

Article

New Construction of Maximum Distance Separable (MDS) Self-Dual Codes over Finite Fields

Aixian Zhang * and Zhe Ji

Department of Mathematical Sciences, Xi'an University of Technology, Xi'an 710054, China; 2170920001@stu.xaut.edu.cn

* Correspondence: zhangax@xaut.edu.cn; Tel.: +86-029-8966-7695

Received: 24 December 2018; Accepted: 17 January 2019; Published: 22 January 2019

Abstract: Maximum distance separable (MDS) self-dual codes have useful properties due to their optimality with respect to the Singleton bound and its self-duality. MDS self-dual codes are completely determined by the length *n*, so the problem of constructing *q*-ary MDS self-dual codes with various lengths is a very interesting topic. Recently X. Fang et al. using a method given in previous research, where several classes of new MDS self-dual codes were constructed through (extended) generalized Reed-Solomon codes, in this paper, based on the method given in we achieve several classes of MDS self-dual codes.

Keywords: MDS code; self-dual code; generalized reed-solomon code; extended generalized reed-solomon code

1. Introduction

Let \mathbb{F}_q be the finite field with q elements. A q-ary [n, k, d] linear code C is a k-dimensional subspace of \mathbb{F}_q^n with minimum (Hamming) distance d. If the parameters [n, k, d] satisfy k + d = n + 1, the code is called an MDS (maximum distance separable) code. A self-dual code is a linear code satisfying $C = C^{\perp}$. A linear complementary-dual code is a linear code satisfying $C \cap C^{\perp} = \{\mathbf{0}\}$.

The study of MDS self-dual codes has attracted a great deal of attention in recent years due to its theoretical and practical importance. The center of the study of MDS codes includes the existence of MDS codes [1], classification of MDS codes [2], balanced MDS codes [3], non-Reed-Solomon MDS codes [4], complementary-dual MDS codes [5,6], and lowest density MDS codes [7].

As the parameters of an MDS self-dual code are completely determined by the code's length n, the main interest here is to determine the existence and give the construction of q-ary MDS self-dual codes for various lengths. The problem is completely solved for the case where q is even [8]. Many MDS self-dual codes over finite fields of odd characteristics were constructed [9–14].

In [11], Jin and Xing constructed several classes of MDS self-dual code from generalized Reed-Solomon code. Yan generalized Jin and Xing's method and constructed several classes of MDS self-dual codes via generalized Reed-Solomon codes and extended generalized Reed-Solomon codes [14]. In [12], Ladad, Liu and Luo produced more classes of MDS self-dual codes based on [11] and [14]. In [9], based on the [11,12,14] more new parameter MDS self-dual codes were presented. Based on the method raised in [9], we present some classes of MDS self-dual codes.

2. Preliminaries

In this section we introduce some basic notations of generalized Reed-Solomon codes and extended generalized Reed-Solomon codes. For more details, the reader is referred to [15].

Throughout this paper, *q* is a prime power, \mathbb{F}_q is the finite fields with *q* elements and let *n* be a positive integer with $1 < n \le q$. For any $x \in \mathbb{F}_{q^2}$, we denote by \overline{x} the conjugation of *x*. Given an

[n, k, d] linear code C, its Euclidean dual code (resp. Hermitian dual code) is denoted by C^{\perp} (resp. C^{\perp_H}). The codes C^{\perp} and C^{\perp_H} are defined by

$$\mathcal{C}^{\perp} = \{ x = (x_1, x_2, \dots, x_n) \in \mathbb{F}_q^n : \sum_{i=1}^n x_i y_i = 0, \forall y = (y_1, y_2, \dots, y_n) \in \mathcal{C} \},\$$
$$\mathcal{C}^{\perp_H} = \{ x = (x_1, x_2, \dots, x_n) \in \mathbb{F}_{q^2}^n : \sum_{i=1}^n x_i \overline{y_i} = 0, \forall y = (y_1, y_2, \dots, y_n) \in \mathcal{C} \},\$$

respectively. In this paper, we only consider the Euclidean inner product.

