
has been presented by Zamzari et al. [19]. In a similar work, Mehrez et al. [20] performed work on
entropy generation of nanofluids flow in an open cavity. Other works related to the subject can be
found in [21–33].

In this work, a computational analysis on heat transfer, entropy generation and fluid flow due to
natural convection in a cavity with partial opening from top and bottom sides is performed. Based on
authors’ knowledge and the above literature, this work is a first step for the understanding of such
3D configuration.

2. Physical Model

The studied configuration is presented with coordinates in Figure 1. The model consists of a
cubical cavity having two openings, i.e., one each at the bottom and ceiling. The right and left walls
are differentially heated, and all remaining walls are considered adiabatic. The fluid (air) is considered
incompressible, and the Boussinesq approximation is considered.
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Figure 1. Physical model with boundary conditions and coordinates. 

3. Mathematical Formulation 

The 3D formalism ( )ψ ω−
   is used to simplify the treatment and the resolution of the equations 

governing the studied configuration by suppressing the pressure gradients terms. The vector 
potential (ψ


) and vorticity (ω ) in 3D geometries are expressed by: 

' 'Vω = ∇ ×
   and ' 'V ψ= ∇×

    (1) 

In the dimensionless form, equations governing the phenomenon are: 
2ω ψ− = ∇

   (2) 

( ) ( ) Pr ;0;T TV V Ra
t z x
ω ω ω ω∂ ∂ ∂ + ×∇ − ×∇ = Δ + × × − ∂ ∂ ∂ 

      (3) 

T V T T
t

∂ + ×∇ = Δ
∂


 (4) 

The dimensionless numbers in the above equations can be expressed as:  

Pr ν
α

= and 
3'g T lRa β

ν α
× ×Δ ×=

×
 (5) 

Boundary conditions 
The considered boundary conditions are as follows: 

Temperature: 

1T =  at 0x =  (6) 

0T =  at 1x =  (7) 

0T
n

∂ =
∂

 on all other walls (8) 

At open boundary: in cT T=  if 0n V× <  and 0
out

T
n

∂ =
∂

 if 0n V× ≥  (9) 

Velocities 

Figure 1. Physical model with boundary conditions and coordinates.

3. Mathematical Formulation

The 3D formalism (
→
ψ −→ω) is used to simplify the treatment and the resolution of the equations

governing the studied configuration by suppressing the pressure gradients terms. The vector potential

(
→
ψ) and vorticity (

→
ω) in 3D geometries are expressed by:

→
ω′ =

→
∇×

→
V ′ and

→
V ′ =

→
∇×

→
ψ ′ (1)

In the dimensionless form, equations governing the phenomenon are:

−→ω = ∇2→ψ (2)

∂
→
ω

∂t
+ (
→
V ×∇)→ω − (

→
ω ×∇)

→
V = ∆

→
ω + Ra× Pr×

[
∂T
∂z

; 0;−∂T
∂x

]
(3)

∂T
∂t

+
→
V ×∇T = ∆T (4)

The dimensionless numbers in the above equations can be expressed as:

Pr =
ν

α
and Ra =

g× β× ∆T × l′3

ν× α
(5)

Boundary conditions

The considered boundary conditions are as follows:
Temperature:

T = 1 at x = 0 (6)

T = 0 at x = 1 (7)

∂T
∂n

= 0 on all other walls (8)

At open boundary : Tin = Tc if n×V < 0 and
∂T
∂n

∣∣∣∣
out

= 0 if n×V ≥ 0 (9)
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Velocities
Vx = Vy = Vz = 0 on all walls (10)

At open boundaries :
∂Vx

∂y
=

∂Vy

∂y
=

∂Vz

∂y
= 0 (11)

Vorticities

ωx = 0, ωy = −∂Vz

∂x
, ωz =

∂Vy

∂x
at x = 0 and 1 (12)

ωx =
∂Vz

∂y
, ωy = 0, ωz = −

∂Vx

∂y
at y = 0 and 1 (13)

ωx = −
∂Vy

∂z
, ωy =

∂Vx

∂z
, ωz = 0 at z = 0 and 1 (14)

Vector potential:
∂ψx

∂x
= ψy = ψz = 0 at x = 0 and 1 (15)

ψx =
∂ψy

∂y
= ψz = 0 at y = 0 and 1 (16)

ψx = ψy =
∂ψz

∂z
= 0 at z = 0 and 1 (17)

The generated entropy is expressed by:

S′gen = − 1
T′2
×→q ×

→
∇T′ +

µ

T′
× ϕ′ (18)

With:

φ′ = 2
[(

∂V′x
∂x′

)2
+
(

∂V′y
∂y′

)2
+
(

∂V′z
∂z′

)2
]
+
(

∂V′y
∂x′ + ∂V′x

∂y′

)2
+
(

∂V′z
∂y′ +

∂V′y
∂z′

)2
+
(

∂V′x
∂z′ + ∂V′z

∂x′

)2
(19)

Thus:

S′gen = k
T′20

[(
∂T′
∂x′

)2
+
(

∂T′
∂y′

)2
+
(

∂T′
∂z′

)2
]
+ µ

T0


2×

[(
∂V′x
∂x′

)2
+
(

∂V′y
∂y′

)2
+
(

∂V′z
∂z′

)2
]

+
(

∂V′y
∂x′ + ∂V′x

∂y′

)2
+
(

∂V′z
∂y′ +

∂V′y
∂z′

)2
+
(

∂V′x
∂z′ + ∂V′z

∂x′

)2

 (20)

The dimensionless local entropy generation is expressed as:

Ns = S′gen
1
k

(
lT0

∆T

)2
(21)

Ns =

[(
∂T
∂x

)2
+
(

∂T
∂y

)2
+
(

∂T
∂z

)2
]

+φ×
{

2
[(

∂Vx
∂x

)2
+
(

∂Vy
∂y

)2
+
(

∂Vz
∂z

)2
]
+

[(
∂Vy
∂x + ∂Vx

∂y

)2
+
(

∂Vz
∂y +

∂Vy
∂z

)2
+
(

∂Vx
∂z + ∂Vz

∂x

)2
]} (22)

with φ = µα2Tm
l2k∆T2 is the irreversibility coefficient.

The total dimensionless entropy generation is:

Stot =
∫
v

Nsdv =
∫
v

(
Ns−th + Ns− f r

)
dv = Sth + S f r (23)
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Average Bejan number (Be) is evaluated using the following expression:

Be =
Sth

Sth + S f r + SJ
(24)

Local and average Nusselt numbers are expressed respectively using:

Nu =
∂T
∂x

∣∣∣∣
x=0

and Nuav =

1∫
0

1∫
0

Nu dy dz (25)

The solutions of the above described governing equations were obtained using a code developed
in the FORTRAN language. The FVM is used to develop the governing equations, the convective
terms and temporal derivatives are discretized via the central-difference scheme and the fully implicit
procedure, respectively. The solution is considered satisfactory if:

1,2,3

∑
i

max
∣∣∣ψn

i − ψn−1
i

∣∣∣
max

∣∣ψn
i

∣∣ + max
∣∣∣Tn

i − Tn−1
i

∣∣∣ ≤ 10−4 (26)

4. Verification and Grid Sensitive Study

As first verification the results of the present code have been compared with the 2D results of
Bilgen and Oztop [3]. As shown in Figure 2, a good concordance in the flow structure and temperature
field is encountered. A second verification based on 3D works of Wakashima and Saitho [34] for air
filled cubic cavity is conducted and presented in Table 1. It can be concluded from the table that the
code gives satisfactory results compared with those presented in the literature.Entropy 2019, 21 6 
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Table 1. Comparison with results of Wakashima and Saitho [34] (presented between parentheses).

Ra ψz
(center)

ωz
(center) Nuav

104 0.05528 (0.05492) 1.1063 (1.1018) 2.062 (2.062)

105 0.034 (0.03403) 0.262 (0.2573) 4.378 (4.366)

106 0.01972 (0.01976) 0.1284 (0.1366) 8.618 (8.6097)

The grid sensitivity test has been performed for Pr = 0.7, Ra = 105 and d = 0.5. The average Nusselt
number and the maximum of x-component velocity were used as testing parameters. Four spatial
meshes of 613, 713, 813 and 913 were compared. The results of the grid dependency test are presented
in Table 2. The increases from the grid 813 to 913 are 0.149% for Nuav and 0.734% for Vxmax. Thus, for
computational economy and accuracy, spatial mesh size of 813 and time step of 10−4 are chosen to
perform all simulations in the present work.

Table 2. Grid sensitivity test for Pr = 0.7, Ra = 105, and d = 0.5.

Grid Nuavg Vxmax

613 7.62 135.442
713 7.6571 137.565
813 7.71246 141.871
913 7.724 142.913

5. Results and Discussion

A numerical study is performed to investigate the natural convection heat transfer and fluid flow
in a cavity with partially opened top and bottom sides. The effects of Ra and the dimension of the
opening are highlighted.

Figure 3 illustrates the velocity vector projections and magnitude of velocity at z = 0.5 for Ra = 105

and different opening ratios. For d = 0.2, a huge vortex is located on the right side. The size of this
clockwise circulating cell is reduced for d = 0.4. It becomes smaller and is pushed to right bottom
side for d = 0.6. For d = 0.8 the cell. The flow goes from the bottom to the top opening, and lines are
almost parallel to vertical walls with the very small circulating cell becoming very small. For d = 1, the
circulation cell disappears and the flow passes directly from the bottom to the top of the cavity, except
at the top right region, where the fluid enters and leaves from the top opening. It is interesting to note
that flow comes into the cavity from the top side and dissipates suddenly for fully opened cases. In all
cases, no symmetric structure was encountered.

In order to show the 3D structure of the flow, Figure 4 illustrates some particles trajectories for
different opening widths at Ra = 105. The obtained results are compared with a fully opened case.
As seen from the figure, the opening ratio directly effects the circulation cell dimension and location.
For a fully opened case, no circulation cell is formed inside the cavity. This is an interesting result; flow
does not have any circulation near the hot side for all cases due to a higher flow velocity. Due to the
existence of circulation vortexes (for d < 1), the fluid passes transversally through the enclosure, which
represents a purely 3D characteristic. For all presented cases, the circulation vortexes are convergent
from the front and back walls to the center of the cavity.
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As seen from the results of the temperature fields presented in Figure 5, iso-surfaces of temperature
are pushed to the heated wall with increases in the opening ratio. This result is due to the increase of
the flow velocity created by the presence of the openings. For d = 0.2, vertical stratification exists in the
central region of the cavity due to the great size of the circulation vortex. By increasing the openings
size, the vertical stratification disappears and the iso-surfaces of temperature become more piled near
the hot wall due to the disappearance of the recirculation vortexes caused by the direct flow between
the bottom and top openings.
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Local entropy-generated contours at z = 0.5 plan are shown in Figures 6–8 for different opening
sizes and different Rayleigh numbers. For low Rayleigh numbers and small opening ratios, thermal
entropy generation (Sth) is distributed across the entire domain. By increasing the Rayleigh number,
Sth becomes concentrated near the hot wall, and by increasing d, it becomes concentrated near the
bottom right corner due to the increase of temperature gradients in this region, as shown in Figure 5.
In contrast to thermal entropy generation, frictional irreversibility becomes distributed across the
entire cavity by increasing the opening ratio due to the enlargement of the domain from where the flow
passes from the bottom to the top opening, causing an intensification of the flow, and consequently, an
increase of the fluid-fluid friction. In all cases, the total entropy profile is similar to that of the thermal
one, showing a dominance of Sth compared to Sfr, especially for low Rayleigh numbers, where Sth
dominates in the domain. For higher Ra, the dominance is more pronounced on the right side of the
cavity. This ascertainment is boosted by the Bejan number profile.
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Figure 6. Local entropy generations at (z = 0.5) plan, for d = 0.1.



Entropy 2019, 21, 116 10 of 15

Entropy 2019, 21 9 

 

Sf
r 

  

St
ot
 

  

Be
 

Figure 6. Local entropy generations at (z = 0.5) plan, for d = 0.1. 

 Ra = 103 Ra = 105 

St
h 

  

Sf
r 

  

0.085
0.015

0.
02

0.04
0.01

0.005

953515

45
15

10

40
15

5

0.9
1.2

1.5

0.9

0.6
0.3

5.74.2

3.6

2.4

1.5
1.2

95
2010

105

70

20

35

25
10

0.92
0.98

0.86
0.97

0.99

0.99

0.05
0.1

0.55

0.75
0.85

0.9

0.
5

0.7

0.2
0.05

0.
35

0.8

0.7

13.5
12
9.75

8.25
5.25

3.75

2.25
1.5

0.
75

98
56

28

14 7

0.05

0.
07

0.01 0.08 0.02

0.0
050.02

0.03

0.01

0.005

96
112

56 16
32
8

Entropy 2019, 21 10 

 

St
ot
 

  

Be
 

  

Figure 7. Local entropy generations at (z = 0.5) plan, for d =0.5. 

 Ra = 103 Ra = 105 

St
h 

  

Sf
r 

  

St
ot
 

  

13.6

10.4

8.8
4.8

3.2

1.6
0.8

195
105

60

90
30
15

0.95
0.9
0.75
0.45
0.25

0.05

0.95
0.85

0.
75

0.5

0.5

0.85

0.
4

0.1

108

12

36 24

187
102

68
51

34
17

0.14

0.0
7

0.02

0.010.
11

12
0

56 24

16
64

14

126

42 198

16
2

90

36
54

Figure 7. Local entropy generations at (z = 0.5) plan, for d = 0.5.



Entropy 2019, 21, 116 11 of 15

Entropy 2019, 21 10 

 

St
ot
 

  

Be
 

  

Figure 7. Local entropy generations at (z = 0.5) plan, for d =0.5. 

 Ra = 103 Ra = 105 

St
h 

  

Sf
r 

  

St
ot
 

  

13.6

10.4

8.8
4.8

3.2

1.6
0.8

195
105

60

90
30
15

0.95
0.9
0.75
0.45
0.25

0.05

0.95
0.85

0.
75

0.5

0.5

0.85

0.
4

0.1

108

12

36 24

187
102

68
51

34
17

0.14

0.0
7

0.02

0.010.
11

12
0

56 24

16
64

14

126

42 198

16
2

90

36
54

Entropy 2019, 21 11 

 

Be
 

  

Figure 8. Local entropy generations at (z = 0.5) plan, for d =0.9. 

Figure 9a–e present the variations of average Nusselt number, thermal, viscous and total entropy 
generations and Bejan number with opening ratio. It is observed that higher heat transfer occurs for 
higher values of Ra, and that heat transfer increases almost linearly with opening ratio. This increment 
is clear for the lowest value of the Rayleigh number. Similarly, thermal entropy generation increases 
with both Rayleigh numbers and opening ratio almost linearly. But there is a huge increment for fully 
opened cavities.  

The opening ratio becomes insignificant on viscous entropy generation for lower values of 
Rayleigh number. In contrast, a wavy distribution is formed for entropy generation due to fluid 
friction versus opening ratio. It is an interesting that there is a maximum value around d = 0.2. This 
result can serve for optimization purposes. The variation of total entropy generation shows a similar 
trend with thermal entropy generation except for high Ra and low opening sizes. The Bejan number 
is almost constant with opening ratio for lower Rayleigh numbers, and is around of 1, showing the 
dominance of thermal entropy generation. In contrast, a linear increase occurs for high Rayleigh 
numbers. 

  

  

0.05
0.25
0.6
0.8
0.9

0.
95

0.35

0.
65

0.95
0.9

0.85

0.75

0.6

0.
35

0.1

1

3

5

7

9

11

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u a

v

d

Ra = 1000
Ra = 10000
Ra = 100000

(a) 

1

2

3

4

5

6

7

8

9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S t
h

d

Ra = 1000
Ra = 10000
Ra = 100000

(b) 

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S f
r

d

Ra = 1000
Ra = 10000
Ra = 100000

(c) 

0.5

2.5

4.5

6.5

8.5

10.5

12.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S f
ot

d

Ra = 1000
Ra = 10000
Ra = 100000

(d) 

Figure 8. Local entropy generations at (z = 0.5) plan, for d = 0.9.

Figure 9a–e present the variations of average Nusselt number, thermal, viscous and total entropy
generations and Bejan number with opening ratio. It is observed that higher heat transfer occurs for
higher values of Ra, and that heat transfer increases almost linearly with opening ratio. This increment
is clear for the lowest value of the Rayleigh number. Similarly, thermal entropy generation increases
with both Rayleigh numbers and opening ratio almost linearly. But there is a huge increment for fully
opened cavities.
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The opening ratio becomes insignificant on viscous entropy generation for lower values of
Rayleigh number. In contrast, a wavy distribution is formed for entropy generation due to fluid friction
versus opening ratio. It is an interesting that there is a maximum value around d = 0.2. This result can
serve for optimization purposes. The variation of total entropy generation shows a similar trend with
thermal entropy generation except for high Ra and low opening sizes. The Bejan number is almost
constant with opening ratio for lower Rayleigh numbers, and is around of 1, showing the dominance
of thermal entropy generation. In contrast, a linear increase occurs for high Rayleigh numbers.
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6. Conclusions

A numerical study has been performed to examine the heat transfer and fluid flow in a cubical
cavity with top and bottom openings. The main findings can be listed as
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• Heat transfer enhances with increasing the opening ratios and Rayleigh numbers.
• The flow field can be controlled in a cavity with the width of opening part. Both the dimension

and location of circulation cells can be controlled.
• The novelty of this work was to undertake an analysis of the natural cooling and natural

ventilation problem of a model room. Thus, the results can be used for building ventilation.
• As expected, the flow is more pronounced near of heated part compared to other regions.
• The obtained results can be used for some kinds of filters or heating and cooling systems.
• Increasing the opening part increases the entropy generation almost linearly for lower values of

the Rayleigh number.
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Nomenclature

Cp Specific heat at constant pressure (J/kg·K)
d Dimensionless opening width
g Gravitational acceleration (m/s2)
h Dimensionless opening length, h’/l’
k Thermal conductivity (W/m·K)
l Dimensionless cavity width
Nu Local Nusselt number
Nuav Average Nusselt number
Pr Prandtl number
Ra Rayleigh number
t Dimensionless time (t′ × α/l2)
T Dimensionless temperature [(T′ − T′c)/(T′h − T′c)]
T′c Cold temperature (K)
T′h Hot temperature (K)
→
V Dimensionless velocity vector (

→
V
′
·l/α)

x, y, z Dimensionless Cartesian coordinates (x′/l, y′/l, z′/l)
Greek Symbols
α Thermal diffusivity (m2/s)
β Thermal expansion coefficient (1/K)
ρ Density (kg/m3)
µ Dynamic viscosity (kg/m·s)
ν Kinematic viscosity (m2/s)
→
ψ Dimensionless vector potential (

→
ψ ′/α)

→
ω Dimensionless vorticity (

→
ω
′
× α/l2)

∆T Dimensionless temperature difference
Subscripts
av Average
x, y, z Cartesian coordinates
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