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Abstract: Maximum distance separable (MDS) self-dual codes have useful properties due to their
optimality with respect to the Singleton bound and its self-duality. MDS self-dual codes are completely
determined by the length 7, so the problem of constructing g-ary MDS self-dual codes with various
lengths is a very interesting topic. Recently X. Fang et al. using a method given in previous research,
where several classes of new MDS self-dual codes were constructed through (extended) generalized
Reed-Solomon codes, in this paper, based on the method given in we achieve several classes of MDS
self-dual codes.

Keywords: MDS code; self-dual code; generalized reed-solomon code; extended generalized
reed-solomon code

1. Introduction

Let IF,; be the finite field with g elements. A g-ary [n, k, d] linear code C is a k-dimensional subspace
of F g with minimum (Hamming) distance d. If the parameters [n, k, d| satisfy k +d = n + 1, the code is
called an MDS (maximum distance separable) code. A self-dual code is a linear code satisfying C = C*.
A linear complementary-dual code is a linear code satisfying C N C+ = {0}.

The study of MDS self-dual codes has attracted a great deal of attention in recent years due to
its theoretical and practical importance. The center of the study of MDS codes includes the existence
of MDS codes [1], classification of MDS codes [2], balanced MDS codes [3], non-Reed-Solomon MDS
codes [4], complementary-dual MDS codes [5,6], and lowest density MDS codes [7].

As the parameters of an MDS self-dual code are completely determined by the code’s length n,
the main interest here is to determine the existence and give the construction of g-ary MDS self-dual
codes for various lengths. The problem is completely solved for the case where g is even [8]. Many
MDS self-dual codes over finite fields of odd characteristics were constructed [9-14].

In [11], Jin and Xing constructed several classes of MDS self-dual code from generalized
Reed-Solomon code. Yan generalized Jin and Xing’s method and constructed several classes of
MDS self-dual codes via generalized Reed-Solomon codes and extended generalized Reed-Solomon
codes [14]. In [12], Ladad, Liu and Luo produced more classes of MDS self-dual codes based on [11]
and [14]. In [9], based on the [11,12,14] more new parameter MDS self-dual codes were presented.
Based on the method raised in [9], we present some classes of MDS self-dual codes.

2. Preliminaries

In this section we introduce some basic notations of generalized Reed-Solomon codes and
extended generalized Reed-Solomon codes. For more details, the reader is referred to [15].

Throughout this paper, g is a prime power, [, is the finite fields with g elements and let n be
a positive integer with 1 < n < 4. For any x € F >, we denote by X the conjugation of x. Given an
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[n,k,d] linear code C, its Euclidean dual code (resp. Hermitian dual code) is denoted by C* (resp.
C1H). The codes C* and C*# are defined by

n
Ct={x=(x,x0,...,00) € Fy: Y xiyi =0,Yy = (y1,y2,-..,yn) €C},
i=1

1

n
CHHo = {x = (x1,x0,...,4) € ]FZ2 : in]Z: 0,Yy = (y1,y2,...,yn) €C},
~

1

respectively. In this paper, we only consider the Euclidean inner product.

Let 4 = (aq,42,...,&n), where ay,a,...,&, are n distinct elements of IF,. Fix n nonzero
elements v1, 0y, ...,v, of F; (v; are not necessarily distinct), put 7 = (v1,02,...,05). For1 < k <mn,
the k-dimensional generalized Reed-Solomon code (GRS for short) of length # associated with @ and 7
is defined to be

GRS;(@,7) = {(01f (1), 02f (a2), -, ouf(an)) = f(x) € Fylx], deg(f(x)) <k—1}. )

It is well known that the code GRS (4, 7) is a g-ary [n,k, n — k + 1] MDS code and the dual of a
GRS code is again a GRS MDS code; indeed

GRS} (,7) = GRS, _(d,7)

for some 7' = (v}, 75, ...,v,) with v} #0forall1 <i < n (e.g., see [15]).
Furthermore, the extended generalized Reed-Solomon code GRS (4, 7, o) given by

GRS} (7,3, 00) = {(01£(1), 02f (w2), ., 0uf(wa), fi 1) : f(x) € Fylx], deg(f(x)) <k —1}, (2

where fi_; stands for the coefficient of x*~1 in f(x). It is also well known that GRS(7, ¥, o0) is a g-ary
[n+1,k,n—k+ 2] MDS code and the dual code is also a GRS MDS code (e.g., see [15]).
Putd = (aq,ay,...,a,) and denote by A; the matrix

