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Abstract: In this paper, we introduce the zero-delay multiple-description problem, where an encoder
constructs two descriptions and the decoders receive a subset of these descriptions. The encoder
and decoders are causal and operate under the restriction of zero delay, which implies that at each
time instance, the encoder must generate codewords that can be decoded by the decoders using
only the current and past codewords. For the case of discrete-time stationary scalar Gauss—Markov
sources and quadratic distortion constraints, we present information-theoretic lower bounds on
the average sum-rate in terms of the directed and mutual information rate between the source and
the decoder reproductions. Furthermore, we show that the optimum test channel is in this case
Gaussian, and it can be realized by a feedback coding scheme that utilizes prediction and correlated
Gaussian noises. Operational achievable results are considered in the high-rate scenario using a
simple differential pulse code modulation scheme with staggered quantizers. Using this scheme,
we achieve operational rates within 0.415 bits/sample/description of the theoretical lower bounds
for varying description rates.
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1. Introduction

Real-time communication is desirable in many modern applications, e.g., Internet of Things [1],
audio transmission for hearing aids [2], stereo audio signals [3], on-line video conferencing [4],
or systems involving feedback, such as networked control systems [5–7]. All these scenarios may
operate under strict requirements on latency and reliability. Particularly, delays play a critical role in
the performance or stability of these systems [8].

In near real-time communication over unreliable networks, and where retransmissions are either
not possible or not permitted, e.g., due to strict latency constraints, it is generally necessary to use
an excessive amount of bandwidth for the required channel code in order to guarantee reliable
communications and ensure satisfactory performance. Several decades ago, it was suggested to replace
the channel code by cleverly designed data packets, called multiple descriptions (MDs) [9]. Contrary to
channel codes, MDs would allow for several reproduction qualities at the receivers and thereby admit
a graceful degradation during partial network failures [9]. In MD coding, retransmissions are not
necessary, which is similar to the case of forward error correction coding. Thus, with MDs, one avoids
the possible long delay due to loss of packets or acknowledgement. Hence, some compression
(reproduction quality) is sacrificed for an overall lower latency [9]. Interestingly, despite their
potential advantages over channel codes for certain applications, MD codes are rarely used in practical
communication systems with feedback. The reasons are that from a practical point of view, good MD
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codes are application-specific and hard to design, and from a theoretical point of view, zero-delay MD
(ZDMD) coding and MD coding with feedback remain open and challenging topics.

1.1. Multiple Descriptions

MD coding can be described as a data compression methodology, where partial information
about the data source is compressed into several data files (called descriptions or data packets) [10,11].
The descriptions can, for example, be individually transmitted over different channels in a network.
The descriptions are usually constructed such that when any single description is decoded, it is
possible to reconstruct an approximation of the original uncompressed source. Since this is only an
approximation of the data source, there will inevitably be a reconstruction error, which yields a certain
degree of distortion. The distinguishing aspect of MD coding over other coding methodologies is that
if more than one description is retrieved, then a better approximation of the source is achieved than
what is possible when only using a single description. As more descriptions are combined, the quality
of the reproduced source increases. Similarly, this allows for a graceful degradation in the event of,
e.g., packet dropouts on a packet-switched network such as the Internet.

Figure 1 illustrates the two-description MD coding scenario in both a closed-loop and an
open-loop system. In both cases, the encoder produces two descriptions which are transmitted
across noiseless channels, i.e., no bit-errors are introduced in the descriptions between the encoder and
decoders. Some work exists in the closed-loop scenario, but no complete solution has been determined.
However, the noncausal open-loop problem has been more widely studied in the information-theory
literature [9–14].
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Decoder 2
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Y (1)
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Open-loop

Figure 1. Multiple description (MD) source coding in a closed loop. If packet loss occurs on the
noiseless channel, it will affect the source signal, X, differently depending on which descriptions are
received. The standard open-loop MD coding is marked by the dashed line. In the open loop, the source
is completely specified prior to the design of the coding scheme.

Since MD coding considers several data rates and distortions, MD rate-distortion theory is
the determination of the fundamental limits on a rate-distortion region [9]. That is, determine
the minimum individual rates required to achieve a given set of individual and joint distortion
constraints. A noncausal achievable MD rate-distortion region is only completely known in very few
cases [12]. El-Gamal and Cover [11] gave an achievable region for two descriptions and memoryless
source. This region was then shown to be tight for white Gaussian sources with mean-squared error
(MSE) distortion constraints by Ozarow [10]. In the high resolution limit, i.e., high rates, the authors
of [13] characterized the achievable region for stationary (time-correlated) Gaussian sources with MSE
distortion constraints. This was then extended in [14] to the general resolution case for stationary
Gaussian sources. Recently, the authors of [12] showed in the symmetric case, i.e., equal rates and
distortions for each individual description, that the MD region for a colored Gaussian source subject
to MSE distortion constraints can be achieved by predictive coding using filtering. However, similar
to single-description source coding [8], the MD source coders whose performance is close to the
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fundamental rate-distortion bounds impose long delays on the end-to-end processing of information,
i.e., the total delay only due to source coding [15].

1.2. Zero Delay

Clearly, in near real-time communication, the source encoder and decoder must have zero delay.
The term zero-delay (ZD) source coding is often used when both instantaneous encoding and decoding
are required [16]. That is, when the reconstruction of each input sample must take place at the same
time-instant, the corresponding input sample has been encoded [17]. For near instantaneous coding,
the source coders must be causal [18]. However, causality comes with a price. The results of [17]
showed that causal coders increase the bit-rate due to the space-filling loss of “memoryless” quantizers,
and the reduced de-noising capabilities of causal filters. Additionally, imposing ZD increases the
bit-rate due to memoryless entropy coding [17].

In the single-description case, ZD rate-distortion theory has been increasingly more popular in
recent decades, due to its significance in real-time communication systems and especially feedback
systems. Some indicative results on ZD source coding for networked control systems and systems
with and without feedback may be found in [5–8,17,19–21]. The results of [5] establish a novel
information-theoretic lower bound on the average data-rate for a source coding scheme within a
feedback loop by the directed information rate across the channel. For open-loop vector Gauss-Markov
sources, i.e., when the source is not inside a feedback loop, the optimal operational performance
of a ZD source code subject to an MSE distortion constraint has been shown to be lower bounded
by a minimization of the directed information [22] from the source to the reproductions subject to
the same distortion constraint [5–7,17,19]. For Gaussian sources, the directed information is further
minimized by Gaussian reproductions [8,20]. Very recently, Stavrou et al. [8], extending upon the
works of [6,7,17,19], showed that the optimal test channel that achieves this lower bound is realizable
using a feedback realization scheme. Furthermore, Ref [8] extended this to a predictive coding
scheme providing an achievable upper bound on the operational performance subject to an MSE
distortion constraint.