Let $\vec{a} = (\alpha_1, \alpha_2, ..., \alpha_n)$, where $\alpha_1, \alpha_2, ..., \alpha_n$ are *n* distinct elements of \mathbb{F}_q . Fix *n* nonzero elements $v_1, v_2, ..., v_n$ of \mathbb{F}_q (v_i are not necessarily distinct), put $\vec{v} = (v_1, v_2, ..., v_n)$. For $1 \le k \le n$, the *k*-dimensional generalized Reed-Solomon code (GRS for short) of length *n* associated with \vec{a} and \vec{v} is defined to be

$$\mathbf{GRS}_{k}(\vec{a},\vec{v}) = \{(v_{1}f(\alpha_{1}), v_{2}f(\alpha_{2}), \dots, v_{n}f(\alpha_{n})) : f(x) \in \mathbb{F}_{q}[x], \deg(f(x)) \le k-1\}.$$
 (1)

It is well known that the code $GRS_k(\vec{a}, \vec{v})$ is a *q*-ary [n, k, n - k + 1] MDS code and the dual of a GRS code is again a GRS MDS code; indeed

$$\mathbf{GRS}_k^{\perp}(\vec{a}, \vec{v}) = \mathbf{GRS}_{n-k}(\vec{a}, \vec{v}')$$

for some $\vec{v}' = (v'_1, v'_2, ..., v'_n)$ with $v'_i \neq 0$ for all $1 \le i \le n$ (e.g., see [15]).

Furthermore, the extended generalized Reed-Solomon code **GRS**_k(\vec{a}, \vec{v}, ∞) given by

$$\mathbf{GRS}_{k}(\vec{a}, \vec{v}, \infty) = \{ (v_{1}f(\alpha_{1}), v_{2}f(\alpha_{2}), \dots, v_{n}f(\alpha_{n}), f_{k-1}) : f(x) \in \mathbb{F}_{q}[x], \deg(f(x)) \le k-1 \},$$
(2)

where f_{k-1} stands for the coefficient of x^{k-1} in f(x). It is also well known that $\mathbf{GRS}_k(\vec{a}, \vec{v}, \infty)$ is a *q*-ary [n+1, k, n-k+2] MDS code and the dual code is also a GRS MDS code (e.g., see [15]).

Put $\vec{a} = (\alpha_1, \alpha_2, ..., \alpha_n)$ and denote by $\mathcal{A}_{\vec{a}}$ the matrix

$\begin{pmatrix} 1 \end{pmatrix}$	1		1
α1	α2	• • •	α_n
α_1^2	α_2^2	• • •	α_n^2
:	÷	·	:
$\left(\alpha_1^{n-2}\right)$	α_2^{n-2}		α_n^{n-2}

Lemma 1 ([11]). The solution space of the equation system $\mathcal{A}_{\vec{a}}X^T = \mathbf{0}$ has dimension 1 and $\{\vec{u} = (u_1, u_2, \dots, u_n)\}$ is a basis of this solution space, where $u_i = \prod_{1 \le j \le n, j \ne i} (\alpha_i - \alpha_j)^{-1}$. Furthermore, for any two polynomials $f(x), g(x) \in \mathbb{F}_q[x]$ with $\deg(f) \le k - 1$ and $\deg(g) \le n - k - 1$, one has $\sum_{i=1}^n f(\alpha_i)(u_ig(\alpha_i)) = 0$.

We define

$$L_{\vec{a}}(\alpha_i) = \prod_{1 \le j \le n, j \ne i} (\alpha_i - \alpha_j).$$

The conclusion of the following lemma is straightforward. For completeness, we provide its proof.

Lemma 2 ([11]). Let *n* be an even number, if there exists $\lambda \in \mathbb{F}_q^*$ such that $\lambda L_{\vec{a}}(\alpha_i)$ is square element for all i = 1, 2, ..., n, then the code $\operatorname{GRS}_{n/2}(\vec{a}, \vec{v})$ defined in (1) is MDS self-dual code of length *n*.

