Article

New Construction of Maximum Distance Separable (MDS) Self-Dual Codes over Finite Fields

Aixian Zhang * and Zhe Ji
Department of Mathematical Sciences, Xi'an University of Technology, Xi'an 710054, China; 2170920001@stu.xaut.edu.cn
* Correspondence: zhangax@xaut.edu.cn; Tel.: +86-029-8966-7695

Received: 24 December 2018; Accepted: 17 January 2019; Published: 22 January 2019

Abstract

Maximum distance separable (MDS) self-dual codes have useful properties due to their optimality with respect to the Singleton bound and its self-duality. MDS self-dual codes are completely determined by the length n, so the problem of constructing q-ary MDS self-dual codes with various lengths is a very interesting topic. Recently X. Fang et al. using a method given in previous research, where several classes of new MDS self-dual codes were constructed through (extended) generalized Reed-Solomon codes, in this paper, based on the method given in we achieve several classes of MDS self-dual codes.

Keywords: MDS code; self-dual code; generalized reed-solomon code; extended generalized reed-solomon code

1. Introduction

Let \mathbb{F}_{q} be the finite field with q elements. A q-ary $[n, k, d]$ linear code \mathcal{C} is a k-dimensional subspace of \mathbb{F}_{q}^{n} with minimum (Hamming) distance d. If the parameters $[n, k, d]$ satisfy $k+d=n+1$, the code is called an MDS (maximum distance separable) code. A self-dual code is a linear code satisfying $\mathcal{C}=\mathcal{C}^{\perp}$. A linear complementary-dual code is a linear code satisfying $\mathcal{C} \cap \mathcal{C}^{\perp}=\{\mathbf{0}\}$.

The study of MDS self-dual codes has attracted a great deal of attention in recent years due to its theoretical and practical importance. The center of the study of MDS codes includes the existence of MDS codes [1], classification of MDS codes [2], balanced MDS codes [3], non-Reed-Solomon MDS codes [4], complementary-dual MDS codes [5,6], and lowest density MDS codes [7].

As the parameters of an MDS self-dual code are completely determined by the code's length n, the main interest here is to determine the existence and give the construction of q-ary MDS self-dual codes for various lengths. The problem is completely solved for the case where q is even [8]. Many MDS self-dual codes over finite fields of odd characteristics were constructed [9-14].

In [11], Jin and Xing constructed several classes of MDS self-dual code from generalized Reed-Solomon code. Yan generalized Jin and Xing's method and constructed several classes of MDS self-dual codes via generalized Reed-Solomon codes and extended generalized Reed-Solomon codes [14]. In [12], Ladad, Liu and Luo produced more classes of MDS self-dual codes based on [11] and [14]. In [9], based on the [11,12,14] more new parameter MDS self-dual codes were presented. Based on the method raised in [9], we present some classes of MDS self-dual codes.

2. Preliminaries

In this section we introduce some basic notations of generalized Reed-Solomon codes and extended generalized Reed-Solomon codes. For more details, the reader is referred to [15].

Throughout this paper, q is a prime power, \mathbb{F}_{q} is the finite fields with q elements and let n be a positive integer with $1<n \leq q$. For any $x \in \mathbb{F}_{q^{2}}$, we denote by \bar{x} the conjugation of x. Given an
$[n, k, d]$ linear code \mathcal{C}, its Euclidean dual code (resp. Hermitian dual code) is denoted by \mathcal{C}^{\perp} (resp. $\mathcal{C}^{\perp_{H}}$). The codes \mathcal{C}^{\perp} and $\mathcal{C}^{\perp_{H}}$ are defined by

$$
\begin{aligned}
\mathcal{C}^{\perp} & =\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}: \sum_{i=1}^{n} x_{i} y_{i}=0, \forall y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{C}\right\} \\
\mathcal{C}^{\perp_{H}} & =\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{F}_{q^{2}}^{n}: \sum_{i=1}^{n} x_{i} \overline{y_{i}}=0, \forall y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{C}\right\}
\end{aligned}
$$