1.3. Zero-Delay Multiple Descriptions

Recently, the authors of [15] proposed an analog ZDMD joint source-channel coding scheme,
such that the analog source output is mapped directly into analog channel inputs, thus not suffering
from the delays encountered in digital source coding. However, for analog joint source-channel
coding to be effective, the source and channel must be matched, which rarely occurs in practice [23].
Furthermore, most modern communication systems rely on digital source coding. Thus, analog joint
source-channel coding is only applicable in a very limited amount of settings. Digital low-delay MD
coding for practical audio transmission has been explored in, e.g., [2,4,24], as well as for low-delay video
coding in [25]. Some initial work regarding MDs in networked control systems may be found in [26].
However, none of these consider the theoretical limitations of ZDMD coding in a rate-distortion sense.

In this paper, we propose a combination of ZD and MD rate-distortion theory such that the MD
encoder and decoders are required to be causal and of zero delay. For the case of discrete-time stationary
scalar Gauss-Markov sources and quadratic distortion constraints, we present information-theoretic
lower bounds on the average sum-rate in terms of the directed and mutual information rate between
the source and the decoder reproductions. We provide proof of achievability via a new Gaussian MD
test channel and show that this test channel can be realized by a feedback coding scheme that utilizes
prediction and correlated Gaussian noises. We finally show that a simple scheme using differential
pulse code modulation with staggered quantizers can get close to the optimal performance. Specifically,
our simulation study reveals that for a wide range of description rates, the achievable operational rates
are within 0.415 bits/sample/description of the theoretical lower bounds. Further simulations and
more details regarding the combination of ZD and MD coding are provided in the report [27].
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The rest of the paper is organized as follows. In Section 2, we characterize the ZDMD source
coding problem with feedback for stationary scalar Gauss-Markov sources subject to asymptotic MSE
distortion constraints. Particularly, we consider the symmetric case in terms of the symmetric ZDMD
rate-distortion function (RDF). In Section 3, we introduce a novel information-theoretic lower bound
on the average data sum-rate of a ZDMD source code. For scalar stationary Gaussian sources, we show
this lower bound is minimized by jointly Gaussian MDs, given that certain technical assumptions are
met. This provides an information-theoretic lower bound to the symmetric ZDMD RDF. In Section 4,
we determine an MD feedback realization scheme for the optimum Gaussian test-channel distribution.
Utilizing this, we present a characterization of the Gaussian achievable lower bound as a solution
to an optimization problem. In Section 5, we evaluate the performance of an operational staggered
predictive quantization scheme compared to the achievable ZDMD region. We then discuss and
conclude on our results. Particularly, we highlight some important difficulties with the extension to
the Gaussian vector case.

2. Problem Definition

In this paper, we consider the ZDMD source coding problem with feedback illustrated in Figure 2.
The feedback channels are assumed to be noiseless digital channels and have a one-sample delay to
ensure the operational feasibility of the system, i.e., at any time, the current encoder outputs only
depend on previous decoder outputs.

EX

SE
D(0)

D(1)

D(2)

SD1

SD2

Y (1)

Y (0)

Y (2)

B(1)

B(2)

Figure 2. A general MD source-coding scenario with feedback.

Here, the stationary scalar Gauss-Markov source process is determined by the following
discrete-time linear time-invariant model:

Xk+1 = aXk + Wk, k ∈ N, (1)

where |a| < 1 is the deterministic correlation coefficient, X1 ∈ R ∼ N (0, σ2
X1
) is the initial state,

σ2
X1

=
σ2

W
1−a2 , and Wk ∈ R ∼ N

(
0, σ2

W
)

is an independent and identically distributed (IID) Gaussian
process independent of {Xk : k ∈ N}. For each time step k ∈ N, the ZDMD encoder, E , observes a new
source sample Xk while assuming it has already observed the past sequence Xk−1. The encoder then
produces two binary descriptions B(1)

k , B(2)
k with lengths l(1)k , l(2)k (in bits) from two predefined sets of

codewords B(1)k ,B(2)k , of at most a countable number of codewords, i.e., the codewords are discrete
random variables. The codewords are transmitted across two instantaneous noiseless digital channels
to the three reconstruction decoders, D(0),D(1), and D(2). The decoders then immediately decode the
binary codewords. Upon receiving B(i),k, the ith side decoder, D(i), i = 1, 2, produces an estimate Y(i)

k
of the source sample Xk, under the assumption that Y(i),k−1 is already produced. Similarly, the central
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decoder, D(0), upon receiving B(1),k, B(2),k, produces an estimate Y(0)
k of Xk under the assumption Y(0),k

is already produced. Finally, before generating the current binary codewords, the encoder receives the
two reproductions from the previous time step Y(1)

k−1, Y(2)
k−1 while assuming it has already received the

past, Y(1),k−2, Y(2),k−2.
We assume the encoder and all decoders process information without delay. That is, each sample

is processed immediately and without any delays for each time step k ∈ N.
In the system, SE ,k is the side information that becomes available at time-instance k at the encoder,

and similarly, SDi ,k is the new side information at reproduction decoder i. We emphasize, this is not
side information in the usual information-theoretic sense of multiterminal source coding or Wyner–Ziv
source coding, where the side information is unknown, jointly distributed with the source, and only
available at the decoder, e.g., some type of channel-state information [28,29]. In this paper, our encoders
and decoders are deterministic. However, to allow for probabilistic encoders and decoders, we let the
deterministic encoders and decoders depend upon a stochastic signal, which we refer to as the side
information. To make the analysis tractable, we require this side information to be independent of the
source. The side information could, for example, represent dither signals in the quantizers, which is a
common approach in the source coding literature [30]. We shortly disucuss the possibility of removing
this independence assumption in Section 6.

We do not need feedback from the central decoder, since all information regarding Y(0),k−1

is already contained in (Y(1),k−1, Y(2),k−1). That is, given the side information, the side decoder
reproductions are sufficient statistics for the central reproduction, and the following Markov
chain holds,

Xk∣∣
φ
−
(

Y(1),k, Y(2),k
) ∣∣

φ
−Y(0),k∣∣

φ
, (2)

where φ =
(

Sk
D1

, Sk
D2

)
. We note, this Markov chain also requires the decoders are invertible as defined

in Definition 5 on page 10. Requiring invertible decoders is optimal in causal source coding [5].

Zero-delay multiple-description source coding with side information: We specify in detail the
operations of the different blocks in Figure 2. First, at each time step, k, all source samples up to time
k, Xk, and all previous reproductions, Y(i),k−1, i = 1, 2, are available to the encoder, E . The encoder
then performs lossy source coding and lossless entropy coding to produce two dependent codewords.
That is, the encoder block can be conceptualized as being split into a quantization step and an entropy
coding step as illustrated in Figure 3. This is a very simplified model, and each of the quantization and
entropy coding steps may be further decomposed as necessary to generate the appropriate dependent
messages. However, this is a nontrivial task, and therefore, for a more tractable analysis and ease of
reading, we do not further consider this two-step procedure in the theoretical derivations.

The zero-delay encoder is specified by the sequence of functions {Ek : k ∈ N}, where:

Ek : X k ×Y (1),k−1 ×Y (2),k−1 × Sk
E → B

(1)
k ×B

(2)
k , (3)

and at each time step k ∈ N, the encoder outputs the messages:

(
B(1)

k , B(2)
k

)
= Ek

(
Xk, Y(1),k−1, Y(2),k−1, Sk

E
)

, k ∈ N, (4)

with length l(i)k i = 1, 2 (in bits), where for the initial encoding, there are no past reproductions available

at the encoder, hence
(

B(1)
1 , B(2)

1

)
= E1 (X1, SE ,1).
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W

Figure 3. Conceptual model of splitting the zero-delay MD (ZDMD) encoder, E , into a lossy quantizer,
Q, and a lossless entropy coder, EC. W is a p-dimensional signal, where p is appropriately chosen
according to the employed quantization procedure.

The zero-delay decoders are specified by the three sequences of functions {D(0)
k ,D(1)

k ,D(2)
k : k ∈ N},

where:

D(i)
k : B(i),k × Sk

Di
→ Y (i)

k , i = 1, 2, (5)

D(0)
k : B(1),k ×B(2),k × Sk

D1
× Sk

D2
→ Y (0)

k . (6)

At each time step, k ∈ N the decoders generate the outputs:

Y(i)
k = D(i)

k

(
B(i),k, Sk

Di

)
, i = 1, 2, (7)

Y(0)
k = D(0)

k

(
B(1),k, B(2),k, Sk

D1
, Sk
D2

)
, (8)

assuming Y(i),k−1, i = 0, 1, 2 have already been generated, with:

Y(i)
1 = D(i)

1

(
B(i)

1 ,SDi ,1

)
, i = 1, 2, (9)

Y(0)
1 = D(0)

1

(
B(1)

1 , B(2)
1 ,SD1,1,SD2,1

)
. (10)

The ZDMD source code produces two descriptions of the source; hence, we may associate the
ZDMD code with a rate pair.

Definition 1 (Rate pair of ZDMD code). For each time step, k, let l(i)k be the length in bits of the ith encoder
output in a ZDMD source code as described above. Then, the average expected data-rate pair, (R1, R2), measured
in bits per source sample, are the rates:

Ri = lim
n→∞

1
n

n

∑
k=1

E
[
l(i)k

]
, i = 1, 2. (11)

Asymptotic MSE distortion constraints: A rate pair (R1, R2) is said to be achievable with respect
to the MSE distortion constraints Di > 0, i = 0, 1, 2, if there exists a rate-(R1, R2) ZDMD source code
as described above, such that:

lim
n→∞

1
n

n

∑
k=1

E
[(

Xk −Y(i)
k

)2
]
≤ Di, i = 0, 1, 2, (12)

is satisfied.
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Similarly to standard MD theory [31], the main concern of ZDMD coding is to determine the
ZDMD rate-region, constituting the set of all achievable rate pairs for given distortion constraints.

Definition 2 (ZDMD rate-region). For the stationary source process {Xk}, Xk ∈ X , the ZDMD rate-region
RZD

X (R1, R2, D0, D1, D2) is the convex closure of all achievable ZDMD rate pairs (R1, R2) with respect to the
MSE distortion constraints (D0, D1, D2).

The ZDMD rate-region can be fully characterized by determining the bound between the sets
of achievable and non-achievable rates, i.e., by determining the fundamental smallest achievable
rates for given distortion constraints. Particularly, we consider so-called nondegenerate distortion
constraints [32], that is, triplets (D0, D1, D2) that satistify:

D1 + D2 − σ2
X ≤ D0 ≤

(
1

D1
+

1
D2
− 1

σ2
X

)−1

, (13)

where σ2
X is the stationary variance of the source.

The previous design requirements are summarized in the ZDMD coding problem with feedback.

Problem 1 (ZDMD coding problem with feedback). For a discrete-time stationary scalar source process
{Xk}, with nondegenerate MSE distortion constraints, D0, D1, D2 > 0. Determine the minimum operational
rates R1, R2 of the ZDMD coding scheme with side information from Equations (3)–(8), such that the asymptotic
average expected distortions satisfy:

lim
n→∞

1
n

n

∑
k=1

E
[(

Xk −Y(i)
k

)2
]
≤ Di, i = 0, 1, 2. (14)

where the minimum is over all possible ZDMD encoder and decoder sequences {Ek}k∈N, {D(i)
k }k∈N, i = 0, 1, 2

that satisfy Equations (3)–(8).

In this paper, we mainly consider the symmetric case of R1 = R2 = R and D1 = D2 = DS.
Here, the ZDMD region may be completely specified by an MD equivalent of the standard RDF [12].

Definition 3 (Symmetric ZDMD RDF). The symmetric ZDMD RDF for a source, {X}, with MSE distortion
constraints, D0, DS > 0, is:

Rop
ZD (D0, DS) , inf R

s.t. (R, R) ∈ RZD
X (R, R, D0, DS, DS) .

(15)

That is the minimum rate R per description, which is achievable with respect to the distortion pair (D0, DS).

The operational symmetric ZDMD RDF can be expressed in terms of the sum-rate, R1 + R2.

Problem 2 (Operational symmetric scalar Gaussian ZDMD RDF). For a stationary scalar Gauss-Markov
source process (1), with nondegenerate MSE distortion constraints, D0, DS > 0, determine the operational
symmetric ZDMD RDF, i.e., solve the optimization problem:
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Rop
ZD (D0, DS) = inf lim

n→∞

1
2n

(
E
[

L(1)
n

]
+ E

[
L(2)

n

])

s.t. lim
n→∞

1
n

n

∑
k=1

E
[(

Xk −Y(0)
k

)2
]
≤ D0 (16)

lim
n→∞

1
n

n

∑
k=1

E
[(

Xk −Y(i)
k

)2
]
≤ DS, i = 1, 2,

where L(i)
n , ∑n

k=1 l(i)k , i = 1, 2, and the infimum is over all possible ZDMD encoder- and -decoder sequences

{En}n∈N, {D(0)
n }n∈N, {D(1)

n }n∈N, {D(2)
n }n∈N, i.e., that satisfy Equations (3)–(8).

Unfortunately, the solutions to Problems 1 and 2 are very hard to find, since they are
determined by a minimization over all possible operational ZDMD codes. Similar to single
description ZD rate-distortion theory [17], where the classical RDF is a lower bound on the zero-delay
RDF, the noncausal arbitrary delay MD region [10,14] is an outer bound on the ZDMD region.
However, this is a conservative bound due to the space-filling losses, memoryless entropy coding,
and causal filters suffered by the ZD coders. Therefore, we introduce a novel information-theoretic
lower bound on the operational ZD coding rates. As in classical MD rate-distortion theory, this bound
is given in terms of lower bounds on the marginal rates, R1, R2, and the sum-rate, R1 + R2 cf. [10,11].

3. Lower Bound on Average Data-Rate

In this section, we determine a novel information-theoretic lower bound on the sum-rate of
ZDMD source coding with feedback. Using this lower bound, we present an information-theoretic
counterpart of the operational symmetric Gaussian ZDMD RDF. Finally, we provide a lower bound to
Problem 2 by showing, for stationary scalar Gaussian sources, that Gaussian reproductions minimize
the information-theoretic lower bound, given some technical assumptions are met. Although our main
concern is the symmetric case, some of our main results are provided in the general nonsymmetric case.

We study a lower bound on the sum-rate of the ZDMD coding problem with feedback, which only
depends on the joint statistics of the source encoder input, X, and the decoder outputs, Y(i) i = 0, 1, 2.
To this end, we present in more detail the test-channel distribution associated with this minimization.

3.1. Distributions

We consider a source that generates a stationary sequence Xk = xk ∈ Xk, k ∈ Nn. The objective is
to reproduce or reconstruct the source by Y(i)

k = y(i)k ∈ Y
(i)
k , k ∈ Nn, i = 0, 1, 2, subject to MSE fidelity

criteria d(i)1,n(xn, y(i),n) , 1
n ∑n

k=1(xk − y(i)k )2, i = 0, 1, 2.
Source. We consider open-loop source coding; hence, we assume the source distribution satisfies

the following conditional independence:

P
(

xk|xk−1, y(0),k−1, y(1),k−1, y(2),k−1
)
, P

(
xk|xk−1

)
, k ∈ Nn. (17)

This implies that the source, X, is unaffected by the feedback from the reproductions, Y(i).
Hence, the next source symbol, given the previous symbols, is not further related to the previous
reproductions [22].

We assume the distribution at k = 1 is P(x1). Furthermore, by Bayes’ rule [8]:

P (xn) ,
n

∏
k=1

P(xk|xk−1). (18)



Entropy 2019, 21, 1185 9 of 32

For the Gauss-Markov source process (1), this implies {Wk} is independent of the past
reproductions Y(i),k−1, i = 0, 1, 2 [8].

Reproductions. Since the source is unaffected by the feedback from the reproductions, the MD
encoder–decoder pairs from E to Di, i = 0, 1, 2, in Figure 2, are causal if, and only if, the following
Markov chain holds [17]:

Xn
k+1 − Xk −

(
Y(0),k, Y(1),k, Y(2),k

)
, ∀k ∈ {1, . . . , n− 1}. (19)

Hence, we assume the reproductions are randomly generated according to the collection of
conditional distributions:

P
(

y(0)k , y(1)k , y(2)k |y(0),k−1, y(1),k−1, y(2),k−1, xk
)

, k ∈ Nn. (20)

For the first time step, k = 1, we assume:

P
(

y(0)1 , y(1)1 , y(2)1 |y(0),0, y(1),0, y(2),0, x1
)
= P

(
y(0)1 , y(1)1 , y(2)1 |x1

)
. (21)

3.2. Bounds

We define the directed information rate across a system with random input and random
output processes.

Definition 4 (Directed information rate ([5] Def. 4.3)). The directed information rate across a system with
random input, X, and random output, Y, is defined as:

Ī (X → Y) , lim
n→∞

1
n

I (Xn → Yn) (22)

where I (Xn → Yn) is the directed information between the two sequences Xn and Yn, defined as:

I (Xn → Yn) ,
1
n

n

∑
k=1

I
(

Xk; Yk|Yk−1
)

. (23)

In order to establish an outer bound on the ZDMD rate-region, we need a lower bound on the
marginal rates and the sum-rate. By the results of [5,8], it can be shown that the marginal operational
rates, R1, R2 are lower bounded by:

Ri ≥ Ī
(

X → Y(i)
)

, (24)

= lim
n→∞

1
n

I
(

Xn → Y(i),n
)

, (25)

= lim
n→∞

1
n

n

∑
k=1

I
(

Xk; Y(i)
k |Y(i),k−1

)
, i = 1, 2, (26)

that is, by the directed information rate from the source to the side description. Thus, in order
to determine a bound on the ZDMD rate-region, it remains to determine an information-theoretic
lower bound on the sum-rate. Our derivation of the lower bound on the sum-rate requires the
following assumption.

Assumption 1. The systems E ,D(i) i = 0,1,2, are causal, described by Equations (3)–(8),
and

(
{SD1}, {SD2}

)
⊥⊥ {Xk}, i.e., the side information is independent of the source sequence, {Xk}.

We consider this assumption to be reasonable in a ZD scenario, i.e., the deterministic encoders
and decoders must be causal and use only past and present symbols, and side information that is not
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associated with the source signal [5]. Similar to [5], the channel is the only link between encoder and
decoder. However, we further assume the channel to have perfect feedback.

Additionally, we require the decoders to be invertible given the side information.

Definition 5 (Invertible decoder ([5] Def. 4.2)). The decoders, D(i), i = 0, 1, 2, defined in Equations (7)
and (8) are said to be invertible if, and only if, ∀k ∈ N, there exists deterministic mappings G(i)k , i = 0, 1, 2 ,
such that:

B(1),k = G(1)k

(
Y(1)

k , Sk
D1

)
, (27)

B(2),k = G(2)k

(
Y(2)

k , Sk
D2

)
, (28)

(
B(1),k, B(2),k

)
= G(0)k

(
Y(0)

k , Sk
D1

, Sk
D2

)
. (29)

If the decoders are invertible, then for each side decoder, knowledge of the side information
and the output, e.g., (Y(1)

k , Sk
D1
), is equivalent to knowledge of the side information and the input,

(B(1),k, Sk
D1
) [5]. For the single description case, it is shown in [5] that without loss of generality, we can

restrict our attention to invertible decoders. Furthermore, when minimizing the average data-rate in a
causal source coding scheme, it is optimal to minimize the average data-rate by focusing on schemes
with invertible decoders [5].

The following results are used to prove the first main result of this section and are a generalization
of ([5] Lemma 4.2) to the MD scenario.

Lemma 1 (Feedback Markov Chains). Consider an MD source coding scheme inside a feedback loop as shown
in Figure 2. If Assumption 1 applies and if the decoders are invertible when given the side information, then the
Markov chain:

Xk∣∣
φ1
−
(

B(1)
k , B(2)

k

) ∣∣
φ1
−
(

Y(1)
k , Y(2)

k

) ∣∣
φ1

, k ∈ N, (30)

holds, with φ1 =
(

B(1),k−1, B(2),k−1, Sk
D1

, Sk
D2

)
.

Furthermore, let φ2 =
(

B(1),k−1, Sk
D1

)
then:

Y(2)
k

∣∣
φ2
− B(1)

k

∣∣
φ2
−Y(1)

k

∣∣
φ2

, k ∈ N, (31)

also holds.
Additionally, for φ3 =

(
B(2),k−1, Sk

D2

)
:

Y(1)
k

∣∣
φ3
− B(2)

k

∣∣
φ3
−Y(2)

k

∣∣
φ3

, k ∈ N, (32)

holds.
Finally, if the decoder side information is mutually independent, i.e., {SD1} ⊥⊥ {SD2}, the Markov chains:

Y(2),k−1 −Y(1),k−1 − Sk
D1

, k ∈ N, (33)

Y(1),k −Y(2),k−1 − Sk
D2

, k ∈ N, (34)

hold.

Proof. The Markov chain in Equation (30) follows, since Y(1)
k , Y(2)

k depend deterministically upon

(B(1),k, B(2),k, Sk
D1

, Sk
D2
). Similarly, Equation (31) holds, since Y(1)

k depends deterministically upon

(B(1),k, Sk
D1
). The Markov chain in Equation (32) follows analogously.



Entropy 2019, 21, 1185 11 of 32

By the system equations, we have that:

(
B(1)

1 , B(2)
1

)
= E1 (X1, ∅, ∅, SE ,1) (35)

Y(1)
1 = D(1)

1

(
B(1)

1 , SD1,1

)
(36)

Y(2)
1 = D(2)

1

(
B(2)

1 , SD2,1

)
. (37)

Since SD1,1 ⊥⊥ SD2,1, it follows that Y(2)
1 ⊥⊥ SD1,1. Furthermore, since SD1,2 ⊥⊥ SD2,1 then

Y(2)
1 ⊥⊥ SD1,2. Hence, Equation (33) holds in the initial step. Now, in the next time step:

(
B(1)

2 , B(2)
2

)
= E2

(
X2, Y(1)

1 , Y(2)
1 , SE ,2

)
(38)

= E2

(
X2,D(1)

1

(
B(1)

1 , SD1,1

)
, Y(2)

1 , SE ,2

)
(39)

Y(1)
2 = D(1)

2

(
B(1)

2 , SD1,2

)
(40)

Y(2)
2 = D(2)

2

(
B(2)

2 , SD2,2

)
, (41)

where we see that Y(2)
2 depends on SD1,1 only through Y(1)

1 . Thus:

Y(2)
2 −Y(1)

1 − SD1,1. (42)

By the same arguments as before, we have for the second time step Y(2)
2 ⊥⊥ SD1,2 and Y(2)

2 ⊥⊥ SD1,3.
By the causality of the system components, it follows that Y(2),k−1 only depend on Sk−1

D1
through

Y(1),k−1, and by the independence of the side information, Y(2),k−1 ⊥⊥ SD1,k; thus. we get Equation (33).

For Equation (34), since SD1,1 ⊥⊥ SD2,1, then Y(1)
1 ⊥⊥ SD2,1, and the Markov chain holds in the

initial step. For the next step, since Y(1)
2 depends on SD2,1 only through Y(2)

1 , the Markov chain holds.

Therefore, by the causality of the system components, Y(1)
k only depends on Sk−1

D2
through Y(2),k−1,

and because SD1,k ⊥⊥ SD2,k, it follows that Y(1)
k ⊥⊥ SD2,k. Therefore, Equation (34) holds.

We note that requiring the side information to be mutually independent is not a hard assumption.
For example, it is straightforward to generate independent dither signals for two quantizers. A short
perspective on removing this assumption is given in Section 6.

We define the mutual information rate between two random processes next.

Definition 6 (Mutual information rate ([33] Equation (7.3.9))). The mutual information rate between two
random processes {Xk} and {Yk} is defined as:

Ī (X; Y) , lim
n→∞

1
n

I (Xn; Yn) . (43)

We are now ready to state our first main result.

Theorem 1 (Lower bound on sum-rate). Consider a ZDMD source coding problem with feedback (Problem 1),
as seen in Figure 2. If Assumption 1 holds, the decoders are invertible, and the decoder side information is
mutually independent, then:

R1 + R2 ≥ Ī
(

X → Y(1), Y(2)
)
+ Ī

(
Y(1); Y(2)

)
. (44)

The proof of Theorem 1 can be found in Appendix A.
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Theorem 1 shows that when imposing zero-delay constraints on MD coding with feedback,
the directed information rate from the source to the central reconstruction together with the mutual
information rate between the side reconstructions serve as a lower bound on the associated average
data sum-rate, thus relating the operational ZDMD rates to the information-theoretic quantities of
directed and mutual information rate.

To the best of the authors’ knowledge, Theorem 1 provides a novel characterization between
the relationship of the operational sum-rate and directed and mutual information rates, for a ZDMD
coding problem with feedback. This result extends on the novel single-description bound in [5] and
the MD results of [11].

In relation to the El-Gamal and Cover region [11], our result shows that the first term in the bound
on the ZDMD sum-rate, i.e., the no excess sum-rate, is given by the directed information rate from the
source to the side descriptions—that is, only the causally conveyed information, as would be expected
for ZD coding. The second term is similar to that of El-Gamal and Cover. That is, the excess rate
must be spent on communicating the mutual information between the side descriptions to reduce the
central distortion.

Remark 1. The mutual information rate Ī(Y(1); Y(2)) does not imply a noncausal relationship between Y(1)

and Y(2), i.e., that Y(1) might depend on future values of Y(2). It only implies probabilistic dependence across
time [22]. There is feedback between Y(1) and Y(2), such that information flows between the two descriptions.
However, the information flows in a causal manner, i.e., the past values of Y(1) affect the future values of Y(2)

and vice versa. This is also apparent from the “delayed” information flow from Y(2),n−1 to Y(1),n in the proof,
see Equation (A7). Therefore, the MD code must convey this total information flow between the two descriptions
to the central receiver.

3.3. Gaussian Lower Bound For Scalar Gauss-Markov Sources

Before showing Gaussian reproductions minimize the result of Theorem 1, we introduce the
following technical assumptions required for our proof.

Assumption 2 (Sequential greedy coding). Consider the ZDMD coding problem in Figure 2. We say that
we solve this problem using sequential greedy coding if sequentially for each time step k ∈ N: We minimize the
bit-rate such that the MSE distortion constraints Di > 0, i = 0, 1, 2, are satisfied for each k ∈ N.

That is, sequentially for each k ∈ N, choose the codewords B(i)
k , i = 1, 2 with minimum codeword lengths

l(i)k , i = 1, 2 such that:

E
[(

Xk −Y(0)
k

)2
]
≤ D0 (45)

E
[(

Xk −Y(i)
k

)2
]
≤ Di, i = 1, 2. (46)

Since, in sequential greedy coding, we minimize the bit-rate for each k ∈ N in the sequential order
subject to the distortion constraints, this implies for the information rates in Equation (57) that we
minimize the sum:
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I
(

Xn → Y(1),n, Y(2),n
)
+ I

(
Y(1),n; Y(2),n

)
=

n

∑
k=1

[
I
(

Xk; Y(1)
k , Y(2)

k |Y(1),k−1, Y(2),k−1
)

+ I
(

Y(2)
k ; Y(1)

k |Y(1),k−1, Y(2),k−1
)

+ I
(

Y(1)
k ; Y(2),k−1|Y(1),k−1

)

+ I
(

Y(2)
k ; Y(1),k−1|Y(2),k−1

) ]
, (47)

by sequentially for each k ∈ Nn selecting the optimal test-channel distribution
P
(

y(0), y(1)k , y(2)k |y(1),k−1, y(2),k−1, y(0),k−1, xk
)

subject to the MSE distortion constraints:

E
[(

Xk −Y(0)
k

)2
]
≤ D0 (48)

E
[(

Xk −Y(i)
k

)2
]
≤ Di, i = 1, 2,

and fixing this distribution for all following k′ > k.
Let Ỹ(i)

1 , i = 1, 2 minimize the initial mutual informations for k = 1, i.e.:

I
(

X1; Y(1)
1 , Y(2)

1

)
+ I

(
Y(2)

1 ; Y(1)
1

)
≥I
(

X1; Ỹ(1)
1 , Ỹ(2)

1

)
+ I

(
Ỹ(2)

1 ; Ỹ(1)
1

)
(49)

with equality if Y(i)
1 , i = 1, 2, are distributed as Ỹ(i)

1 , i = 1, 2. Then, sequential greedy coding implies

Y(i)
1 , i = 1, 2 must be distributed as Ỹ(i)

1 , i = 1, 2, for all k > 1. Particularly for k = 2:

I
(

X2; Y(1)
2 , Y(2)

2 |Y
(1)
1 , Y(2)

1

)
+ I

(
Y(2)

2 ; Y(1)
2 |Y

(1)
1 , Y(2)

1

)
+ I

(
Y(1)

2 ; Y(2)
1 |Y

(1)
1

)
+ I

(
Y(2)

2 ; Y(1)
1 |Y

(2)
1

)

=I
(

X2; Y(1)
2 , Y(2)

2 |Ỹ
(1)
1 , Ỹ(2)

1

)
+ I

(
Y(2)

2 ; Y(1)
2 |Ỹ

(1)
1 , Ỹ(2)

1

)
+ I

(
Y(1)

2 ; Ỹ(2)
1 |Ỹ

(1)
1

)
+ I

(
Y(2)

2 ; Ỹ(1)
1 |Ỹ

(2)
1

)
, (50)

where Ỹ(i)
1 , i = 1, 2 is inserted on both sides of the conditioning.

The sequential greedy assumption is suitable in a zero-delay source coding perspective, since we
must send the optimum description that minimizes the rate while achieving the desired distortion at
each time step. We comment on the implications of sequential greedy coding in Section 6.

We also need the following assumption on the minimum MSE (MMSE) predictors.

Assumption 3 (Conditional prediction residual independence). Let {Xk}k∈N be a stationary source
process, and let {Y(1)

k }k∈N and {Y(2)
k }k∈N be stationary arbitrarily distributed reproduction processes. We say

the MMSE reproduction processes have conditional prediction residual independence if the MMSE prediction
residuals satisfy for all k ∈ N:

Y(i)
k − E

[
Y(i)

k |Y(1),k−1, Y(2),k−1
]
⊥⊥
(

Y(1),k−1, Y(2),k−1
)

, i = 1, 2, (51)

Y(i)
k − E

[
Y(i)

k |Y(i),k−1
]
⊥⊥ Y(i),k−1, i = 1, 2, (52)

Y(i)
k − E

[
Y(i)

k |Y(j),k−1
]
⊥⊥ Y(j),k−1, i 6= j, i, j ∈ {1, 2}, (53)

that is, the residuals are independent of the conditioning prediction variables.
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For mutual information, the conditional prediction residual independence implies:

I
(

Y(1)
k − E

[
Y(1)

k |Y(1),k−1
]

; Y(2)
k − E

[
Y(2)

k |Y(1),k−1
] ∣∣Y(1),k−1

)

=I
(

Y(1)
k − E

[
Y(1)

k |Y(1),k−1
]

; Y(2)
k − E

[
Y(2)

k |Y(1),k−1
])

. (54)

Particularly, if {Y(i)
k }, i = 1, 2 are jointly Gaussian, then the MMSE predictors have conditional

prediction residual independence by the orthogonality principle ([34] p. 45). Using these predictors
may result in an increased rate, since we limit the amount of possible predictors. That is, by not
imposing this condition, we may achieve a smaller distortion for the same rate by minimizing over all
possible MMSE predictors.

We are now ready to state our second main result.

Theorem 2 (Gaussian lower bound). Let {Xk}k∈N be a stable stationary scalar Gaussian process (1) with
nondegenerate MSE distortion constraints, Di > 0, i = 0, 1, 2. Then, under the sequential greedy coding
condition (Assumption 2), and if the reproduction sequences {Y(i)

k }, i = 1, 2, satisfy conditional prediction
residual independence (Assumption 3), the following inequality holds:

Ī
(

X → Y(1), Y(2)
)
+ Ī

(
Y(1); Y(2)

)
≥ Ī

(
X → Y(1)

G , YG
(2)
)
+ Ī

(
Y(1)

G ; Y(2)
G

)
, (55)

where Y(i)
G , i = 1, 2 are jointly Gaussian random variables with first and second moments equal to those of

Y(i), i = 1, 2.

The proof of Theorem 2 can be found in Appendix B.
Theorem 2 shows that for stationary scalar Gaussian sources under sequential greedy coding

and MSE distortion constraints, the mutual informations between the source and side reproductions,
and the mutual information between the side reproductions are minimized by Gaussian reproductions.
This would generally be expected, since this is the case for single description ZD source coding [8].

To the best of the authors’ knowledge, this is a novel result that has not been documented in any
publicly available literature. Similar results exist for single-description ZD source coding [8] and for
classical MD coding of white Gaussian sources [35].

Remark 2. The main difficulty in proving Theorem 2, and the reason for the technical assumptions, is to
minimize the excess information rate, Ī(Y(1); Y(2)), in Equation (44) and show the reconstructions, Y(1), Y(2),
should be jointly Gaussian when they are jointly Gaussian with the source. We speculate these technical
assumptions may be disregarded, since by the results of [8], we have for a Gaussian source process {Xk}:

Ī
(

X → Y(1), Y(2)
)
≥ Ī

(
X → Y(1)

G , Y(2)
G

)
, (56)

with equality if {Y(1)
k , Y(2)

k } are jointly Gaussian with {Xk}. Therefore, it seems reasonable Y(1), Y(2) should
also be jointly Gaussian in the second term on the RHS of Equation (44). However, we have not been able to
prove this.

Symmetric Case

Following the result of Theorem 1, we now formally define the information-theoretic symmetric
Gaussian ZDMD RDF, RI

ZD(D0, DS), in terms of the directed and mutual information rate, as a lower
bound to Rop

ZD(D0, DS). Furthermore, we show that Gaussian reproductions minimize the lower bound.

Definition 7 (Information-Theoretic Symmetric ZDMD RDF). The information-theoretic symmetric
ZDMD RDF, for the stationary Gaussian source process {Xk}, with MSE distortion constraints, D0, DS > 0, is:
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RI
ZD (D0, DS) , inf

1
2

Ī
(

X → Y(1), Y(2)
)
+

1
2

Ī
(

Y(1); Y(2)
)

,

s.t. lim
n→∞

1
n

n

∑
k=1

E
[(

Xk −Y(0)
k

)2
]
≤ D0 (57)

lim
n→∞

1
n

n

∑
k=1

E
[(

Xk −Y(i)
k

)2
]
≤ DS, i = 1, 2,

where the infimum is of all processes {Y(i)
k }, i = 0, 1, 2 that satisfy:

X∞
k+1 − Xk −

(
Y(0),k, Y(1),k, Y(2),k

)
, ∀k ∈ N. (58)

The minimization of all processes {Y(i)
k }, i = 0, 1, 2 that satisfy the Markov chain in

Equation (58) is equivalent to the minimization of all sequences of conditional test-channel distributions
{P(y(0)k , y(1)k , y(2)k |y(0),k−1, y(1),k−1, y(2),k−1, xk) : k ∈ N}.

For Gaussian reproductions, we have the following optimization problem.

Problem 3 (Gaussian Information-Theoretic Symmetric ZDMD RDF). For a stationary Gaussian source
{Xk} with MSE distortion constraints, DS ≥ D0 > 0, the Gaussian information-theoretic symmetric ZDMD
RDF is:

RI
ZD,GM (D0, DS) , inf

1
2

Ī
(

X → Y(1), Y(2)
)
+

1
2

Ī
(

Y(1); Y(2)
)

,

s.t. lim
n→∞

1
n

n

∑
k=1

E
[(

Xk −Y(0)
k

)2
]
≤ D0 (59)

lim
n→∞

1
n

n

∑
k=1

E
[(

Xk −Y(i)
k

)2
]
≤ DS, i = 1, 2,

where the infimum is over all Gaussian processes {Y(i)
k }, i = 0, 1, 2, that satisfy:

X∞
k+1 − Xk −

(
Y(0),k, Y(1),k, Y(2),k

)
, ∀k ∈ N. (60)

This minimization is equivalent to the minimization of all sequences of Gaussian conditional
test-channel distributions

{
PGP(y(0)k , y(1)k , y(2)k |y(0),k−1, y(1),k−1, y(2),k−1, xk) : k ∈ N

}
.

Finally, by Theorems 1 and 2, we have the following corollary, showing Problem 3 as a lower
bound to Problem 2.

Corollary 1. Let {Xk}k∈N be a stable stationary scalar Gaussian process (1), with MSE distortion constraints,
DS ≥ D0 > 0. Then, under the sequential greedy coding condition (Assumption 2), and if the reproduction
sequences {Y(i)

k }, i = 1, 2, satisfy conditional prediction residual independence (Assumption 3), the following
inequalities hold:

RI
ZD,GM(D0, DS) ≤ RI

ZD(D0, DS) ≤ Rop
ZD(D0, DS). (61)

This shows Gaussian reproduction processes minimize the information-theoretic symmetric
ZDMD RDF. With this information-theoretic lower bound on Rop

ZD(D0, DS), we now derive an optimal
test-channel realization scheme that achieves this lower bound.
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4. Symmetric Test-Channel Realization

In this section, we introduce a feedback realization of the optimal test channel for the Gaussian
information-theoretic symmetric ZDMD RDF, RI

ZD,GM(D0, DS). This test channel is based on the
ZDMD coding problem with feedback in Figure 2 and the feedback realization scheme of [8].
Finally, we present a characterization of RI

ZD,GM(D0, DS) as the solution to an optimization problem.
This provides an achievable lower bound to Problem 2 in a Gaussian coding scheme.

4.1. Predictive Coding

The feedback realization scheme for the optimum test channel is illustrated in Figure 4. For each
side channel, we follow the feedback realization of ([8] Theorem 2). Hence, the reproduction sequence
of the optimum test channel is realized by:

Y(i)
k = hXk + (1− h)aY(i)

k−1 + Z(i)
k , (62)

where Z(i)
k ∈ R ∼ N

(
0, σ2

ZS

)
:

h , 1− πSλ−1, (63)

σ2
ZS

, πSh, (64)

λ = a2πS + σ2
W . (65)

Xk ∈ R

+

h

+

+

KF

Y
(1)
k

Z
(1)
k

+

U
(1)
k

Ũ
(1)
k

aY
(1)
k−1

−
+

h

+

+

KF

Y
(2)
k

Z
(2)
k

+

U
(2)
k

Ũ
(2)
k

aY
(2)
k−1

−

Decoder 0

Y
(0)
k

• •

(a) Overall test channel with side decoders

+

1
2

1
2

Θ0 Y
(0)
k

Ũ
(1)
k

Ũ
(2)
k

VC,k

Decoder 1

Decoder 2

z−1

z−1

Y
(1)
k−1

Y
(2)
k−1

(b) Test-channel central decoder

Figure 4. Feedback realization of the optimum test channel for RI
ZD,GM(D0, DS).
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Here, λ is the variance of the side error processes:

U(i)
k , Xk − E

[
Xk|Y(i),k−1

]
,

= Xk − aY(i)
k−1, i = 1, 2. (66)

Furthermore, πS, is the MSE for the estimation of Xk and U(i)
k , i.e.,:

πS , E
[(

Xk −Y(i)
k

)2
]
= E

[(
U(i)

k − Ũ(i)
k

)2
]

, i = 1, 2, (67)

where Ũ(i)
k are the innovation processes:

Ũ(i)
k , Y(i)

k − E
[
Y(i)

k |Y(i),k−1
]

(68)

= hU(i)
k + Z(i)

k , i = 1, 2, (69)

with variance:

σ2
Ũ = h2λ + πSh. (70)

The innovation process, Ũ(i)
k i = 1, 2, can be viewed as the ith side decoder estimate of U(i)

k .
Finally, we have that:

Z(1)
k ⊥⊥ Z(2)

l ∀k 6= l

Z(i)
k ⊥⊥ Z(i)

l ∀k 6= l, i = 1, 2

Z(i)
k ⊥⊥ U(j)

l ∀k ≥ l i, j ∈ {1, 2},

and the joint test-channel noise distribution is:

[
Z(1)

k
Z(2)

k

]
∼ N (0, ΣZ) , (71)

where:

ΣZ =

[
πSh ρπSh

ρπSh πSh

]
. (72)

We note that the test channel in Figure 4 differs from the usual MD double-branch test channel of
Ozarow [10], since the encoder does not create the two descriptions by adding correlated noises directly
to the source, i.e., to the same input. Instead, the test channel consists of two branches, each consisting
of a differential pulse code modulation (DPCM) scheme, where the correlated noises are added to the
two already correlated closed-loop prediction error signals.

We also note the clear resemblance between the ZDMD coding problem in Figure 2 and the test
channel in Figure 4a. This shows how the general ZDMD coding problem and its lower bound provide
a constructive result that is conveniently extended to an optimum test-channel realization.

4.2. Central Decoder Design

The ZDMD encoder creates the two descriptions by prescaling and adding correlated noises to the
two prediction error processes, U(1)

k , U(2)
k , resulting in the two innovation processes, Ũ(1)

k , Ũ(2)
k , as the

side decoder estimates of U(1)
k , U(2)

k . For each time step k, the central decoder takes the two innovation
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processes, Ũ(i)
k , i = 1, 2 as input. Since the additive noises are correlated, the central decoder can

provide better estimates of U(1)
k , U(2)

k than either of the side decoders. Using the central decoder

estimates of U(1)
k , U(2)

k , we can provide a better estimate of the source Xk than either side decoder.
We average the side innovations processes and define the central innovations description:

VC,k ,
1
2

(
Ũ(1)

k + Ũ(2)
k

)
. (73)

Before we discuss the central decoder design, the following lemma provides a useful list of
covariances between the signals in the feedback coding scheme of Figure 4, which can be readily
verified [27].

Lemma 2 (Covariances). Let {Xk} be a stable stationary scalar Gauss-Markov process as in Equation (1)
with stationary variance Var [Xk] = σ2

X. Using the feedback coding scheme of Figure 4, then the following
covariances hold:

ΣXY , Cov
[

Xk, Y(i)
k

]
=

h
1− a2(1− h)

σ2
X , i = 1, 2, (74)

ΣXVC , Cov [Xk, VC,k] = h
(

σ2
X − a2ΣXY

)
, (75)

σ2
Y , Var

[
Y(i)

k

]
=

h2σ2
X + 2a2h (1− h)ΣXY + σ2

ZS

1− a2(1− h)2 , i = 1, 2, (76)

ΣY(1)Y(2) , Cov
[
Y(1)

k , Y(2)
k

]
=

h2σ2
X + 2a2h(1− h)ΣXY + ΣZ(1)Z(2)

1− a2(1− h)2 (77)

ΣU(1)U(2) , Cov
[
U(1)

k , U(2)
k

]
= σ2

X + a2 (ΣY(1)Y(2) − 2ΣXY
)

(78)

ΣUVC , Cov
[
U(i)

k , VC,k

]
=

1
2

h
(
λ + ΣU(1)U(2)

)
, i = 1, 2 (79)

σ2
VC

, Var [VC,k] =
1
2

(
σ2

Ũ + h2ΣU(1)U(2) + ΣZ(1)Z(2)

)
. (80)

The central decoder design is illustrated in Figure 4b. For each time step k, the central decoder
takes the two innovation processes, Ũ(i)

k , i = 1, 2 as input. These are averaged to create the central
description VC,k. In the previous time step, local side decoders produced the side reconstructions,

Y(i)
k−1, i = 1, 2, such that the central decoder has Y(i)

k−1 i = 1, 2 available when producing the central

estimate, Y(0)
k .

Let Ωk = [VC,k, Y(1)
k−1, Y(2)

k−1]
T , then the central MMSE estimate of Xk is:

Y(0)
k = E [Xk|Ωk] = Θ0Ωk, (81)

where Θ0 ∈ R1×3 is given as:
Θ0 , ΣXΩΣ−1

Ω , (82)

with:

ΣXΩ , E
[

XkΩT
k

]
=
[
ΣXVC aΣXY aΣXY

]
, (83)

ΣΩ , E
[
ΩkΩT

k

]
=




σ2
VC

1
2 ha

(
ΣXY − ΣY(1)Y(2)

) 1
2 ha

(
ΣXY − ΣY(1)Y(2)

)
1
2 ha

(
ΣXY − ΣY(1)Y(2)

)
σ2

Y ΣY(1)Y(2)
1
2 ha

(
ΣXY − ΣY(1)Y(2)

)
ΣY(1)Y(2) σ2

Y


 . (84)
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The central distortion is then:

π0 , E
[(

Xk −Y(0)
k

)2
]
= σ2

X − ΣXΩΣ−1
Ω ΣT

XΩ. (85)

4.3. Rates

We now determine the achievable sum-rate for the test channel.
Initially, for each time step k, we express the mutual information in the definition of

RI
ZD,GM(D0, DS) in Equation (59) using the differential entropy ([28] Ch. 8):

I
(

Xk; Y(1)
k , Y(2)

k |Y(1),k−1, Y(2),k−1
)
+ I

(
Y(2)

k ; Y(1),k|Y(2),k−1
)
+ I

(
Y(1)

k ; Y(2),k−1|Y(1),k−1
)

= h
(

Y(2)
k |Y(2),k−1

)
+ h

(
Y(1)

k |Y(1),k−1
)
− h

(
Y(1)

k , Y(2)
k |Y(1),k−1, Y(2),k−1, Xk

)
. (86)

Comparing the test channel of Figure 4 to the general ZDMD source coding scenario with feedback
in Figure 2, we have:

h
(

Y(i)
k |Y(i),k−1

)
= h

(
Ũ(i)

k

)
=

1
2

log (2πeλh) (87)

and:

h
(

Y(1)
k , Y(2)

k |Y(1),k−1, Y(2),k−1, Xk
)
= h

(
Z(1)

k , Z(2)
k

)
=

1
2

log (2πe|ΣZ|) (88)

=
1
2

log
(

2πe
(

π2
Sh2

(
1− ρ2

)))
. (89)

Thus, the achievable symmetric sum-rate is:

R1 + R2 =
1
2

log (2πeλh) +
1
2

log (2πeλh)− 1
2

log
(

2πe
(

π2
Sh2

(
1− ρ2

)))
(90)

= log
λ

πS
− 1

2
log
(

1− ρ2
)

. (91)

4.4. Scalar Lower Bound Theorem

Summarizing the above derivations, we present the following characterization of the Gaussian
information theoretic symmetric ZDMD RDF.

Theorem 3 (Characterization of RI
ZD,GM(D0, DS)). Consider the stationary scalar Gauss-Markov process

of (1). