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Abstract: Maximum distance separable (MDS) self-dual codes have useful properties due to their
optimality with respect to the Singleton bound and its self-duality. MDS self-dual codes are completely
determined by the length n, so the problem of constructing q-ary MDS self-dual codes with various
lengths is a very interesting topic. Recently X. Fang et al. using a method given in previous research,
where several classes of new MDS self-dual codes were constructed through (extended) generalized
Reed-Solomon codes, in this paper, based on the method given in we achieve several classes of MDS
self-dual codes.

Keywords: MDS code; self-dual code; generalized reed-solomon code; extended generalized
reed-solomon code

1. Introduction

Let Fq be the finite field with q elements. A q-ary [n, k, d] linear code C is a k-dimensional subspace
of Fn

q with minimum (Hamming) distance d. If the parameters [n, k, d] satisfy k + d = n + 1, the code is
called an MDS (maximum distance separable) code. A self-dual code is a linear code satisfying C = C⊥.
A linear complementary-dual code is a linear code satisfying C ∩ C⊥ = {0}.

The study of MDS self-dual codes has attracted a great deal of attention in recent years due to
its theoretical and practical importance. The center of the study of MDS codes includes the existence
of MDS codes [1], classification of MDS codes [2], balanced MDS codes [3], non-Reed-Solomon MDS
codes [4], complementary-dual MDS codes [5,6], and lowest density MDS codes [7].

As the parameters of an MDS self-dual code are completely determined by the code’s length n,
the main interest here is to determine the existence and give the construction of q-ary MDS self-dual
codes for various lengths. The problem is completely solved for the case where q is even [8]. Many
MDS self-dual codes over finite fields of odd characteristics were constructed [9–14].

In [11], Jin and Xing constructed several classes of MDS self-dual code from generalized
Reed-Solomon code. Yan generalized Jin and Xing’s method and constructed several classes of
MDS self-dual codes via generalized Reed-Solomon codes and extended generalized Reed-Solomon
codes [14]. In [12], Ladad, Liu and Luo produced more classes of MDS self-dual codes based on [11]
and [14]. In [9], based on the [11,12,14] more new parameter MDS self-dual codes were presented.
Based on the method raised in [9], we present some classes of MDS self-dual codes.

2. Preliminaries

In this section we introduce some basic notations of generalized Reed-Solomon codes and
extended generalized Reed-Solomon codes. For more details, the reader is referred to [15].

Throughout this paper, q is a prime power, Fq is the finite fields with q elements and let n be
a positive integer with 1 < n ≤ q. For any x ∈ Fq2 , we denote by x the conjugation of x. Given an
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[n, k, d] linear code C, its Euclidean dual code (resp. Hermitian dual code) is denoted by C⊥ (resp.
C⊥H ). The codes C⊥ and C⊥H are defined by

C⊥ = {x = (x1, x2, . . . , xn) ∈ Fn
q :

n

∑
i=1

xiyi = 0, ∀y = (y1, y2, . . . , yn) ∈ C},

C⊥H = {x = (x1, x2, . . . , xn) ∈ Fn
q2 :

n

∑
i=1

xiyi = 0, ∀y = (y1, y2, . . . , yn) ∈ C},

respectively. In this paper, we only consider the Euclidean inner product.
Let ~a = (α1, α2, . . . , αn), where α1, α2, . . . , αn are n distinct elements of Fq. Fix n nonzero

elements v1, v2, . . . , vn of Fq (vi are not necessarily distinct), put ~v = (v1, v2, . . . , vn). For 1 ≤ k ≤ n,
the k-dimensional generalized Reed-Solomon code (GRS for short) of length n associated with~a and ~v
is defined to be

GRSk(~a,~v) = {(v1 f (α1), v2 f (α2), . . . , vn f (αn)) : f (x) ∈ Fq[x], deg( f (x)) ≤ k− 1}. (1)

It is well known that the code GRSk(~a,~v) is a q-ary [n, k, n− k + 1] MDS code and the dual of a
GRS code is again a GRS MDS code; indeed