Proof. Let $f(x), g(x) \in \mathbb{F}_q[x]$ with $\deg(f) \leq \frac{n}{2} - 1$ and $\deg(g) \leq \frac{n}{2} - 1$. By Lemma 1, we have $\sum_{i=1}^n f(\alpha_i)(u_ig(\alpha_i)) = 0$, where $u_i = \prod_{1 \leq j \leq n, j \neq i} (\alpha_i - \alpha_j)^{-1}$ for i = 1, 2, ..., n. Hence,

$$0 = \lambda \sum_{i=1}^{n} f(\alpha_i)(u_i g(\alpha_i)) = \sum_{i=1}^{n} f(\alpha_i)(\lambda u_i g(\alpha_i)) = \sum_{i=1}^{n} (v_i f(\alpha_i)) \quad (v_i g(\alpha_i))(\text{since } \lambda u_i = v_i^2).$$

This implies that $\mathbf{GRS}_{n/2}^{\perp}(\vec{a}, \vec{v}) = \mathbf{GRS}_{n/2}(\vec{a}, \vec{v}).$

H. Yan [14] observed the following two results.

Lemma 3 ([14]). Let *n* be an even integer and $k = \frac{n}{2}$. If $-L_{\vec{a}}(\alpha_i)$ is square element for all i = 1, 2, ..., n - 1, then the code $\mathbf{GRS}_k(\vec{a}, \vec{v}, \infty)$ defined in (2) is MDS self-dual code of length *n*.

Lemma 4 ([14]). Let $m \mid q-1$ be a positive integer and let $\alpha \in \mathbb{F}_q$ be a primitive *m*-th root of unity. Then for any $1 \leq i \leq m$, we have

$$\prod_{1 \le j \le m, j \ne i} (\alpha^i - \alpha^j) = m\alpha^{-i}$$

3. Main Result

Let $q = r^2$, where *r* is odd prime power, \mathbb{F}_q be the finite fields with *q* elements. Suppose $m \mid q - 1, \alpha$ is a primitive *m*-th root of unity and $\mathbf{H} = \langle \beta \rangle$ is the cyclic group generated by β .

Theorem 1. Let $q = r^2$, where r is an odd prime power, $r \equiv 1 \pmod{4}$. Suppose that $m \mid (q-1)$ and $\frac{q-1}{m}$ is even, $m \equiv 0 \pmod{4}$. If $1 \le t \le \frac{2(r+1)}{\gcd(2(r+1),m)}$. Then there exists an $[n = tm, \frac{n}{2}]$ -MDS self-dual code.

Proof. Let α be a primitive *m*-th root of unity and $\mathbf{H} = \langle \beta \rangle$ is the cyclic group of order 2(r + 1). By the theorem of group homomorphism,

$$(\mathbf{H} \times \langle \alpha \rangle) / \langle \alpha \rangle \cong \mathbf{H} / (\mathbf{H} \cap \langle \alpha \rangle).$$

Let i_1, i_2, \ldots, i_t be *t* distinct elements, such that $0 \le i_1 < i_2 < \cdots < i_t < 2(r+1)$. Denote $I = \{i_1, i_2, \ldots, i_t\}, A = i_1 + i_2 + \cdots + i_t$ and $\mathbf{B} = \{\beta^{i_1}, \beta^{i_2}, \ldots, \beta^{i_t}\}$ be a set of coset representatives of $(\mathbf{H} \times \langle \alpha \rangle) / \langle \alpha \rangle$. Let

$$\vec{a} = (\alpha \beta^{i_1}, \dots, \alpha^m \beta^{i_1}, \alpha \beta^{i_2}, \dots, \alpha^m \beta^{i_2}, \dots, \alpha \beta^{i_t}, \dots, \alpha^m \beta^{i_t}).$$

Then the entries of \vec{a} are distinct in \mathbb{F}_q^* .

