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Abstract: Ship-radiated noise signal has a lot of nonlinear, non-Gaussian, and nonstationary
information characteristics, which can reflect the important signs of ship performance. This paper
proposes a novel feature extraction technique for ship-radiated noise based on improved intrinsic
time-scale decomposition (IITD) and multiscale dispersion entropy (MDE). The proposed feature
extraction technique is named IITD-MDE. First, IITD is applied to decompose the ship-radiated
noise signal into a series of intrinsic scale components (ISCs). Then, we select the ISC with the
main information through the correlation analysis, and calculate the MDE value as feature vectors.
Finally, the feature vectors are input into the support vector machine (SVM) for ship classification.
The experimental results indicate that the recognition rate of the proposed technique reaches 86%
accuracy. Therefore, compared with the other feature extraction methods, the proposed method
provides a new solution for classifying different types of ships effectively.

Keywords: ship-radiated noise; multiscale dispersion entropy(MDE); improved intrinsic time-scale
decomposition (IITD); intrinsic scale component (ISC); feature extraction

1. Introduction

During the development of passive sonar, the ship-radiated noise signal has been widely used
in the detection, tracking, and classification of ship targets. As it contains a lot of information about
ship characteristics, ship-radiated noise has always been a research hotspot of underwater acoustic
signal processing. Hence, extracting effective and reliable ship-radiated noise characteristic parameters
is highly valuable [1,2]. Ship-radiated noise signals usually have time-variant and nonstationary
characteristics. Especially in the early stage of signal processing, the ship feature is weak and is
completely drowned out by the complexity of marine environments [3,4]. Therefore, in order to realize
the effective ship signal, suppressing the background noise and effects of aliasing between the feature
information from the original signal is becoming in urgent need of solving.

Due to the rapid development of ship-radiated noise signal processing technology, some
researchers have proposed many nonlinear and nonstationary signal processing methods for the feature
extraction of underwater acoustic target signals, such as empirical mode decomposition (EMD) [5,6],
intrinsic time-scale decomposition (ITD) [7,8], local mean decomposition (LMD) [9], and their improved
algorithms [10–14]. Hong [15] proposed ensemble EMD (EEMD) and energy distribution to extract the
energy difference, which is an efficient feature extraction technique for ship-radiated noise. Li [16]
proposed an improved energy feature extraction technique for ship-radiated noise, which combined
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CEEMDAN and EE to extract the hybrid energy feature. Frei [17] proposed an adaptive time-frequency
analysis method, which can decompose the nonstationary signal into a series of single component
signals with the physical meanings of instantaneous frequencies. In recent decades, these studies have
provided rich reference information, which is widely used in fault diagnosis [18,19], biomedicine [20,21],
geophysics [22], and hydroacoustics [23,24]. Compared with the EMD method, the ITD method has
obvious advantages in terms of computational efficiency and processing edge effects. However, the
definition of the baseline of the ITD method is based on the linear transformation of the signal itself, and
may cause a glitch and distortion of the proper rotation components obtained by the decomposition.
Based on this, we used akima interpolation [25] to improve the ITD method; then, the IITD algorithm
was proposed. Therefore, this is a feasible way to decompose the ship-radiated noise signal by IITD to
extract effective ISCs.

Entropy theory can efficiently evaluate the complexity of the time series and reduce the dimension
of the feature vector and fully represent the characteristics of the series. Hence, there are many methods
for complexity measurement, including Shannon entropy [26], sample entropy (SampEn) [27,28],
permutation entropy (PE) [29], and fuzzy entropy [30], which have been successfully applied in the
field of fault diagnosis and the medical field. However, SampEn is time consuming for large data
calculations and is susceptible to mutated signals. While the PE is faster, it fails to consider the
mean value of amplitudes and differences between the amplitudes value. In order to overcome the
drawbacks of SampEn and PE, a new measure of the complexity method, named dispersion entropy
(DE), was proposed by Mostafa Rostaghi and Hamed Azami in 2016 [31]. The advantage of the DE
algorithm is that the calculation speed is fast, the influence of the noisy signal is small, and it considers
the influence of the magnitude relationship between amplitudes of the signal. Since all of the above
methods are based on a single scale, they fail to account for the interrelationship of entropy and
temporal scales. To remedy this, Costa etal. proposed the multiscale entropy (MSE) algorithm, in
which scales are generated by the coarse-graining process [32]. The coarse-graining process has better
stability in feature extraction and can be combined with arbitrary entropy estimators for multiscale
analysis. Regarding this advantage, a multiscale dispersion entropy (MDE) procedure was put forward
to estimate the complexity of the original time series over a range of scales [33]. Therefore, the MDE of
the signal was adopted in this paper to identify the feature information of the ship-radiated noise signal.