respectively. In this paper, we only consider the Euclidean inner product.
Let $\vec{a}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are n distinct elements of \mathbb{F}_{q}. Fix n nonzero elements $v_{1}, v_{2}, \ldots, v_{n}$ of $\mathbb{F}_{q}\left(v_{i}\right.$ are not necessarily distinct), put $\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. For $1 \leq k \leq n$, the k-dimensional generalized Reed-Solomon code (GRS for short) of length n associated with \vec{a} and \vec{v} is defined to be

$$
\begin{equation*}
\operatorname{GRS}_{k}(\vec{a}, \vec{v})=\left\{\left(v_{1} f\left(\alpha_{1}\right), v_{2} f\left(\alpha_{2}\right), \ldots, v_{n} f\left(\alpha_{n}\right)\right): f(x) \in \mathbb{F}_{q}[x], \operatorname{deg}(f(x)) \leq k-1\right\} \tag{1}
\end{equation*}
$$

It is well known that the code $\operatorname{GRS}_{k}(\vec{a}, \vec{v})$ is a q-ary $[n, k, n-k+1]$ MDS code and the dual of a GRS code is again a GRS MDS code; indeed

$$
\mathbf{G R S}_{k}^{\perp}(\vec{a}, \vec{v})=\mathbf{G R S}_{n-k}\left(\vec{a}, \vec{v}^{\prime}\right)
$$

for some $\vec{v}^{\prime}=\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right)$ with $v_{i}^{\prime} \neq 0$ for all $1 \leq i \leq n$ (e.g., see [15]).
Furthermore, the extended generalized Reed-Solomon code $\mathbf{G R S}_{k}(\vec{a}, \vec{v}, \infty)$ given by

$$
\begin{equation*}
\mathbf{G R S}_{k}(\vec{a}, \vec{v}, \infty)=\left\{\left(v_{1} f\left(\alpha_{1}\right), v_{2} f\left(\alpha_{2}\right), \ldots, v_{n} f\left(\alpha_{n}\right), f_{k-1}\right): f(x) \in \mathbb{F}_{q}[x], \operatorname{deg}(f(x)) \leq k-1\right\} \tag{2}
\end{equation*}
$$

where f_{k-1} stands for the coefficient of x^{k-1} in $f(x)$. It is also well known that $\operatorname{GRS}_{k}(\vec{a}, \vec{v}, \infty)$ is a q-ary [$n+1, k, n-k+2]$ MDS code and the dual code is also a GRS MDS code (e.g., see [15]).

Put $\vec{a}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ and denote by $\mathcal{A}_{\vec{a}}$ the matrix

$$
\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \ldots & \alpha_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{n-2} & \alpha_{2}^{n-2} & \ldots & \alpha_{n}^{n-2}
\end{array}\right)
$$

Lemma 1 ([11]). The solution space of the equation system $\mathcal{A}_{\vec{a}} X^{T}=\mathbf{0}$ has dimension 1 and $\left\{\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)\right\}$ is a basis of this solution space, where $u_{i}=\prod_{1 \leq j \leq n, j \neq i}\left(\alpha_{i}-\alpha_{j}\right)^{-1}$. Furthermore, for any two polynomials $f(x), g(x) \in \mathbb{F}_{q}[x]$ with $\operatorname{deg}(f) \leq k-1$ and $\operatorname{deg}(g) \leq n-k-1$, one has $\sum_{i=1}^{n} f\left(\alpha_{i}\right)\left(u_{i} g\left(\alpha_{i}\right)\right)=0$.

We define

$$
L_{\vec{a}}\left(\alpha_{i}\right)=\prod_{1 \leq j \leq n, j \neq i}\left(\alpha_{i}-\alpha_{j}\right)
$$

The conclusion of the following lemma is straightforward. For completeness, we provide its proof.
Lemma 2 ([11]). Let n be an even number, if there exists $\lambda \in \mathbb{F}_{q}^{*}$ such that $\lambda L_{\vec{a}}\left(\alpha_{i}\right)$ is square element for all $i=1,2, \ldots, n$, then the code $\mathbf{G R S}_{n / 2}(\vec{a}, \vec{v})$ defined in (1) is MDS self-dual code of length n.