1 | |
o O S ¥
i 0 &
O
Lemma 1 ([11]). The solution space of the equation system A;X' = 0 has dimension 1 and

{il = (uy,up,...,uy)} is a basis of this solution space, where u; = Hlﬁjﬁn,j;éi(“i _ (xj)_1. Furthermore,
for any two polynomials f(x),g(x) € Fy[x] with deg(f) < k —1 and deg(g) < n—k —1, one has
Yo fai)(uig(a;)) = 0.

We define

Li(a;) = [ (ai—a).

1<j<n,j#i

The conclusion of the following lemma is straightforward. For completeness, we provide its proof.

Lemma 2 ([11]). Let n be an even number, if there exists A € Fy such that ALz (w;) is square element for all
i=1,2,...,n,then the code GRS,, /»(d,7) defined in (1) is MDS self-dual code of length n.
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Proof. Let f(x),g(x) € Fylx] with deg(f) < % —1 and deg(g) < % 1. By Lemma 1, we have
Y f(ai)(uig(ei)) = where wj = Tlicjan jri(®i — o))~ Lfori=1,2,...,n. Hence,
0=AY flar)(uig(a)) = ) fla) (Auig(ar)) = Y- (vif (i) (vig(a))(since Au; = vf).

i=1

Il
—_

i=1
This implies that GRSn/z (@,7) = GRS, »(d,7). O

H. Yan [14] observed the following two results.

Lemma 3 ([14]). Let n be an even integer and k = 5. If —Lz(«;) is square element foralli = 1,2,...,n —1,
then the code GRSy (d, U, c0) defined in (2) is MDS self-dual code of length n.

Lemma 4 ([14]). Let m | q — 1 be a positive integer and let « € 'y be a primitive m-th root of unity. Then for
any 1 <i < m, we have

H (2 — o) = ma™"
1<j<m,j#i

3. Main Result

Let ¢ = r?, where r is odd prime power, F, be the finite fields with g elements. Suppose
m | g — 1, is a primitive m-th root of unity and H =< > is the cyclic group generated by B.

Theorem 1. Let g = r2, where r is an odd prime power, r = 1(mod4). Suppose that m | (g — 1) and =2 is
_ 2(r+1)
even, m = 0(mod4). If1 <t < G Then there exists an [n = tm, 5|-MDS self-dual code.

Proof. Let a be a primitive m-th root of unity and H =< B > is the cyclic group of order 2(r + 1).
By the theorem of group homomorphism,

(H x (a))/(a) = H/(HN ().

Let i1,ip,...,i be t distinct elements, such that 0 < i; < i, < -+ < iy < 2(r+ 1). Denote
I={iy,ip,... it},A=1iy+ir+-- +irand B = {B71,B72,...,B"} be a set of coset representatives of
(H x {(a))/{a). Let

= (ocﬁil,...,cxm,Bil,tx,BiZ,...,txmﬁiz,...,oc‘[%if,...,txmﬁif).
Then the entries of @ are distinct in IF;.

m .
It is known that x™ — y™ = T] (x — &/y). By the statement of Lemma 3, we get

j=1
Li(pra®) = [1 (Fa"—p)) T] [1(Fa"~p'0)
1<j<m,j#k lell#z j=1
_ ‘Bz(m—l) 1_[ (“k_“j) H [(ﬁzlxk)m_ﬁlm]
1<j<m,j#k I€ll#2
_ ‘Bz(m—l)m“—k 1_[ (‘Bzm_lBlm)‘

lell#z

Letv= T[] (B —p'™), then
lell#z
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o = H (ﬁzmr _ ‘Blmr) (SII‘ICG /32 (r+1) =1, ﬁr — _ﬁfl)
lell#z
=TT U= = (=)
lell#z

=TTl =

lel l#z

— H (ﬁfl)zmﬂm(ﬁlm _ 'Bzm)

lell#z
_ (*1)t_1‘B_(A+(t_2)Z)mU

Sop'—1 = (_1)t—118—(A+(t—2)z)m'
- r— 2 r mo_
Let g be a generator of F%, then a = g% B=gT,-1= ng v = g (=D—(A+(t-2)2) § +ilr+1)

Note that ,m and & are square elements of F}, we take A = g2 (t-1) then ALy #(B7aX) is a square
element of F.
This implies there exists a g-ary [n, 5] MDS self-dual code. [

Example 1. Let r = 173,q = 173%,r = 1(mod4),m = 4 x 43,21 = 174 is even. For1 < t <

2y _ . X ,

qedeem 87, we choose t = 81. By Theorem 1, there exists the MDS self-dual code with length

n = mt = 13,932.