It is known that $x^m - y^m = \prod_{j=1}^m (x - \alpha^j y)$. By the statement of Lemma 3, we get

$$\begin{split} L_{\vec{a}}(\beta^{z}\alpha^{k}) &= \prod_{1 \leq j \leq m, j \neq k} (\beta^{z}\alpha^{k} - \beta^{z}\alpha^{j}) \prod_{l \in I, l \neq z} \prod_{j=1}^{m} (\beta^{z}\alpha^{k} - \beta^{l}\alpha^{j}) \\ &= \beta^{z(m-1)} \prod_{1 \leq j \leq m, j \neq k} (\alpha^{k} - \alpha^{j}) \prod_{l \in I, l \neq z} [(\beta^{z}\alpha^{k})^{m} - \beta^{lm}] \\ &= \beta^{z(m-1)} m \alpha^{-k} \prod_{l \in I, l \neq z} (\beta^{zm} - \beta^{lm}). \end{split}$$

Let $v = \prod_{l \in I, l \neq z} (\beta^{zm} - \beta^{lm})$, then

$$\begin{split} v^{r} &= \prod_{l \in I, l \neq z} (\beta^{zmr} - \beta^{lmr}) \quad (\text{since } \beta^{2(r+1)} = 1, \beta^{r} = -\beta^{-1}) \\ &= \prod_{l \in I, l \neq z} [(-\beta^{-1})^{zm} - (-\beta^{-1})^{lm}] \\ &= \prod_{l \in I, l \neq z} [(\beta^{-1})^{zm} - (\beta^{-1})^{lm}] \\ &= \prod_{l \in I, l \neq z} (\beta^{-1})^{zm+lm} (\beta^{lm} - \beta^{zm}) \\ &= (-1)^{t-1} \beta^{-(A+(t-2)z)m} v \end{split}$$

So $v^{r-1} = (-1)^{t-1} \beta^{-(A+(t-2)z)m}$.

Let *g* be a generator of \mathbb{F}_q^* , then $\alpha = g^{\frac{q-1}{m}}$, $\beta = g^{\frac{r-1}{2}}$, $-1 = g^{\frac{r^2-1}{2}}$, $v = g^{\frac{r+1}{2}(t-1)-(A+(t-2)z)\frac{m}{2}+i(r+1)}$. Note that β , *m* and α are square elements of \mathbb{F}_q^* , we take $\lambda = g^{\frac{r+1}{2}(t-1)}$, then $\lambda L_{\vec{a}}(\beta^z \alpha^k)$ is a square element of \mathbb{F}_q^* .

This implies there exists a *q*-ary $[n, \frac{n}{2}]$ MDS self-dual code.

Example 1. Let r = 173, $q = 173^2$, $r \equiv 1 \pmod{4}$, $m = 4 \times 43$, $\frac{q-1}{m} = 174$ is even. For $1 \le t \le \frac{2(r+1)}{\gcd(2(r+1),m)} = 87$, we choose t = 81. By Theorem 1, there exists the MDS self-dual code with length n = mt = 13,932.

Theorem 2. Let $q = r^2$, where *r* is an odd prime power. Suppose that *m* is odd, $m \mid (q-1)$ and $\frac{q-1}{m}$ is even. If $1 \le t \le \min\{\frac{r+1}{\gcd(2(r+1),m)}, \frac{r+1}{2}\}$ and *t* is odd, then there exists a *q*-ary $[n = tm + 1, \frac{n}{2}]$ MDS self-dual code over \mathbb{F}_q .

Proof. Let α and β be the same as in Theorem 1, we choose *t* distinct even number i_1, i_2, \ldots, i_t , $0 \le i_1 < i_2 < \cdots < i_t < 2(r+1)$. Denote $I = \{i_1, i_2, \cdots, i_t\}, A = i_1 + i_2 + \ldots + i_t$. Suppose all $i_j \equiv 2 \pmod{4}, j = 1, 2, \cdots, t$. The proof is as similar as in Theorem 1. We get

$$L_{\vec{a}}(\beta^{z}\alpha^{k}) = \beta^{z(m-1)}m\alpha^{-k}\prod_{l\in I, l\neq z}(\beta^{zm}-\beta^{lm}).$$