Proof. Let $f(x), g(x) \in \mathbb{F}_{q}[x]$ with $\operatorname{deg}(f) \leq \frac{n}{2}-1$ and $\operatorname{deg}(g) \leq \frac{n}{2}-1$. By Lemma 1 , we have $\sum_{i=1}^{n} f\left(\alpha_{i}\right)\left(u_{i} g\left(\alpha_{i}\right)\right)=0$, where $u_{i}=\prod_{1 \leq j \leq n, j \neq i}\left(\alpha_{i}-\alpha_{j}\right)^{-1}$ for $i=1,2, \ldots, n$. Hence,

$$
0=\lambda \sum_{i=1}^{n} f\left(\alpha_{i}\right)\left(u_{i} g\left(\alpha_{i}\right)\right)=\sum_{i=1}^{n} f\left(\alpha_{i}\right)\left(\lambda u_{i} g\left(\alpha_{i}\right)\right)=\sum_{i=1}^{n}\left(v_{i} f\left(\alpha_{i}\right)\right) \quad\left(v_{i} g\left(\alpha_{i}\right)\right)\left(\text { since } \lambda u_{i}=v_{i}^{2}\right)
$$

This implies that $\mathbf{G R S}_{n / 2}^{\perp}(\vec{a}, \vec{v})=\mathbf{G R S}_{n / 2}(\vec{a}, \vec{v})$.
H. Yan [14] observed the following two results.

Lemma 3 ([14]). Let n be an even integer and $k=\frac{n}{2}$. If $-L_{\vec{a}}\left(\alpha_{i}\right)$ is square element for all $i=1,2, \ldots, n-1$, then the code $\mathbf{G R S}_{k}(\vec{a}, \vec{v}, \infty)$ defined in (2) is MDS self-dual code of length n.

Lemma 4 ([14]). Let $m \mid q-1$ be a positive integer and let $\alpha \in \mathbb{F}_{q}$ be a primitive m-th root of unity. Then for any $1 \leq i \leq m$, we have

$$
\prod_{1 \leq j \leq m, j \neq i}\left(\alpha^{i}-\alpha^{j}\right)=m \alpha^{-i}
$$

3. Main Result

Let $q=r^{2}$, where r is odd prime power, \mathbb{F}_{q} be the finite fields with q elements. Suppose $m \mid q-1, \alpha$ is a primitive m-th root of unity and $\mathbf{H}=<\beta>$ is the cyclic group generated by β.

Theorem 1. Let $q=r^{2}$, where r is an odd prime power, $r \equiv 1(\bmod 4)$. Suppose that $m \mid(q-1)$ and $\frac{q-1}{m}$ is even, $m \equiv 0(\bmod 4)$. If $1 \leq t \leq \frac{2(r+1)}{\operatorname{gcd}(2(r+1), m)}$. Then there exists an $\left[n=t m, \frac{n}{2}\right]-M D S$ self-dual code.

Proof. Let α be a primitive m-th root of unity and $\mathbf{H}=<\beta>$ is the cyclic group of order $2(r+1)$. By the theorem of group homomorphism,

$$
(\mathbf{H} \times\langle\alpha\rangle) /\langle\alpha\rangle \cong \mathbf{H} /(\mathbf{H} \cap\langle\alpha\rangle)
$$

Let $i_{1}, i_{2}, \ldots, i_{t}$ be t distinct elements, such that $0 \leq i_{1}<i_{2}<\cdots<i_{t}<2(r+1)$. Denote $I=\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}, A=i_{1}+i_{2}+\cdots+i_{t}$ and $\mathbf{B}=\left\{\beta^{i_{1}}, \beta^{i_{2}}, \ldots, \beta^{i_{t}}\right\}$ be a set of coset representatives of $(\mathbf{H} \times\langle\alpha\rangle) /\langle\alpha\rangle$. Let

$$
\vec{a}=\left(\alpha \beta^{i_{1}}, \ldots, \alpha^{m} \beta^{i_{1}}, \alpha \beta^{i_{2}}, \ldots, \alpha^{m} \beta^{i_{2}}, \ldots, \alpha \beta^{i_{t}}, \ldots, \alpha^{m} \beta^{i_{t}}\right) .
$$

Then the entries of \vec{a} are distinct in \mathbb{F}_{q}^{*}.
It is known that $x^{m}-y^{m}=\prod_{j=1}^{m}\left(x-\alpha^{j} y\right)$. By the statement of Lemma 3, we get

$$
\begin{aligned}
L_{\vec{a}}\left(\beta^{z} \alpha^{k}\right) & =\prod_{1 \leq j \leq m, j \neq k}\left(\beta^{z} \alpha^{k}-\beta^{z} \alpha^{j}\right) \prod_{l \in I, l \neq z} \prod_{j=1}^{m}\left(\beta^{z} \alpha^{k}-\beta^{l} \alpha^{j}\right) \\
& =\beta^{z(m-1)} \prod_{1 \leq j \leq m, j \neq k}\left(\alpha^{k}-\alpha^{j}\right) \prod_{l \in I, l \neq z}\left[\left(\beta^{z} \alpha^{k}\right)^{m}-\beta^{l m}\right] \\
& =\beta^{z(m-1)} m \alpha^{-k} \prod_{l \in I, l \neq z}\left(\beta^{z m}-\beta^{l m}\right) .
\end{aligned}
$$

Let $v=\prod_{l \in I, l \neq z}\left(\beta^{z m}-\beta^{l m}\right)$, then

$$
\begin{aligned}
v^{r} & =\prod_{l \in I, l \neq z}\left(\beta^{z m r}-\beta^{l m r}\right)\left(\text { since } \beta^{2(r+1)}=1, \beta^{r}=-\beta^{-1}\right) \\
& =\prod_{l \in I, l \neq z}\left[\left(-\beta^{-1}\right)^{z m}-\left(-\beta^{-1}\right)^{l m}\right] \\
& =\prod_{l \in I, l \neq z}\left[\left(\beta^{-1}\right)^{z m}-\left(\beta^{-1}\right)^{l m}\right] \\
& =\prod_{l \in I, l \neq z}\left(\beta^{-1}\right)^{z m+l m}\left(\beta^{l m}-\beta^{z m}\right) \\
& =(-1)^{t-1} \beta^{-(A+(t-2) z) m_{v}}
\end{aligned}
$$

So $v^{r-1}=(-1)^{t-1} \beta^{-(A+(t-2) z) m}$.
Let g be a generator of \mathbb{F}_{q}^{*}, then $\alpha=g^{\frac{q-1}{m}}, \beta=g^{\frac{r-1}{2}},-1=g^{\frac{r^{2}-1}{2}}, v=g^{\frac{r+1}{2}(t-1)-(A+(t-2) z) \frac{m}{2}+i(r+1)}$. Note that β, m and α are square elements of \mathbb{F}_{q}^{*}, we take $\lambda=g^{\frac{r+1}{2}(t-1)}$, then $\lambda L_{\vec{a}}\left(\beta^{z} \alpha^{k}\right)$ is a square element of \mathbb{F}_{q}^{*}.

This implies there exists a q-ary $\left[n, \frac{n}{2}\right]$ MDS self-dual code.
Example 1. Let $r=173, q=173^{2}, r \equiv 1(\bmod 4), m=4 \times 43, \frac{q-1}{m}=174$ is even. For $1 \leq t \leq$ $\frac{2(r+1)}{\operatorname{gcd}(2(r+1), m)}=87$, we choose $t=81$. By Theorem 1, there exists the MDS self-dual code with length $n=m t=13,932$.

Theorem 2. Let $q=r^{2}$, where r is an odd prime power. Suppose that m is odd, $m \mid(q-1)$ and $\frac{q-1}{m}$ is even. If $1 \leq t \leq \min \left\{\frac{r+1}{g c d(2(r+1), m)}, \frac{r+1}{2}\right\}$ and t is odd, then there exists a q-ary $\left[n=t m+1, \frac{n}{2}\right]$ MDS self-dual code over \mathbb{F}_{q}.