Theorem 2. Let q = r2, where r is an odd prime power. Suppose that m is odd, m and L is even.
q= p p pp

If1<t< mm{ﬁ 1Y and t is odd, then there exists a g-ary [n = tm + 1, 2] MDS self ~dual code

over If.

Proof. Let « and f be the same as in Theorem 1, we choose t distinct even number iy, 1y, ..., i,
0<ip <ip<---<i<2(r+1).Denote I = {iy,ip, - ,it},A = i1 +ip + ...+ i;. Suppose all
ij = 2(mod4),j =1,2,- - ,t. The proof is as similar as in Theorem 1. We get

Lﬁ(ﬁzlxk) _ ﬁz(mfl)mafk H (‘Bzm _ 'Blm)

lell#z

Letvo = T[] (B — p'™), then we get
lel 42

o1 = (1) lgm(At=2)m o, g%(t 1)— M+z(7+l)
A+(t=2)z

since =5 is even, it implies that v is a square element of Fj. So —Lg( B7ak) is square element of Fy.
By Lemma 3, there exists a g-ary [n, 5] MDS self-dual code. [

Example 2. Let r = 67, = 67%,m = 11,1 = 408 is even. Since 2(r+1) = 136 = 4 x 34, for

1<t < b — 68, we choose t = 27. By Theorem 2, there exists the MDS self-dual code with length
gcd (2(r+1),m)

n=mt+1=298.

Theorem 3. Let g = r2, where r is an odd prime power, r = 1(mod4). Suppose that m is odd, m | (g — 1)
and L= Liseven. If1 <t < mzn{#, "1} and t is odd, then there exists a g-ary [n = tm + 1, %]

gcd (2(r+1),m)
MDS self dual code over .
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Proof. Let « and 8 be the same as in Theorem 1, we choose t distinct even number iy,1iy,...,1t,
0 <ip <ip < - < i <2r+1).Denote I = {iy,ip, -+ ,it},A = iy +ir+ ...+ i, and
ij =2(mod4),j =1,2,--- ,t. We define the generalized Reed -Solomon code GRS (d, 7) with

i= (O,aﬁil,...,amﬁil,aﬁiz,. ..,ocm[%iz,...,a[%if,. ..,ocm[%i’).

Foranyz € ITand 1 <k < m, we get

L;j(ﬁzzxk) —_ ﬁztxk H (‘Bzak_‘Bza] H ﬁ ‘BZ k [Bla]
1<j<m,j#k lell#z j=1
_ 'Bzmm H (‘Bzmiﬁlm)
lell#z
and .
=TT 10~ ') = (~1y"a™ 5" ([T p)"
lel j=1 lel

Since ¥ = 1(mod4), % is even, so &, B, m, —1 are square elements of IF;, we only need to consider
o= TI (B — B™). As the calculation in the proof of Theorem 1, v = g"% (=1 PR i(r41)
lell#z
Since all i; = 2(mod4) and ¢ is odd, so w is even. L;(B7ak), L;(0) are square elements of Fy.

By Lemma 2, there exists a g-ary [, 5] MDS self-dual code. [

Example 3. Let r = 101,7 = 1(mod4),q = 1012, m = 75, q;—l = 136 is even. Since 2(r +1) = 204 =

r+1 _ : -
4x51,for1 <t< 2edRrm = 34, we choose t = 33. By Theorem 2, there exists the MDS self-dual code
with length n = mt + 1 = 2476.

Theorem 4. Let g = 12, where r is an odd prime power. Suppose that m | (g — 1), L= is even. If 1 < t <
2(r+1)

. ) B u )
gcdeerm and tm is even, then there exists a g-ary [n = tm + 2, &] MDS self-dual code over .

Proof. Let x and p be the same as in Theorem 1. We define the extended generalized Reed -Solomon
code GRS(d, 7, c0) with

= (0,ap, - a1, a2, . ,a"B2, - apt,- -, a™pl).