GRS⊥k (~a,~v) = GRSn−k(~a,~v′)

for some ~v′ = (v′1, v′2, . . . , v′n) with v′i 6= 0 for all 1 ≤ i ≤ n (e.g., see [15]).
Furthermore, the extended generalized Reed-Solomon code GRSk(~a,~v, ∞) given by

GRSk(~a,~v, ∞) = {(v1 f (α1), v2 f (α2), . . . , vn f (αn), fk−1) : f (x) ∈ Fq[x], deg( f (x)) ≤ k− 1}, (2)

where fk−1 stands for the coefficient of xk−1 in f (x). It is also well known that GRSk(~a,~v, ∞) is a q-ary
[n + 1, k, n− k + 2] MDS code and the dual code is also a GRS MDS code (e.g., see [15]).

Put~a = (α1, α2, . . . , αn) and denote by A~a the matrix
1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

. . .
...

αn−2
1 αn−2

2 . . . αn−2
n


Lemma 1 ([11]). The solution space of the equation system A~aXT = 0 has dimension 1 and
{~u = (u1, u2, . . . , un)} is a basis of this solution space, where ui = ∏1≤j≤n,j 6=i(αi − αj)

−1. Furthermore,
for any two polynomials f (x), g(x) ∈ Fq[x] with deg( f ) ≤ k − 1 and deg(g) ≤ n − k − 1, one has
∑n

i=1 f (αi)(uig(αi)) = 0.

We define
L~a(αi) = ∏

1≤j≤n,j 6=i
(αi − αj).

The conclusion of the following lemma is straightforward. For completeness, we provide its proof.

Lemma 2 ([11]). Let n be an even number, if there exists λ ∈ F∗q such that λL~a(αi) is square element for all
i = 1, 2, . . . , n, then the code GRSn/2(~a,~v) defined in (1) is MDS self-dual code of length n.
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Proof. Let f (x), g(x) ∈ Fq[x] with deg( f ) ≤ n
2 − 1 and deg(g) ≤ n

2 − 1. By Lemma 1, we have
∑n

i=1 f (αi)(uig(αi)) = 0, where ui = ∏1≤j≤n,j 6=i(αi − αj)
−1 for i = 1, 2, . . . , n. Hence,

0 = λ
n

∑
i=1

f (αi)(uig(αi)) =
n

∑
i=1

f (αi)(λuig(αi)) =
n

∑
i=1

(vi f (αi)) (vig(αi))(since λui = v2
i ).

This implies that GRS⊥n/2(~a,~v) = GRSn/2(~a,~v).

H. Yan [14] observed the following two results.

Lemma 3 ([14]). Let n be an even integer and k = n
2 . If −L~a(αi) is square element for all i = 1, 2, . . . , n− 1,

then the code GRSk(~a,~v, ∞) defined in (2) is MDS self-dual code of length n.

Lemma 4 ([14]). Let m | q− 1 be a positive integer and let α ∈ Fq be a primitive m-th root of unity. Then for
any 1 ≤ i ≤ m, we have

∏
1≤j≤m,j 6=i

(αi − αj) = mα−i.

3. Main Result

Let q = r2, where r is odd prime power, Fq be the finite fields with q elements. Suppose
m | q− 1, α is a primitive m-th root of unity and H =< β > is the cyclic group generated by β.

Theorem 1. Let q = r2, where r is an odd prime power, r ≡ 1(mod4). Suppose that m | (q− 1) and q−1
m is

even, m ≡ 0(mod4). If 1 ≤ t ≤ 2(r+1)
gcd(2(r+1),m)

. Then there exists an [n = tm, n
2 ]-MDS self-dual code.

Proof. Let α be a primitive m-th root of unity and H =< β > is the cyclic group of order 2(r + 1).
By the theorem of group homomorphism,

(H× 〈α〉)/〈α〉 ∼= H/(H ∩ 〈α〉).