In this paper, an effective feature extraction technique for ship-radiated noise via IITD and
multiscale dispersion entropy (MDE) is introduced, named IITD-MDE. The proposed technique not
only retains the advantages of existing techniques, but also overcomes the disadvantages of ITD and
dispersion entropy (DE).

The rest of the paper is organized as follows: Section 2 first describes the ITD and DE algorithms,
and based on this, the IITD and MDE algorithms are proposed. The IITD-MDE method flow is
described in Section 3. The experiments are verified and analyzed by real ship-radiated noise datasets
in Section 4. The conclusions are given in Section 5.

2. Theory of IITD-MDE

2.1. IITD Algorithm

The ITD method realizes the signal decomposed by the linear transformation method,
which appears the obvious signal distortion from the second component. Therefore, first, this
section explains the physical meaning of the ITD decomposed method, and then proposes an improved
ITD method (IITD).
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2.1.1. ITD

Suppose {Xt, t ≥ 0} is a real-valued signal, let {τk, k = 1, 2, · · ·} denote the local extrema of Xt,
and for convenience define τ0 = 0. we defined L as the baseline extraction operator for Xt, and Xt can
be decomposed as [17]:

Xt = LXt + (1− L)Xt = Lt + Ht, (1)

where, Lt = LXt is the baseline signal, and Ht = (1− L)Xt is proper rotation component.
To simplify the notation, let Xk and Lk denote X(τk) and L(τk), respectively. Suppose that Lt

and Ht have been defined on [0, τk], and Xt is available for [0, τk+2]. We can define L on the interval
[τk, τk+1] between successive extrema as follows:

LXt = Lk +

(
Lk+1 − Lk

Xk+1 −Xk

)
(Xt −Xk), (2)

Lk+1 = α

[
Xk +

(
τk+1 − τk

τk+2 − τk

)
(Xk+2 −Xk)

]
+ (1− α)Xk+1, (3)

where 0 < α < 1 is typically selected as α = 1/2. We were able to define the proper rotation operator
Ht as

HXt = (1− L)Xt = Ht = Xt − Lt, (4)

Given that signal Xt is decomposed, it can be expressed as

Xt = HXt + LXt = HXt + (H + L)LXt = (H
p−1∑
k=0

Lk + Lp)Xt, (5)

where HLkXt is the (k + 1)th proper rotation component (PRC) and LpXt is the monotonic trend signal.
The ITD method obtained the baseline by linear transformation, which caused a glitch and

distortion. Therefore, we present the IITD method, which replaces the linear transformation in the
ITD method with akima interpolation. While akima interpolation is used, it is different from the
envelope mean based on local extrema in EMD because IITD only requires one akima interpolation
per decomposition.

2.1.2. Comparison of Baseline-Fitting Method

The comparison with the interpolation method is shown in Figure 1. The above three methods
of the curve fitting method are used to interpolate discrete points, including linear interpolation,
cubic spline interpolation, and akima interpolation. Figure 1a,b shows that the cubic spline interpolation
has better smoothness and continuously differentiates second order interpolation rather than linear
interpolation, but it will cause the phenomenon of “overshoot”. Therefore, the proposed method,
combined with akima interpolation, can effectively avoid the overshoot and maintain the advantages
of cubic spline interpolation. As shown in Figure 1c, this method has a better fitting effect, avoids the
phenomenon of “overshoot”, and has better smoothness.
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Figure 1. The comparison of the interpolation methods: (a) linear interpolation, (b) cubic spline
interpolation, and (c) akima interpolation.

2.1.3. Intrinsic Scale Component (ISC)

In the ITD method, PRC should satisfy the baseline signal control points Lk+1 = 0. Based on this,
we defined the ISC of the physical meaning of instantaneous frequency and satisfied the conditions
as follows:

(1) Any two adjacent maxima and minima are monotonic in the whole data segment.
(2) Let {τk , k = 1, 2, · · · , M} denote the local extrema of {Xk , k = 1, 2, · · · , M}, the line connected

the maximum value at τk and Xk and minima value at τk+2 and Xk+2, the function value of extreme
points

(
τk,Xk+1

)
at the corresponding time τk+1 is Ak+1 = Xk +

( τk+1−τk
τk+2−τk

)
(Xk+2 −Xk) and its radio to

Xk+1 remains the same. These are satisfied as follows: α
[
Xk +

( τk+1−τk
τk+2−τk

)
(Xk+2 −Xk)

]
+ (1− α)Xk+1 = 0,

A2
X2

= · · · = A6
X6

= · · ·µ, where α is typically chosen to be 0.5, any there is a choice of α in the interval
(0, 1). ISC satisfies the conditions, as shown in Figure 2.

Entropy 2019, 21, x FOR PEER REVIEW 4 of 17 

 

 

Figure 1. The comparison of the interpolation methods: (a) linear interpolation, (b) cubic spline 

interpolation, and (c) akima interpolation. 

2.1.3. Intrinsic Scale Component (ISC) 

In the ITD method, PRC should satisfy the baseline signal control points . Based on this, 

we defined the ISC of the physical meaning of instantaneous frequency and satisfied the conditions 

as follows: 

(1) Any two adjacent maxima and minima are monotonic in the whole data segment. 

(2) Let  denote the local extrema of , the line connected the 

maximum value at  and  and minima value at  and , the function value of 

extreme points  at the corresponding time  is  and its 

radio to  remains the same. These are satisfied as follows: 

 , , where  is typically chosen to be 0.5, 

any there is a choice of  in the interval . ISC satisfies the conditions, as shown in Figure 2. 

Figure 2. Intrinsic scale component (ISC) satisfies the conditions. 

01 kL

 Mkk ,,2,1,   MkX k ,,2,1, 

k kX
2k 2kX

 1, kk X 1k  kk

kk

kk
kk XXXA 














 




 2

2

1
1





1kX

  0)1( 12

2

1 






















 





kkk

kk

kk

k XXXX 



  

6

6

2

2

X

A

X

A 

  1,0

 22 , A   66 , A  

 22 , X   66 , X  

Figure 2. Intrinsic scale component (ISC) satisfies the conditions.



Entropy 2019, 21, 1215 5 of 17

2.1.4. IITD

IITD is an algorithm for decomposing the physical signals into a collection of ISCs, which are
independent of each other.

(1) Let {τk, k = 1, 2, · · ·} denote the local extrema of Xt, and take the same steps as the ITD method’s
Equations (2) and (3) to extract each baseline signal point Lk.

(2) Take the mirror symmetric extension method to process the Xt in order to obtain the left
extreme value at τ0 and X0 and the right extreme value at τM+1 and XM+1. Define k = 0 and k = M− 1
respectively, according to Equations (1) and (2), and find the values of L1 and LM. Then, use akima
interpolation to fit all the Lk and get the baseline signal L1(t).

(3) Separate the baseline signal L1(t).

h1(t) = Xt − L1(t), (6)

Suppose baseline signal Lk+1 , 0, then h1(t) = ISC1. If the baseline signal Lk+1 = 0, then set h1(t)
as the original signal to repeat steps (1–2), loop k until h1k(t) = ISC1. Then, separate ISC1 from the
original signal as the new signal r1(t).

(4) Set r1(t) as a given signal, repeat steps (1–3) and Xt can be decomposed as

Xt =
n∑

n=1

ISCn + rn(t), (7)

where ISCn is the nth intrinsic scale component (ISC), and rn(t) is a monotonic trend signal.

2.2. MDE Algorithm

2.2.1. DE

(1) Considering a given nonlinear time series x =
{
x j, j = 1, 2, · · · , N

}
, the normal cumulative

distribution function (NCDF) of x is calculated as follows:

y j =
1

σ
√

2π

x j∫
−∞

e
−(t−µ)2

2σ2 dt, (8)

where µ and σ represent the mean and standard deviation of time series x, respectively.
(2) Then, map y j to z j, by using the following definition:

z j = round
(
c · y j +

1
2

)
, (9)

where c is an integer.
(3) Time series zm,c

i is made according to

zm,c
i =

{
zc

i , zc
i+d, · · · , zc

i+(m−1)d

}
, i = 1, 2, · · · , N − (m− 1)d, (10)

Each time series zm,c
i is mapped to dispersion pattern πv0v1···vm−1 , where

zc
i = v0, zc

i+d = v1, · · · , zc
i+(m−1)d = vm−1, (11)

(4) For each cm potential dispersion pattern πv0v1···vm−1 , its relative frequency is obtained as follows:

p(πv0v1···vm−1) =
#
{
i
∣∣∣ i ≤ N − (m− 1)d, zm,c

i has typeπv0···vm−1

}
N − (m− 1)d

, (12)
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In fact, p
(
πv0v1···vm−1

)
shows embedding vector zm,c

i maps to the number of dispersion pattern
πv0v1···vm−1 , divided by the total number of zm,c

i .
(5) Finally, the DE value is calculated as follows:

DE(x, m, c, d) = −
cm∑
π=1

p(πv0v1···vm−1) · In(p(πv0v1···vm−1)), (13)

2.2.2. MDE

In order to solve the incomplete problem of extracting the complexity of the signal in the single scale,
we propose the MDE method. It has better stability in the coarse-grained process and the advantage of
feature extraction and error calculation of the signal. If scale factor τ = 2, the coarse-grained process of
MDE can be described, as in Figure 3.

Entropy 2019, 21, x FOR PEER REVIEW 6 of 17 

 

 (12) 

In fact,  shows embedding vector  maps to the number of dispersion pattern 

, divided by the total number of . 

(5) Finally, the DE value is calculated as follows: 

 (13) 

2.2.2. MDE 

In order to solve the incomplete problem of extracting the complexity of the signal in the single 

scale, we propose the MDE method. It has better stability in the coarse-grained process and the 

advantage of feature extraction and error calculation of the signal. If scale factor , the coarse-

grained process of MDE can be described, as in Figure 3.  

 

Figure 3. The coarse-grained process of MDE. 

(1) Define a given time series ,  that can be obtained by coarse-grained signal 

at scale factor : 

 (14) 

(2) Each coarse-grained series  can be calculated by 

 (15) 

2.3. Comparison between ITD, IITD, and EMD 

In order to compare ITD, IITD, and EMD, simulation signals are taken as 

 (16) 

where,  consists of  with the sampling frequency of 1 kHz and standard Gaussian white 

noise . 

The time-frequency domain waveforms of  are shown in Figure 4. The results decomposed 

by ITD, IITD, and EMD are depicted in Figure 5. Compared with Figures (2) and (3), the result of 

decomposed by ITD has obvious deformation and end effect. In addition, it can be seen from the 

monotonic trend of signal  that the fitting error of ITD decomposition is also relatively large. The 

IMFs of EMD decomposed appears illusive components and model aliasing phenomenon. Based on the 

 
dmN

typehaszdmNii
p m

m

vv

cm

i

vvv
)1(

,)1(|#
)( 10

110

,




 










 
110 mvvv

p


 cm

iz ,

110 mvvv  cm

iz ,







m

mm

c

vvvvvv pInpdcmxDE
1

))(()(),,,(
110110



 

2

 Liix ,,2,1),( 
 y



  






 /1),(
1

1)1(

Ljixy
j

ji

j  


 y

),,,(),,,,( )( dcmyDEdcmxMDE  

   

 














)()()(

)(

50cos)10cos(

21

2

1

txtxtx

trandntx

tttx 

 tx  tx1

 tx2

 tx

r

Figure 3. The coarse-grained process of MDE.

(1) Define a given time series
{
x(i), i = 1, 2, · · · , L

}
, y(τ) that can be obtained by coarse-grained

signal at scale factor τ:

y(τ)j =
1
τ

jτ∑
i=( j−1)τ+1

x(i), 1 ≤ j ≤ L/τ, (14)

(2) Each coarse-grained series y(τ) can be calculated by

MDE(x, m, c, d, τ) = DE(y(τ), m, c, d), (15)

2.3. Comparison between ITD, IITD, and EMD

In order to compare ITD, IITD, and EMD, simulation signals are taken as

x1(t) = cos(10πt) + cos(50πt)

x2(t) = randn(t)

x(t) = x1(t) + x2(t)

, (16)

where, x(t) consists of x1(t) with the sampling frequency of 1 kHz and standard Gaussian white noise
x2(t).

The time-frequency domain waveforms of x(t) are shown in Figure 4. The results decomposed
by ITD, IITD, and EMD are depicted in Figure 5. Compared with Figures 2 and 3, the result of
decomposed by ITD has obvious deformation and end effect. In addition, it can be seen from the
monotonic trend of signal r that the fitting error of ITD decomposition is also relatively large. The
IMFs of EMD decomposed appears illusive components and model aliasing phenomenon. Based on
the above comparison, the original signal can be decomposed more accurately by using IITD method.
At the same time, it can overcome the defect of model aliasing and illusive components by EMD
method and waveform distortion caused by the ITD method.
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2.4. Comparison between MSE, MPE, and MDE

To illustrate the advantages of MDE, GWN and 1/ f noise data with size of 3000 points are
applied to perform the comparison between MSE, MPE, and MDE. Figure 6 shows the time waveform
for GWN and 1/ f noise. Figure 7 shows the error bars of MSE, MPE, and MDE for two simulated
signals. In this simulation, we set m = 3, d = 1, and the similar tolerance of MSE is set to r = 0.15.
In [9], the parameters of DE are analyzed in detail, so we selected the parameter of MDE as follows:
the number of classes is c = 6, and the largest number of scale factor is s = 20.
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Figure 7. The multi-entropy value of Gaussian white noise and 1/ f noise: (a) MSE, (b) MPE and
(c) MDE.

It can be seen from Figure 7 that, on the low scale factor, entropy values of GWN are larger than
that of 1/ f noise. MSE, MPE and MDE of the GWN correspondingly decrease during the scale factor
increasing. This is because the GWN is more irregular than the 1/ f noise. In summary, compared with
MSE, MPE and MDE, because of the advantage of DE, the MDE calculation result is more stable.

3. The Proposed Feature Extraction Method

According to the theoretical analysis of IITD and MDE in Section 2, this paper combines IITD and
MDE to present the following feature extraction for ship-radiated noise:

(1) Perform IITD on the five types of ship-radiated noise signals of the training data and decompose
signals into a series of ISCs and one monotonic trend component.

(2) Calculate the correlation between ISCs and the original signal, then select the ISCs with large
correlation coefficients as the feature parameter.

(3) Calculate their MDE value of the chosen ISCs and set scale factor to 20.
(4) Input feature vectors to SVM to establish the classifier.
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(5) For the test dataset, extract their features using steps (1–3), then input the features into classifier
for classification and get recognition rates.

Figure 8 shows the detailed flowchart of the IITD-MDE.
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4. Experimental Verification and Analysis

In order to verify the effectiveness of the proposed method, all data we used are actual ship-radiated
noise signals under the same conditions. Five different types of ship-radiated noise signals are selected as
sample dataset, which including ferry ship (Signal-A), cruise ship (Signal-B), passenger ship (Signal-C),
submarine (Signal-D), and oceanline (Signal-E). The sampling frequency of Signal-A, Signal-B, and
Signal-D are 44.1 kHz and the sampling frequency of Signal-C and Signal-E are 52,734 Hz. Figures 9
and 10 respectively shows the time domain waveforms and spectrum analysis of the normalized
ship signals.
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4.1. IITD Decomposition

IITD is decomposed the five different types of ship-radiated noise, and the results as shown in
Figures 11 and 12.
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Figure 12. Spectrum of decomposed results by IITD.

It can be seen from Figure 11 that ship-radiated noise signals can be decomposed of five ISCs and
one monotonic trend signal. Figure 12 shows the frequency of the signals are arranged from high
frequency to low frequency. The ISCs of different ship-radiated noise signal are different indicate that
the complexity of each type of signals are different. Hence, we can use each order component as a
feature vector.

4.2. ISC Choosen

In order to obtain the ISC that contain the major information characteristics of the original signal,
we calculated the correlation coefficients between each ISC and the original signal, and results are
shown in Figure 13.
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Figure 13. Correlation coefficients of ISCs.

Table 1 shows the feature parameters of different ship signals are distributed in different orders,
which means these ISCs could represent the effective component. Therefore, the largest correlation
coefficient result is selected and analyzed for feature parameter.

Table 1. Select as a feature parameter.

Ship Signal Signal-A Signal-B Signal-C Signal-D Signal-E

Feature Parameter ISC2 ISC4 ISC2 ISC4 ISC3



Entropy 2019, 21, 1215 13 of 17

4.3. Feature Extraction

The proposed technique was utilized to five different types of ship-radiated noise signal. Figure 14a
shows the IITD-MDE distribution of ship signals. the abscissa represents the scale factor, and the
ordinate represents the feature vector MDE. The results demonstrate that the IITD-MDE value is at the
same level for the same ships, but there is an obvious difference for different types of ships. The means
and standard deviations of this method are shown in Figure 15a. It can be concluded that the means
and standard deviations of the proposed feature extraction method are different, while others are close
to each other and the ranges of fluctuations are severely overlapping and non-separable. This indicates
that the proposed feature extraction is reliable.
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In order to demonstrate the superiority of the IITD-MDE method proposed in this paper, different
feature extraction methods are applied to the same dataset, including the ITD-MDE method, the MDE
method and the MPE method. The ITD-MDE method results are depicted in Figure 14b. The means
and standard deviations of this method are shown in Figure 15b. Compared with Figure 14a, the results
demonstrate the overall entropy values are lower than IITD-MDE method. Therefore, the proposed
feature extraction method is better to distinguish ship signal. The distribution of MDE method is
shown in Figure 14c. It can be seen that the MDE of Signal-A is the largest, and the MDE of Signal-D is
the smallest. There is a large overlap between Signal-B, Signal-C, and Signal-E. The distribution of
MPE method is shown in Figure 14d. Compared with Figure 14c, the MDE method is smoother and
more stable than the MPE method.
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4.4. Ship Classification

The feature vectors obtained in Section 4.3 are input into SVM [34] for identification and
classification of ship-radiated noise. For each type of ship signal, 20 samples have been selected. In this
case, 10 samples are used as training set and the remaining 10 samples are used as a test set. In order
to further analyze the classification results, the MDE, MPE, and ITD-MDE method were also used to
classify ship signal. The classification results are shown in Figure 16, and the recognition accuracies are
listed in Table 2. For each type of ship signal, the MPE method is not completely classified correctly,
and the classification accuracy is 40%. The MDE method is inferior to the MPE method, and the
classification accuracy is 50%. The ITD-MDE method is inferior to the MDE method and classification
accuracy is 74%. Compared with the other three methods, the classification accuracy of the proposed
method reaches 86%. The results indicate that the proposed method can better classify the five types of
ship signals.
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Table 2. Different methods for accuracy.

Methods
Accuracy Rate

Accuracy Mean Squared Error Squared Correlation Coefficient

IITD-MDE 86% 0.56 0.7356
ITD-MDE 74% 1.44 0.4661

MDE 50% 2.32 0.2680
MPE 40% 1.84 0.2386

5. Conclusions

In this paper, we carried out an investigation aimed at gaining a better recognition accuracy of
ship-radiated noise signals, a new feature extraction method based on IITD-MDE is present. We also
introduced IITD and MDE to quantify the ship-radiated noise signal in this article.

The work done here has following implications. Firstly, we showed that IITD is appropriate
approach, compared with ITD and EMD, when dealing with noise signal. We also found that MDE
are suitable to quantify the extracted ship-radiated noise feature information, compared with MSE
and MPE. Finally, the most consistent method to distinguish the different types of ship-radiated
noise signals was IITD-MDE and recognition rate is 86%, compared with ITD-MDE, MDE, and MPE.
Hence, the proposed method can extract ship feature and classify effectively.

Author Contributions: Z.L. designed the project and wrote the manuscript; Y.L., K.Z. and J.G. help to revise the
manuscript. All co-authors reviewed and approved the final manuscript.



Entropy 2019, 21, 1215 16 of 17

Funding: This research was supported by National Natural Science Foundation of China (No. 11874302,
No.11574250 and No.51179157).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, S.; Zeng, X. Robust underwater noise targets classification using auditory inspired time-frequency
analysis. Appl. Acoust. 2014, 78, 68–76. [CrossRef]

2. Tucker, J.D.; Azimi-Sadjadi, M.R. Coherence-based underwater target detection from multiple disparate
sonar platforms. IEEE J. Ocean. Eng. 2011, 36, 37–51. [CrossRef]

3. Yan, Z.; Li, Y. Application of principal component analysis to ship-radiated noise classification and recogniion.
Appl. Acoust. 2009, 28, 20–26.

4. Zhang, X.H.; Wang, J.C.; Lin, L.J. Feature extraction of ship-radiated noises based on wavelet transform.
Acta Acust. 1997, 22, 139–144.

5. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H.
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series
analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [CrossRef]

6. Wu, Z.; Huang, N.E. A study of the characteristics of white noise using the empirical mode decomposition
method. Proc. R. Soc. A: Math. Phys. Eng. Sci. 2004, 460, 1597–1611. [CrossRef]

7. Restrepo, J.M.; Venkataramani, S.; Comeau, D.; Flaschka, H. Defining a trend for time series using the
intrinsic time-scale decomposition. New J. Phys. 2015, 16, 085004. [CrossRef]

8. Li, Z.; Li, Y.; Zhang, K. A Feature Extraction Method of Ship-Radiated Noise Based on Fluctuation-Based
Dispersion Entropy and Intrinsic Time-Scale Decomposition. Entropy 2019, 21, 693. [CrossRef]

9. Si, L.; Wang, Z.; Tan, C.; Liu, X. Vibration-Based Signal Analysis for Shearer Cutting Status Recognition
Based on Local Mean Decomposition and Fuzzy C-Means Clustering. Appl. Sci. 2017, 7, 164. [CrossRef]

10. Gao, Y.; Villecco, F.; Li, M.; Song, W. Multi-Scale Permutation Entropy Based on Improved LMD and HMM
for Rolling Bearing Diagnosis. Entropy 2017, 19, 176. [CrossRef]

11. Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise assisted data analysis method Center
for Ocean land Atmosphere Studies. Tech. Rep. 2006, 1, 1–41.

12. Yeh, J.R.; Shieh, J.S.; Huang, N.E. Complementary ensemble empirical mode decomposition: A novel noise
enhanced data analysis method. Adv. Adapt. Data Anal. 2010, 2, 135–156. [CrossRef]

13. Li, Y.; Li, Y.; Chen, X.; Yu, J. Feature extraction of ship-radiated noise based on VMD and center frequency.
J. Vib. Shock 2018, 37, 213–218.

14. Li, Y.; Chen, X.; Yu, J.; Yang, X. A Fusion Frequency Feature Extraction Method for Underwater Acoustic
Signal Based on Variational Mode Decomposition, Duffing Chaotic Oscillator and a Kind of Permutation
Entropy. Electronics 2019, 8, 61. [CrossRef]

15. Yang, H.; Li, Y.; Li, G. Energy analysis of ship-radiated noise based on ensemble empirical mode decomposition.
J. Vib. Shock 2015, 34, 55–59.

16. Li, Y.; Chen, X.; Yu, J. A Hybrid Energy Feature Extraction Approach for Ship-Radiated Noise Based on
CEEMDAN Combined with Energy Difference and Energy Entropy. Processes 2019, 7, 69. [CrossRef]

17. Frei, M.G.; Osorio, I. Intrinsic time-scale decomposition: Time–frequency–energy analysis and real-time
filtering of non-stationary signals. Proc. R. Soc. A Math. Phys. Eng. Sci. 2007, 463, 321–342. [CrossRef]

18. Chen, J.-S.; Wang, J.; Gui, L. An improved EEMD method and its application in rolling bearing fault diagnosis.
J. Vib. Shock 2018, 37, 51–56.

19. Feng, Z.; Lin, X.; Zuo, M.J. Joint amplitude and frequency demodulation analysis based on intrinsic time-scale
decomposition for planetary gearbox fault diagnosis. Mech. Syst. Signal Process. 2016, 72, 223–240. [CrossRef]

20. Martis, R.J.; Acharya, U.R.; Tan, J.H.; Petznick, A.; Tong, L.; Chua, C.K.; Ng, E.Y.K. Application of intrinsic
time-scale decomposition (ITD) to EEG signals for automated seizure prediction signals for automated
seizure prediction. Int. J. Neural Syst. 2013, 23, 1350023. [CrossRef]

21. Bernardini, M.; Fredianelli, L.; Fidecaro, F.; Gagliardi, P.; Nastasi, M.; Licitra, G. Noise Assessment of Small
Vessels for Action Planning in Canal Cities. Environments 2019, 6, 31. [CrossRef]

22. Wang, D.-J.; Liu, Z.-W.; Wei, J.; Wang, W.; Nie, Z.-S. Method to correct atmospheric pressure effects based on
ensemble empirical mode decomposition. Chin. J. Geophys. 2018, 61, 504–520.

http://dx.doi.org/10.1016/j.apacoust.2013.11.003
http://dx.doi.org/10.1109/JOE.2010.2094230
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1098/rspa.2003.1221
http://dx.doi.org/10.1088/1367-2630/16/8/085004
http://dx.doi.org/10.3390/e21070693
http://dx.doi.org/10.3390/app7020164
http://dx.doi.org/10.3390/e19040176
http://dx.doi.org/10.1142/S1793536910000422
http://dx.doi.org/10.3390/electronics8010061
http://dx.doi.org/10.3390/pr7020069
http://dx.doi.org/10.1098/rspa.2006.1761
http://dx.doi.org/10.1016/j.ymssp.2015.11.024
http://dx.doi.org/10.1142/S0129065713500238
http://dx.doi.org/10.3390/environments6030031


Entropy 2019, 21, 1215 17 of 17

23. Gao, Y.-C. A Research on Application of Hilbert-Huang Transform in the Underwater Acoustic Signal
Processing. Ph.D. Thesis, Harbin Engineering University, Harbin, China, 2009.

24. Badino, A.; Borelli, D.; Gaggero, T.; Rizzuto, E.; Schenone, C. Airborne noise emissions from ships:
Experimental characterization of the source and propagation over land. Appl. Acoust. 2016, 104, 158–171.
[CrossRef]

25. Bica, A.M.; Degeratu, M.; Demian, L.; Paul, E. Optimal Alternative to the Akima’s Method of Smooth
Interpolation Applied in Diabetology. Surv. Math. Its Appl. 2006, 1, 41–49.

26. De Araujo, D.B.; Tedeschi, W.; Santos, A.C.D.; Elias, J., Jr.; Neves, U.P.D.C.; Baffa, O. Shannon entropy applied
to the analysis of event-related fMRI time series. NeuroImage 2003, 20, 311–317. [CrossRef]

27. Zhao, Z.H.; Yang, S.P. Sample Entropy Based Roller Bearing Fault Diagnosis Method. J. Vib. Shock
2012, 31, 136–140.

28. Li, W.; Shen, X.; Li, Y. A Comparative Study of Multiscale Sample Entropy and Hierarchical Entropy and Its
Application in Feature Extraction for Ship-Radiated Noise. Entropy 2019, 21, 793. [CrossRef]

29. Li, Y.; Wang, L.; Li, X.; Yang, X. A Novel Linear Spectrum Frequency Feature Extraction Technique for
Warship Radio Noise Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,
Duffing Chaotic Oscillator, and Weighted-Permutation Entropy. Entropy 2019, 21, 507. [CrossRef]

30. Monge, J.; Gómez, C.; Poza, J.; Fernández, A.; Quintero, J. & Hornero, R. MEG analysis of neural dynamics
in attention-deficit/hyperactivity disorder with fuzzy entropy. Med. Eng. Phys. 2015, 37, 416–423.

31. Rostaghi, M.; Azami, H. Dispersion Entropy: A Measure for Time Series Analysis. IEEE Signal Process. Lett.
2016, 23, 610–614. [CrossRef]

32. Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E
2005, 71, 021906. [CrossRef] [PubMed]

33. Azami, H.; Escudero, J. Coarse-Graining Approaches in Univariate Multiscale Sample and Dispersion
Entropy. Entropy 2018, 20, 138. [CrossRef]

34. Dagher, I.; Azar, F. Improving the SVM gender classification accuracy using clustering and incremental
learning. Expert Syst. 2019, 36. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.apacoust.2015.11.005
http://dx.doi.org/10.1016/S1053-8119(03)00306-9
http://dx.doi.org/10.3390/e21080793
http://dx.doi.org/10.3390/e21050507
http://dx.doi.org/10.1109/LSP.2016.2542881
http://dx.doi.org/10.1103/PhysRevE.71.021906
http://www.ncbi.nlm.nih.gov/pubmed/15783351
http://dx.doi.org/10.3390/e20020138
http://dx.doi.org/10.1111/exsy.12372
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Theory of IITD-MDE 
	IITD Algorithm 
	ITD 
	Comparison of Baseline-Fitting Method 
	Intrinsic Scale Component (ISC) 
	IITD 

	MDE Algorithm 
	DE 
	MDE 

	Comparison between ITD, IITD, and EMD 
	Comparison between MSE, MPE, and MDE 

	The Proposed Feature Extraction Method 
	Experimental Verification and Analysis 
	IITD Decomposition 
	ISC Choosen 
	Feature Extraction 
	Ship Classification 

	Conclusions 
	References