Foranyz € Tand 1 <k < m, we get

Lﬁ(ﬁzlxk) — ﬁzzxk 1_[ (,lexk—‘BZDc] H ﬁ :BZ k ﬁla]

1<j<m,j#k lell#z j=1
— 'Bzmm 1_[ (ﬁzm _ 'Blm)
lell#z
and
m ] i ¢ m(m+1) i
=[II[10O0-po)=(D)"a 2 (TP
lel j=1 lel

Case 1: If m is even, t is odd.
p*",m and Lz(0) are square elements of Fj. Let v = le}—l[#z(ﬁzm — ™), as the calculation in

)m

A+ (t=2)zm)m _ . . -
t=1)= =5 =R 4i(r1) So we only need to consider the parity of %.

Theorem 1, v = ng(

e iy,iy,..., i are even number, so A + (t — 2)z = 0(mod?2), v is a square element of F;.
e iy,iy,..., iy are odd number, so A + (f — 2)z = 0(mod2), v is a square element of [F.
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Case 2: If m and t are even, r = 3(mod4), we assume A is an even integer. It follows that

i —1) - w is an even integer.

Case 3: If m is odd, t is even.
e t=0(mod4)

(1) Ifr = 1(mod4), all iy,iy,...,i; are odd, and A = 0(mod4), then then (r +1)(t — 1) —
(A+ (t—2)z)m = 0(mod4), v is a square element of IF.

(2 If r = 3(mod4), all iy, ip,...,i; are even, and A = 2(mod4), then (r +1)(t — 1) —
(A+ (t—2)z)m = 0(mod4), v is a square element of .

e [=2(mod4).

(1) Ifr = 1(mod4), A = 2(mod4), then (r +1)(t —1) — (A+ (t —2)z)m
square of .

(2) Ifr = 3(mod4),A = 0(mod4), then (r+1)(t —1) — (A+ (t —2)z)m
square of Fy.

0(mod4),v is

0(mod4),v is

O

We can extend the Theorem 1 to a more general case.

Theorem 5. Let g = r?, where r is an odd prime power. Suppose that m | (q — 1), % iseven,s | m,s | r—1
r=1 : s(r+1) : B _ n o
and == iseven. If1 <t < ZedisGr then there exists a g-ary [n = tm, %] MDS self-dual code over I,

Proof. Let a be a primitive m-th root of unity and H =< B > is the cyclic group of order s(r + 1).
By the theorem of group homomorphism,

(H x (a))/(a) = H/(HN (),

Let i1,iy,...,i be t distinct elements, such that 0 < i; < i < -+ < iy < 2(r+ 1). Denote
I={i,i,...,i1},A=i1+ir+...+i;and B = {‘Bil,‘BiZ, .. .,,Bif} be a set of coset representatives of
H x (a). Let

= (ap, -, amp,ap2, - a"B2, - afl, - a"Bh).

Similar with Theorem 1, we get

LFd) = 1 (Fe o) T] T1(E - pa)
1<j<m,j#k lell#z j=1
_ 'Bz(mfl) cm-a kK 1_[ (ﬁzm _ 'Blm)

1E€1I#2

Since g0+ = 1, then B! = &, where & is s-th primitive root of unity. So g = &p .
Letv= T[] (B — p'™).Sinces | m, then

lell#z
v = (1™ — (B~
lel,l#z
=TT p"&mpm—pm
lell#z

— (_1)1‘71'87(A+(t72)z)mv'

So o1 = (_l)t—lﬁ—(A+(t—2)z)m_
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r— 2
Let g be a generator of Iy It follows that § = ng and -1 = ng. So

v = g B =D [A+(e-2)2]

Case 1: If m odd and t even, we can take A = ¢ (r;l) ((=1)-A

element of F;

'S . Hence, we have AL;(f?a¥) is square

Case 2: If m even and 2 | %, we can take A = g@(t‘l). Hence, we have AL;(f7a*) is square
element of Fy.

So there exists a g-ary MDS self-dual code with length n. O

4. Conclusions

In this paper, based on the method from [9], we construct several classes of MDS self-dual code
over finite fields with odd characteristics via the generalized Reed-Solomon code and extend the
generalized Reed-Solomon code.
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