Let i1, i2, . . . , it be t distinct elements, such that 0 ≤ i1 < i2 < · · · < it < 2(r + 1). Denote
I = {i1, i2, . . . , it}, A = i1 + i2 + · · ·+ it and B = {βi1 , βi2 , . . . , βit} be a set of coset representatives of
(H× 〈α〉)/〈α〉. Let

~a = (αβi1 , . . . , αmβi1 , αβi2 , . . . , αmβi2 , . . . , αβit , . . . , αmβit).

Then the entries of~a are distinct in F∗q .

It is known that xm − ym =
m
∏
j=1

(x− αjy). By the statement of Lemma 3, we get

L~a(βzαk) = ∏
1≤j≤m,j 6=k

(βzαk − βzαj) ∏
l∈I,l 6=z

m

∏
j=1

(βzαk − βlαj)

= βz(m−1) ∏
1≤j≤m,j 6=k

(αk − αj) ∏
l∈I,l 6=z

[(βzαk)m − βlm]

= βz(m−1)mα−k ∏
l∈I,l 6=z

(βzm − βlm).

Let v = ∏
l∈I,l 6=z

(βzm − βlm), then
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vr = ∏
l∈I,l 6=z

(βzmr − βlmr) (since β2(r+1) = 1, βr = −β−1)

= ∏
l∈I,l 6=z

[(−β−1)zm − (−β−1)lm]

= ∏
l∈I,l 6=z

[(β−1)zm − (β−1)lm]

= ∏
l∈I,l 6=z

(β−1)zm+lm(βlm − βzm)

= (−1)t−1β−(A+(t−2)z)mv

So vr−1 = (−1)t−1β−(A+(t−2)z)m.

Let g be a generator of F∗q , then α = g
q−1

m , β = g
r−1

2 ,−1 = g
r2−1

2 , v = g
r+1

2 (t−1)−(A+(t−2)z)m
2 +i(r+1).

Note that β, m and α are square elements of F∗q , we take λ = g
r+1

2 (t−1), then λL~a(βzαk) is a square
element of F∗q .

This implies there exists a q-ary [n, n
2 ] MDS self-dual code.

Example 1. Let r = 173, q = 1732, r ≡ 1(mod4), m = 4 × 43, q−1
m = 174 is even. For 1 ≤ t ≤

2(r+1)
gcd(2(r+1),m)

= 87, we choose t = 81. By Theorem 1, there exists the MDS self-dual code with length

n = mt = 13,932.

Theorem 2. Let q = r2, where r is an odd prime power. Suppose that m is odd, m | (q− 1) and q−1
m is even.

If 1 ≤ t ≤ min{ r+1
gcd(2(r+1),m)

, r+1
2 } and t is odd, then there exists a q-ary [n = tm + 1, n

2 ] MDS self-dual code

over Fq.

Proof. Let α and β be the same as in Theorem 1, we choose t distinct even number i1, i2, . . . , it,
0 ≤ i1 < i2 < · · · < it < 2(r + 1). Denote I = {i1, i2, · · · , it}, A = i1 + i2 + . . . + it. Suppose all
ij ≡ 2(mod4), j = 1, 2, · · · , t. The proof is as similar as in Theorem 1. We get

L~a(βzαk) = βz(m−1)mα−k ∏
l∈I,l 6=z

(βzm − βlm).

Let v = ∏
l∈I,l 6=z

(βzm − βlm), then we get

vr−1 = (−1)t−1β−(A+(t−2)z)m, v = g
r+1

2 (t−1)− (A+(t−2)z)m
2 +i(r+1),

since A+(t−2)z
2 is even, it implies that v is a square element of F∗q . So −L~a(βzαk) is square element of F∗q .

By Lemma 3, there exists a q-ary [n, n
2 ] MDS self-dual code.

Example 2. Let r = 67, q = 672, m = 11, q−1
m = 408 is even. Since 2(r + 1) = 136 = 4 × 34, for

1 ≤ t ≤ r+1
gcd(2(r+1),m)

= 68, we choose t = 27. By Theorem 2, there exists the MDS self-dual code with length

n = mt + 1 = 298.