Proof. Let α and β be the same as in Theorem 1, we choose t distinct even number $i_{1}, i_{2}, \ldots, i_{t}$, $0 \leq i_{1}<i_{2}<\cdots<i_{t}<2(r+1)$. Denote $I=\left\{i_{1}, i_{2}, \cdots, i_{t}\right\}, A=i_{1}+i_{2}+\ldots+i_{t}$. Suppose all $i_{j} \equiv 2(\bmod 4), j=1,2, \cdots, t$. The proof is as similar as in Theorem 1. We get

$$
L_{\vec{a}}\left(\beta^{z} \alpha^{k}\right)=\beta^{z(m-1)} m \alpha^{-k} \prod_{l \in I, l \neq z}\left(\beta^{z m}-\beta^{l m}\right) .
$$

Let $v=\prod_{l \in I, l \neq z}\left(\beta^{z m}-\beta^{l m}\right)$, then we get

$$
v^{r-1}=(-1)^{t-1} \beta^{-(A+(t-2) z) m}, v=g^{\frac{r+1}{2}(t-1)-\frac{(A+(t-2) z) m}{2}+i(r+1)},
$$

since $\frac{A+(t-2) z}{2}$ is even, it implies that v is a square element of \mathbb{F}_{q}^{*}. So $-L_{\vec{a}}\left(\beta^{z} \alpha^{k}\right)$ is square element of \mathbb{F}_{q}^{*}. By Lemma 3, there exists a q-ary $\left[n, \frac{n}{2}\right]$ MDS self-dual code.

Example 2. Let $r=67, q=67^{2}, m=11, \frac{q-1}{m}=408$ is even. Since $2(r+1)=136=4 \times 34$, for $1 \leq t \leq \frac{r+1}{g c d(2(r+1), m)}=68$, we choose $t=27$. By Theorem 2 , there exists the MDS self-dual code with length $n=m t+1=298$.

Theorem 3. Let $q=r^{2}$, where r is an odd prime power, $r \equiv 1(\bmod 4)$. Suppose that m is odd, $m \mid(q-1)$ and $\frac{q-1}{m}$ is even. If $1 \leq t \leq \min \left\{\frac{r+1}{g c d(2(r+1), m)}, \frac{r+1}{2}\right\}$ and t is odd, then there exists a q-ary $\left[n=t m+1, \frac{n}{2}\right]$ MDS self-dual code over \mathbb{F}_{q}.

Proof. Let α and β be the same as in Theorem 1, we choose t distinct even number $i_{1}, i_{2}, \ldots, i_{t}$, $0 \leq i_{1}<i_{2}<\cdots<i_{t}<2(r+1)$. Denote $I=\left\{i_{1}, i_{2}, \cdots, i_{t}\right\}, A=i_{1}+i_{2}+\ldots+i_{t}$, and $i_{j} \equiv 2(\bmod 4), j=1,2, \cdots, t$. We define the generalized Reed -Solomon code $\operatorname{GRS}_{k}(\vec{a}, \vec{v})$ with

$$
\vec{a}=\left(0, \alpha \beta^{i_{1}}, \ldots, \alpha^{m} \beta^{i_{1}}, \alpha \beta^{i_{2}}, \ldots, \alpha^{m} \beta^{i_{2}}, \ldots, \alpha \beta^{i_{t}}, \ldots, \alpha^{m} \beta^{i_{t}}\right) .
$$

For any $z \in I$ and $1 \leq k \leq m$, we get

$$
\begin{aligned}
L_{\vec{a}}\left(\beta^{z} \alpha^{k}\right) & =\beta^{z} \alpha^{k} \prod_{1 \leq j \leq m, j \neq k}\left(\beta^{z} \alpha^{k}-\beta^{z} \alpha^{j}\right) \prod_{l \in I, l \neq z} \prod_{j=1}^{m}\left(\beta^{z} \alpha^{k}-\beta^{l} \alpha^{j}\right) \\
& =\beta^{z m} m \prod_{l \in I, l \neq z}\left(\beta^{z m}-\beta^{l m}\right)
\end{aligned}
$$

and

$$
L_{\vec{a}}(0)=\prod_{l \in I} \prod_{j=1}^{m}\left(0-\beta^{l} \alpha^{j}\right)=(-1)^{m t} \alpha^{\frac{m(m+1)}{2}}\left(\prod_{l \in I} \beta^{l}\right)^{m}
$$

Since $r \equiv 1(\bmod 4), \frac{q-1}{m}$ is even, so $\alpha, \beta, m,-1$ are square elements of \mathbb{F}_{q}^{*}, we only need to consider $v=\prod_{l \in I, l \neq z}\left(\beta^{z m}-\beta^{l m}\right)$. As the calculation in the proof of Theorem $1, v=g^{\frac{r+1}{2}(t-1)-\frac{(A+(t-2) z) m}{2}+i(r+1)}$. Since all $i_{j} \equiv 2(\bmod 4)$ and t is odd, so $\frac{(A+(t-2) z) m}{2}$ is even. $L_{\vec{a}}\left(\beta^{z} \alpha^{k}\right), L_{\vec{a}}(0)$ are square elements of \mathbb{F}_{q}^{*}. By Lemma 2, there exists a q-ary $\left[n, \frac{n}{2}\right]$ MDS self-dual code.

Example 3. Let $r=101, r \equiv 1(\bmod 4), q=101^{2}, m=75, \frac{q-1}{m}=136$ is even. Since $2(r+1)=204=$ 4×51, for $1 \leq t \leq \frac{r+1}{\operatorname{gcd}(2(r+1), m)}=34$, we choose $t=33$. By Theorem 2 , there exists the MDS self-dual code with length $n=m t+1=2476$.

Theorem 4. Let $q=r^{2}$, where r is an odd prime power. Suppose that $m \mid(q-1), \frac{q-1}{m}$ is even. If $1 \leq t \leq$ $\frac{2(r+1)}{\operatorname{gcd}(2(r+1), m)}$ and $t m$ is even, then there exists a q-ary $\left[n=t m+2, \frac{n}{2}\right]$ MDS self-dual code over \mathbb{F}_{q}.

Proof. Let α and β be the same as in Theorem 1. We define the extended generalized Reed -Solomon code $\mathbf{G R S}_{k}(\vec{a}, \vec{v}, \infty)$ with

$$
\vec{a}=\left(0, \alpha \beta^{i_{1}}, \cdots, \alpha^{m} \beta^{i_{1}}, \alpha \beta^{i_{2}}, \cdots, \alpha^{m} \beta^{i_{2}}, \cdots, \alpha \beta^{i_{t}}, \cdots, \alpha^{m} \beta^{i_{t}}\right)
$$

For any $z \in I$ and $1 \leq k \leq m$, we get

$$
\begin{aligned}
L_{\vec{a}}\left(\beta^{z} \alpha^{k}\right) & =\beta^{z} \alpha^{k} \prod_{1 \leq j \leq m, j \neq k}\left(\beta^{z} \alpha^{k}-\beta^{z} \alpha^{j}\right) \prod_{l \in I, l \neq z} \prod_{j=1}^{m}\left(\beta^{z} \alpha^{k}-\beta^{l} \alpha^{j}\right) \\
& =\beta^{z m} m \prod_{l \in I, l \neq z}\left(\beta^{z m}-\beta^{l m}\right)
\end{aligned}
$$

and

$$
L_{\vec{a}}(0)=\prod_{l \in I} \prod_{j=1}^{m}\left(0-\beta^{l} \alpha^{j}\right)=(-1)^{m t} \alpha^{\frac{m(m+1)}{2}}\left(\prod_{l \in I} \beta^{l}\right)^{m}
$$

Case 1: If m is even, t is odd.
$\beta^{z m}, m$ and $L_{\vec{a}}(0)$ are square elements of \mathbb{F}_{q}^{*}. Let $v=\prod_{l \in I, l \neq z}\left(\beta^{z m}-\beta^{l m}\right)$, as the calculation in Theorem $1, v=g^{\frac{r+1}{2}(t-1)-\frac{(A+(t-2) z) m}{2}+i(r+1)}$. So we only need to consider the parity of $\frac{(A+(t-2) z) m}{2}$.

- $\quad i_{1}, i_{2}, \ldots, i_{t}$ are even number, so $A+(t-2) z \equiv 0(\bmod 2), v$ is a square element of \mathbb{F}_{q}^{*}.
- $\quad i_{1}, i_{2}, \ldots, i_{t}$ are odd number, so $A+(t-2) z \equiv 0(\bmod 2), v$ is a square element of \mathbb{F}_{q}^{*}.

Case 2: If m and t are even, $r \equiv 3(\bmod 4)$, we assume A is an even integer. It follows that $\frac{r+1}{2}(t-1)-\frac{(A+(t-2) z) m}{2}$ is an even integer.

Case 3: If m is odd, t is even.

- $\quad t \equiv 0(\bmod 4)$
(1) If $r \equiv 1(\bmod 4)$, all $i_{1}, i_{2}, \ldots, i_{t}$ are odd, and $A \equiv 0(\bmod 4)$, then then $(r+1)(t-1)-$ $(A+(t-2) z) m \equiv 0(\bmod 4), v$ is a square element of \mathbb{F}_{q}^{*}.
(2) If $r \equiv 3(\bmod 4)$, all $i_{1}, i_{2}, \ldots, i_{t}$ are even, and $A \equiv 2(\bmod 4)$, then $(r+1)(t-1)-$ $(A+(t-2) z) m \equiv 0(\bmod 4), v$ is a square element of \mathbb{F}_{q}^{*}.
- $\quad t \equiv 2(\bmod 4)$.
(1) If $r \equiv 1(\bmod 4), A \equiv 2(\bmod 4)$, then $(r+1)(t-1)-(A+(t-2) z) m \equiv 0(\bmod 4), v$ is square of \mathbb{F}_{q}^{*}.
(2) If $r \equiv 3(\bmod 4), A \equiv 0(\bmod 4)$, then $(r+1)(t-1)-(A+(t-2) z) m \equiv 0(\bmod 4), v$ is square of \mathbb{F}_{q}^{*}.

We can extend the Theorem 1 to a more general case.
Theorem 5. Let $q=r^{2}$, where r is an odd prime power. Suppose that $m \mid(q-1), \frac{q-1}{m}$ is even, $s|m, s| r-1$ and $\frac{r-1}{s}$ is even. If $1 \leq t \leq \frac{s(r+1)}{g c d(s(r+1), m)}$, then there exists a q-ary $\left[n=t m, \frac{n}{2}\right]$ MDS self-dual code over \mathbb{F}_{q}.

Proof. Let α be a primitive m-th root of unity and $\mathbf{H}=<\beta>$ is the cyclic group of order $s(r+1)$. By the theorem of group homomorphism,

$$
(\mathbf{H} \times\langle\alpha\rangle) /\langle\alpha\rangle \cong \mathbf{H} /(\mathbf{H} \cap\langle\alpha\rangle)
$$

Let $i_{1}, i_{2}, \ldots, i_{t}$ be t distinct elements, such that $0 \leq i_{1}<i_{2}<\cdots<i_{t}<2(r+1)$. Denote $I=\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}, A=i_{1}+i_{2}+\ldots+i_{t}$ and $\mathbf{B}=\left\{\beta^{i_{1}}, \beta^{i_{2}}, \ldots, \beta^{i_{t}}\right\}$ be a set of coset representatives of $\mathbf{H} \times\langle\alpha\rangle$. Let

$$
\vec{a}=\left(\alpha \beta^{i_{1}}, \cdots, \alpha^{m} \beta^{i_{1}}, \alpha \beta^{i_{2}}, \cdots, \alpha^{m} \beta^{i_{2}}, \cdots, \alpha \beta^{i_{t}}, \cdots, \alpha^{m} \beta^{i_{t}}\right) .
$$

Similar with Theorem 1, we get

$$
\begin{aligned}
L_{\vec{a}}\left(\beta^{z} \alpha^{k}\right) & =\prod_{1 \leq j \leq m, j \neq k}\left(\beta^{z} \alpha^{k}-\beta^{z} \alpha^{j}\right) \prod_{l \in I, l \neq z} \prod_{j=1}^{m}\left(\beta^{z} \alpha^{k}-\beta^{l} \alpha^{j}\right) \\
& =\beta^{z(m-1)} \cdot m \cdot \alpha^{-k} \prod_{l \in I, l \neq z}\left(\beta^{z m}-\beta^{l m} .\right)
\end{aligned}
$$

Since $\beta^{s(r+1)}=1$, then $\beta^{r+1}=\xi_{s}$, where ξ_{s} is s-th primitive root of unity. So $\beta^{r}=\xi_{s} \beta^{-1}$. Let $v=\prod_{l \in I, l \neq z}\left(\beta^{z m}-\beta^{l m}\right)$. Since $s \mid m$, then

$$
\begin{aligned}
v^{r} & =\prod_{l \in I, l \neq z}\left(\left(\beta^{-1}\right)^{z m}-\left(\beta^{-1}\right)^{l m}\right) \\
& =\prod_{l \in I, l \neq z} \beta^{-(l+z) m}\left(\beta^{l m}-\beta^{z m}\right) \\
& =(-1)^{t-1} \beta^{-(A+(t-2) z) m} v .
\end{aligned}
$$

So $v^{r-1}=(-1)^{t-1} \beta^{-(A+(t-2) z) m}$.