Let $v = \prod_{l \in I, l \neq z} (\beta^{zm} - \beta^{lm})$, then we get

$$v^{r-1} = (-1)^{t-1} \beta^{-(A+(t-2)z)m}, v = g^{\frac{r+1}{2}(t-1) - \frac{(A+(t-2)z)m}{2} + i(r+1)}$$

since $\frac{A+(t-2)z}{2}$ is even, it implies that v is a square element of \mathbb{F}_q^* . So $-L_{\vec{a}}(\beta^z \alpha^k)$ is square element of \mathbb{F}_q^* . By Lemma 3, there exists a *q*-ary $[n, \frac{n}{2}]$ MDS self-dual code. \Box

Example 2. Let $r = 67, q = 67^2, m = 11, \frac{q-1}{m} = 408$ is even. Since $2(r+1) = 136 = 4 \times 34$, for $1 \le t \le \frac{r+1}{gcd(2(r+1),m)} = 68$, we choose t = 27. By Theorem 2, there exists the MDS self-dual code with length n = mt + 1 = 298.

Theorem 3. Let $q = r^2$, where r is an odd prime power, $r \equiv 1 \pmod{4}$. Suppose that m is odd, $m \mid (q-1)$ and $\frac{q-1}{m}$ is even. If $1 \le t \le \min\{\frac{r+1}{gcd(2(r+1),m)}, \frac{r+1}{2}\}$ and t is odd, then there exists a q-ary $[n = tm + 1, \frac{n}{2}]$ MDS self-dual code over \mathbb{F}_q .

Proof. Let α and β be the same as in Theorem 1, we choose *t* distinct even number i_1, i_2, \ldots, i_t , $0 \le i_1 < i_2 < \cdots < i_t < 2(r+1)$. Denote $I = \{i_1, i_2, \cdots, i_t\}, A = i_1 + i_2 + \ldots + i_t$, and $i_j \equiv 2 \pmod{4}, j = 1, 2, \cdots, t$. We define the generalized Reed -Solomon code **GRS**_k(\vec{a}, \vec{v}) with

$$\vec{a} = (0, \alpha \beta^{i_1}, \dots, \alpha^m \beta^{i_1}, \alpha \beta^{i_2}, \dots, \alpha^m \beta^{i_2}, \dots, \alpha \beta^{i_t}, \dots, \alpha^m \beta^{i_t}).$$

For any $z \in I$ and $1 \le k \le m$, we get

$$L_{\vec{a}}(\beta^{z}\alpha^{k}) = \beta^{z}\alpha^{k} \prod_{1 \le j \le m, j \ne k} (\beta^{z}\alpha^{k} - \beta^{z}\alpha^{j}) \prod_{l \in I, l \ne z} \prod_{j=1}^{m} (\beta^{z}\alpha^{k} - \beta^{l}\alpha^{j})$$
$$= \beta^{zm} m \prod_{l \in I, l \ne z} (\beta^{zm} - \beta^{lm})$$

and

$$L_{\vec{a}}(0) = \prod_{l \in I} \prod_{j=1}^{m} (0 - \beta^{l} \alpha^{j}) = (-1)^{mt} \alpha^{\frac{m(m+1)}{2}} (\prod_{l \in I} \beta^{l})^{m}.$$

Since $r \equiv 1 \pmod{4}$, $\frac{q-1}{m}$ is even, so $\alpha, \beta, m, -1$ are square elements of \mathbb{F}_q^* , we only need to consider $v = \prod_{l \in I, l \neq z} (\beta^{zm} - \beta^{lm})$. As the calculation in the proof of Theorem 1, $v = g^{\frac{r+1}{2}(t-1) - \frac{(A+(t-2)z)m}{2} + i(r+1)}$. Since all $i_j \equiv 2 \pmod{4}$ and t is odd, so $\frac{(A+(t-2)z)m}{2}$ is even. $L_{\vec{a}}(\beta^z \alpha^k)$, $L_{\vec{a}}(0)$ are square elements of \mathbb{F}_q^* . By Lemma 2, there exists a q-ary $[n, \frac{n}{2}]$ MDS self-dual code. \Box

Example 3. Let $r = 101, r \equiv 1 \pmod{4}, q = 101^2, m = 75, \frac{q-1}{m} = 136$ is even. Since $2(r+1) = 204 = 4 \times 51$, for $1 \le t \le \frac{r+1}{\gcd(2(r+1),m)} = 34$, we choose t = 33. By Theorem 2, there exists the MDS self-dual code with length n = mt + 1 = 2476.

Theorem 4. Let $q = r^2$, where *r* is an odd prime power. Suppose that $m \mid (q-1), \frac{q-1}{m}$ is even. If $1 \le t \le \frac{2(r+1)}{\gcd(2(r+1),m)}$ and tm is even, then there exists a q-ary $[n = tm + 2, \frac{n}{2}]$ MDS self-dual code over \mathbb{F}_q .

Proof. Let α and β be the same as in Theorem 1. We define the extended generalized Reed -Solomon code **GRS**_{*k*}(\vec{a}, \vec{v}, ∞) with

$$\vec{a} = (0, \alpha \beta^{i_1}, \cdots, \alpha^m \beta^{i_1}, \alpha \beta^{i_2}, \cdots, \alpha^m \beta^{i_2}, \cdots, \alpha \beta^{i_t}, \cdots, \alpha^m \beta^{i_t}).$$

For any $z \in I$ and $1 \le k \le m$, we get

$$L_{\vec{a}}(\beta^{z}\alpha^{k}) = \beta^{z}\alpha^{k} \prod_{1 \le j \le m, j \ne k} (\beta^{z}\alpha^{k} - \beta^{z}\alpha^{j}) \prod_{l \in I, l \ne z} \prod_{j=1}^{m} (\beta^{z}\alpha^{k} - \beta^{l}\alpha^{j})$$
$$= \beta^{zm} m \prod_{l \in I, l \ne z} (\beta^{zm} - \beta^{lm})$$

and

$$L_{\vec{a}}(0) = \prod_{l \in I} \prod_{j=1}^{m} (0 - \beta^{l} \alpha^{j}) = (-1)^{mt} \alpha^{\frac{m(m+1)}{2}} (\prod_{l \in I} \beta^{l})^{m}.$$

Case 1: If *m* is even, *t* is odd.

 β^{zm} , *m* and $L_{\vec{a}}(0)$ are square elements of \mathbb{F}_q^* . Let $v = \prod_{l \in I, l \neq z} (\beta^{zm} - \beta^{lm})$, as the calculation in Theorem 1, $v = g^{\frac{r+1}{2}(t-1) - \frac{(A+(t-2)z)m}{2} + i(r+1)}$. So we only need to consider the parity of $\frac{(A+(t-2)z)m}{2}$.

- i_1, i_2, \dots, i_t are even number, so $A + (t-2)z \equiv 0 \pmod{2}$, v is a square element of \mathbb{F}_q^* .
- i_1, i_2, \ldots, i_t are odd number, so $A + (t-2)z \equiv 0 \pmod{2}$, v is a square element of \mathbb{F}_q^* .

Case 2: If *m* and *t* are even, $r \equiv 3 \pmod{4}$, we assume *A* is an even integer. It follows that $\frac{r+1}{2}(t-1) - \frac{(A+(t-2)z)m}{2}$ is an even integer.

Case 3: If *m* is odd, *t* is even.

- $t \equiv 0 \pmod{4}$
 - (1) If $r \equiv 1 \pmod{4}$, all i_1, i_2, \dots, i_t are odd, and $A \equiv 0 \pmod{4}$, then then $(r+1)(t-1) (A + (t-2)z)m \equiv 0 \pmod{4}$, v is a square element of \mathbb{F}_q^* .
 - (2) If $r \equiv 3 \pmod{4}$, all i_1, i_2, \dots, i_t are even, and $A \equiv 2 \pmod{4}$, then $(r+1)(t-1) (A + (t-2)z)m \equiv 0 \pmod{4}$, v is a square element of \mathbb{F}_q^* .
- $t \equiv 2 \pmod{4}$.
 - (1) If $r \equiv 1 \pmod{4}$, $A \equiv 2 \pmod{4}$, then $(r+1)(t-1) (A + (t-2)z)m \equiv 0 \pmod{4}$, v is square of \mathbb{F}_{q}^{*} .
 - (2) If $r \equiv 3 \pmod{4}$, $A \equiv 0 \pmod{4}$, then $(r+1)(t-1) (A + (t-2)z)m \equiv 0 \pmod{4}$, v is square of \mathbb{F}_q^* .

We can extend the Theorem 1 to a more general case.

Theorem 5. Let $q = r^2$, where r is an odd prime power. Suppose that $m \mid (q-1), \frac{q-1}{m}$ is even, $s \mid m, s \mid r-1$ and $\frac{r-1}{s}$ is even. If $1 \le t \le \frac{s(r+1)}{gcd(s(r+1),m)}$, then there exists a q-ary $[n = tm, \frac{n}{2}]$ MDS self-dual code over \mathbb{F}_q .

Proof. Let α be a primitive *m*-th root of unity and $\mathbf{H} = \langle \beta \rangle$ is the cyclic group of order s(r + 1). By the theorem of group homomorphism,

$$(\mathbf{H} \times \langle \alpha \rangle) / \langle \alpha \rangle \cong \mathbf{H} / (\mathbf{H} \cap \langle \alpha \rangle),$$

Let i_1, i_2, \ldots, i_t be *t* distinct elements, such that $0 \le i_1 < i_2 < \cdots < i_t < 2(r+1)$. Denote $I = \{i_1, i_2, \ldots, i_t\}, A = i_1 + i_2 + \ldots + i_t$ and $\mathbf{B} = \{\beta^{i_1}, \beta^{i_2}, \ldots, \beta^{i_t}\}$ be a set of coset representatives of $\mathbf{H} \times \langle \alpha \rangle$. Let

$$\vec{a} = (\alpha \beta^{i_1}, \cdots, \alpha^m \beta^{i_1}, \alpha \beta^{i_2}, \cdots, \alpha^m \beta^{i_2}, \cdots, \alpha \beta^{i_t}, \cdots, \alpha^m \beta^{i_t}).$$

Similar with Theorem 1, we get

$$L_{\vec{a}}(\beta^{z}\alpha^{k}) = \prod_{1 \le j \le m, j \ne k} (\beta^{z}\alpha^{k} - \beta^{z}\alpha^{j}) \prod_{l \in I, l \ne z} \prod_{j=1}^{m} (\beta^{z}\alpha^{k} - \beta^{l}\alpha^{j})$$
$$= \beta^{z(m-1)} \cdot m \cdot \alpha^{-k} \prod_{l \in I, l \ne z} (\beta^{zm} - \beta^{lm})$$

Since $\beta^{s(r+1)} = 1$, then $\beta^{r+1} = \xi_s$, where ξ_s is *s*-th primitive root of unity. So $\beta^r = \xi_s \beta^{-1}$. Let $v = \prod_{l \in I, l \neq z} (\beta^{zm} - \beta^{lm})$. Since $s \mid m$, then

$$v^{r} = \prod_{l \in I, l \neq z} ((\beta^{-1})^{zm} - (\beta^{-1})^{lm})$$

=
$$\prod_{l \in I, l \neq z} \beta^{-(l+z)m} (\beta^{lm} - \beta^{zm})$$

=
$$(-1)^{t-1} \beta^{-(A+(t-2)z)m} v.$$

So $v^{r-1} = (-1)^{t-1} \beta^{-(A+(t-2)z)m}$.