Theorem 3. Let q = r2, where r is an odd prime power, r ≡ 1(mod4). Suppose that m is odd, m | (q− 1)
and q−1

m is even. If 1 ≤ t ≤ min{ r+1
gcd(2(r+1),m)

, r+1
2 } and t is odd, then there exists a q-ary [n = tm + 1, n

2 ]

MDS self-dual code over Fq.



Entropy 2019, 21, 101 5 of 8

Proof. Let α and β be the same as in Theorem 1, we choose t distinct even number i1, i2, . . . , it,
0 ≤ i1 < i2 < · · · < it < 2(r + 1). Denote I = {i1, i2, · · · , it}, A = i1 + i2 + . . . + it, and
ij ≡ 2(mod4), j = 1, 2, · · · , t. We define the generalized Reed -Solomon code GRSk(~a,~v) with

~a = (0, αβi1 , . . . , αmβi1 , αβi2 , . . . , αmβi2 , . . . , αβit , . . . , αmβit).

For any z ∈ I and 1 ≤ k ≤ m, we get

L~a(βzαk) = βzαk ∏
1≤j≤m,j 6=k

(βzαk − βzαj) ∏
l∈I,l 6=z

m

∏
j=1

(βzαk − βlαj)

= βzmm ∏
l∈I,l 6=z

(βzm − βlm)

and

L~a(0) = ∏
l∈I

m

∏
j=1

(0− βlαj) = (−1)mtα
m(m+1)

2 (∏
l∈I

βl)m.

Since r ≡ 1(mod4), q−1
m is even, so α, β, m,−1 are square elements of F∗q , we only need to consider

v = ∏
l∈I,l 6=z

(βzm − βlm). As the calculation in the proof of Theorem 1, v = g
r+1

2 (t−1)− (A+(t−2)z)m
2 +i(r+1).

Since all ij ≡ 2(mod4) and t is odd, so (A+(t−2)z)m
2 is even. L~a(βzαk), L~a(0) are square elements of F∗q .

By Lemma 2, there exists a q-ary [n, n
2 ] MDS self-dual code.

Example 3. Let r = 101, r ≡ 1(mod4), q = 1012, m = 75, q−1
m = 136 is even. Since 2(r + 1) = 204 =

4× 51, for 1 ≤ t ≤ r+1
gcd(2(r+1),m)

= 34, we choose t = 33. By Theorem 2, there exists the MDS self-dual code

with length n = mt + 1 = 2476.

Theorem 4. Let q = r2, where r is an odd prime power. Suppose that m | (q− 1), q−1
m is even. If 1 ≤ t ≤

2(r+1)
gcd(2(r+1),m)

and tm is even, then there exists a q-ary [n = tm + 2, n
2 ] MDS self-dual code over Fq.

Proof. Let α and β be the same as in Theorem 1. We define the extended generalized Reed -Solomon
code GRSk(~a,~v, ∞) with

~a = (0, αβi1 , · · · , αmβi1 , αβi2 , · · · , αmβi2 , · · · , αβit , · · · , αmβit).

For any z ∈ I and 1 ≤ k ≤ m, we get

L~a(βzαk) = βzαk ∏
1≤j≤m,j 6=k

(βzαk − βzαj) ∏
l∈I,l 6=z

m

∏
j=1

(βzαk − βlαj)

= βzmm ∏
l∈I,l 6=z

(βzm − βlm)

and

L~a(0) = ∏
l∈I

m

∏
j=1

(0− βlαj) = (−1)mtα
m(m+1)

2 (∏
l∈I

βl)m.

Case 1: If m is even, t is odd.
βzm, m and L~a(0) are square elements of F∗q . Let v = ∏

l∈I,l 6=z
(βzm − βlm), as the calculation in

Theorem 1, v = g
r+1

2 (t−1)− (A+(t−2)z)m
2 +i(r+1). So we only need to consider the parity of (A+(t−2)z)m

2 .