Let g be a generator of \mathbb{F}_{q}^{*}. It follows that $\beta=g^{\frac{r-1}{s}}$ and $-1=g^{\frac{r^{2}-1}{2}}$. So

$$
v=g^{\frac{(r+1)}{2}(t-1)-[A+(t-2) z] \frac{m}{s}} .
$$

 element of \mathbb{F}_{q}^{*}.

Case 2: If m even and $2 \left\lvert\, \frac{m}{s}\right.$, we can take $\lambda=g^{\frac{(r+1)}{2}(t-1)}$. Hence, we have $\lambda L_{\vec{a}}\left(\beta^{z} \alpha^{k}\right)$ is square element of \mathbb{F}_{q}^{*}.

So there exists a q-ary MDS self-dual code with length n.

4. Conclusions

In this paper, based on the method from [9], we construct several classes of MDS self-dual code over finite fields with odd characteristics via the generalized Reed-Solomon code and extend the generalized Reed-Solomon code.

Author Contributions: Original ideas, writing, original draft preparation, A.Z.; review, Z.J.; funding acquisition, A.Z.
Funding: This research was funded by the National Natural Science Foundation of China under Grants 11401468.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dau, S.H.; Song, W.; Yuen, C. On the existence of MDS codes over small fields with constrained generator matrices. In Proceedings of the 2014 IEEE International Symposium on Information Theory, Honolulu, HI, USA, 29 June-4 July 2014; pp. 1787-1791.
2. Pedersen, J.P.; Dahl, C. Classification of pseudo-cyclic MDS codes. IEEE Trans. Inf. Theory 1991, 37, 365-370. [CrossRef]
3. Dau, S.H.; Song, W.; Dong, Z.; Yuen, C. Balanced sparsest generator matrices for MDS codes. In Proceedings of the 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey, 7-12 July 2013; pp. 1889-1893.
4. Roth, R.M.; Lempel, A. A construction of non-Reed-Solomon type MDS codes. IEEE Trans. Inf. Theory 1989, 35, 655-657. [CrossRef]
5. Chen, B.; Liu, H. New constructions of MDS codes with complementary dual. IEEE Trans. Inf. Theory 2018, 64, 5776-5782. [CrossRef]
6. Carlet, C.; Mesnager, S.; Tang, C.; Qi, Y. Euclidean and hermitian LCD MDS codes. Des. Codes Cryptogr. 2018, 86, 2605-2618. [CrossRef]
7. Blaum, M.; Roth, R.M. On lowest density MDS codes. IEEE Trans. Inf. Theory 1999, 45, 46-59. [CrossRef]
8. Grassl, M.; Gulliver, T.A. On self-dual MDS codes. In Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, 6-11 July 2008; pp. 1954-1957.
9. Fang, X.; Labad, K.; Liu, H.; Luo, J. New parameters on MDS self-dual codes over finite fields. arXiv 2018, arXiv:1811.02802vl.
10. Guenda, K. New MDS self-dual codes over finite fields. Des. Codes Cryptogr. 2012, 62, 31-42. [CrossRef]
11. Jin, L.; Xing, C. New MDS self-dual codes from generalized Reed-Solomon codes. IEEE Trans. Inf. Theory 2017, 63, 1434-1438. [CrossRef]
12. Labad, K.; Liu, H.; Luo, J. Construction of MDS self-dual codes over finite fields. arXiv 2018, arXiv:1807.10625vl.
13. Kim, J.L.; Lee, Y. Euclidean and Hermitian self-dual MDS codes over large finite fields. J. Comb. Theory Ser. A 2006, 105, 79-95. [CrossRef]
14. Yan, H. A Note on the Construction of MDS Self-Dual Codes. Cryptogr. Commun. 2018. [CrossRef]
15. MacWilliams, F.J.; Sloane, N.J.A. The Theory of Error-Correcting Codes; Elsevier: Amsterdam, The Netherland, 1977. (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