Let *g* be a generator of \mathbb{F}_q^* . It follows that $\beta = g^{\frac{r-1}{s}}$ and $-1 = g^{\frac{r^2-1}{2}}$. So

$$v = g^{\frac{(r+1)}{2}(t-1) - [A + (t-2)z]\frac{m}{s}}.$$

Case 1: If *m* odd and *t* even, we can take $\lambda = g^{\frac{(r+1)}{2}(t-1)-A \cdot \frac{m}{s}}$. Hence, we have $\lambda L_{\vec{a}}(\beta^z \alpha^k)$ is square element of \mathbb{F}_q^* .

Case 2: If *m* even and $2 \mid \frac{m}{s}$, we can take $\lambda = g^{\frac{(r+1)}{2}(t-1)}$. Hence, we have $\lambda L_{\vec{a}}(\beta^z \alpha^k)$ is square element of \mathbb{F}_a^* .

So there exists a *q*-ary MDS self-dual code with length n. \Box

4. Conclusions

In this paper, based on the method from [9], we construct several classes of MDS self-dual code over finite fields with odd characteristics via the generalized Reed-Solomon code and extend the generalized Reed-Solomon code.

Author Contributions: Original ideas, writing, original draft preparation, A.Z.; review, Z.J.; funding acquisition, A.Z. Funding: This research was funded by the National Natural Science Foundation of China under Grants 11401468. Conflicts of Interest: The authors declare no conflict of interest.

References

- Dau, S.H.; Song, W.; Yuen, C. On the existence of MDS codes over small fields with constrained generator matrices. In Proceedings of the 2014 IEEE International Symposium on Information Theory, Honolulu, HI, USA, 29 June–4 July 2014; pp. 1787–1791.
- Pedersen, J.P.; Dahl, C. Classification of pseudo-cyclic MDS codes. *IEEE Trans. Inf. Theory* 1991, 37, 365–370. [CrossRef]
- Dau, S.H.; Song, W.; Dong, Z.; Yuen, C. Balanced sparsest generator matrices for MDS codes. In Proceedings of the 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey, 7–12 July 2013; pp. 1889–1893.
- 4. Roth, R.M.; Lempel, A. A construction of non-Reed-Solomon type MDS codes. *IEEE Trans. Inf. Theory* **1989**, 35, 655–657. [CrossRef]
- Chen, B.; Liu, H. New constructions of MDS codes with complementary dual. *IEEE Trans. Inf. Theory* 2018, 64, 5776–5782. [CrossRef]
- Carlet, C.; Mesnager, S.; Tang, C.; Qi, Y. Euclidean and hermitian LCD MDS codes. *Des. Codes Cryptogr.* 2018, 86, 2605–2618. [CrossRef]
- 7. Blaum, M.; Roth, R.M. On lowest density MDS codes. IEEE Trans. Inf. Theory 1999, 45, 46–59. [CrossRef]
- 8. Grassl, M.; Gulliver, T.A. On self-dual MDS codes. In Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, 6–11 July 2008; pp. 1954–1957.
- 9. Fang, X.; Labad, K.; Liu, H.; Luo, J. New parameters on MDS self-dual codes over finite fields. *arXiv* 2018, arXiv:1811.02802vl.
- 10. Guenda, K. New MDS self-dual codes over finite fields. Des. Codes Cryptogr. 2012, 62, 31–42. [CrossRef]
- Jin, L.; Xing, C. New MDS self-dual codes from generalized Reed-Solomon codes. *IEEE Trans. Inf. Theory* 2017, 63, 1434–1438. [CrossRef]
- 12. Labad, K.; Liu, H.; Luo, J. Construction of MDS self-dual codes over finite fields. *arXiv* 2018, arXiv:1807.10625vl.
- Kim, J.L.; Lee, Y. Euclidean and Hermitian self-dual MDS codes over large finite fields. J. Comb. Theory Ser. A 2006, 105, 79–95. [CrossRef]

- 14. Yan, H. A Note on the Construction of MDS Self-Dual Codes. Cryptogr. Commun. 2018. [CrossRef]
- 15. MacWilliams, F.J.; Sloane, N.J.A. *The Theory of Error-Correcting Codes*; Elsevier: Amsterdam, The Netherland, 1977.

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).