• i1, i2, . . . , it are even number, so A + (t− 2)z ≡ 0(mod2), v is a square element of F∗q .
• i1, i2, . . . , it are odd number, so A + (t− 2)z ≡ 0(mod2), v is a square element of F∗q .
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Case 2: If m and t are even, r ≡ 3(mod4), we assume A is an even integer. It follows that
r+1

2 (t− 1)− (A+(t−2)z)m
2 is an even integer.

Case 3: If m is odd, t is even.

• t ≡ 0(mod4)

(1) If r ≡ 1(mod4), all i1, i2, . . . , it are odd, and A ≡ 0(mod4), then then (r + 1)(t − 1) −
(A + (t− 2)z)m ≡ 0(mod4), v is a square element of F∗q .

(2) If r ≡ 3(mod4), all i1, i2, . . . , it are even, and A ≡ 2(mod4), then (r + 1)(t − 1) −
(A + (t− 2)z)m ≡ 0(mod4), v is a square element of F∗q .

• t ≡ 2(mod4).

(1) If r ≡ 1(mod4), A ≡ 2(mod4), then (r + 1)(t − 1) − (A + (t − 2)z)m ≡ 0(mod4), v is
square of F∗q .

(2) If r ≡ 3(mod4), A ≡ 0(mod4), then (r + 1)(t − 1) − (A + (t − 2)z)m ≡ 0(mod4), v is
square of F∗q .

We can extend the Theorem 1 to a more general case.

Theorem 5. Let q = r2, where r is an odd prime power. Suppose that m | (q− 1), q−1
m is even, s | m, s | r− 1

and r−1
s is even. If 1 ≤ t ≤ s(r+1)

gcd(s(r+1),m)
, then there exists a q-ary [n = tm, n

2 ] MDS self-dual code over Fq.

Proof. Let α be a primitive m-th root of unity and H =< β > is the cyclic group of order s(r + 1).
By the theorem of group homomorphism,

(H× 〈α〉)/〈α〉 ∼= H/(H ∩ 〈α〉),

Let i1, i2, . . . , it be t distinct elements, such that 0 ≤ i1 < i2 < · · · < it < 2(r + 1). Denote
I = {i1, i2, . . . , it}, A = i1 + i2 + . . . + it and B = {βi1 , βi2 , . . . , βit} be a set of coset representatives of
H× 〈α〉. Let

~a = (αβi1 , · · · , αmβi1 , αβi2 , · · · , αmβi2 , · · · , αβit , · · · , αmβit).

Similar with Theorem 1, we get

L~a(βzαk) = ∏
1≤j≤m,j 6=k

(βzαk − βzαj) ∏
l∈I,l 6=z

m

∏
j=1

(βzαk − βlαj)

= βz(m−1) ·m · α−k ∏
l∈I,l 6=z

(βzm − βlm.)

Since βs(r+1) = 1, then βr+1 = ξs, where ξs is s-th primitive root of unity. So βr = ξsβ−1.
Let v = ∏

l∈I,l 6=z
(βzm − βlm). Since s | m, then

vr = ∏
l∈I,l 6=z

((β−1)zm − (β−1)lm)

= ∏
l∈I,l 6=z

β−(l+z)m(βlm − βzm)

= (−1)t−1β−(A+(t−2)z)mv.

So vr−1 = (−1)t−1β−(A+(t−2)z)m.
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Let g be a generator of F∗q . It follows that β = g
r−1

s and −1 = g
r2−1

2 . So

v = g
(r+1)

2 (t−1)−[A+(t−2)z] m
s .

Case 1: If m odd and t even, we can take λ = g
(r+1)

2 (t−1)−A·ms . Hence, we have λL~a(βzαk) is square
element of F∗q .

Case 2: If m even and 2 | m
s , we can take λ = g

(r+1)
2 (t−1). Hence, we have λL~a(βzαk) is square

element of F∗q .
So there exists a q-ary MDS self-dual code with length n.

4. Conclusions

In this paper, based on the method from [9], we construct several classes of MDS self-dual code
over finite fields with odd characteristics via the generalized Reed-Solomon code and extend the
generalized Reed-Solomon code.
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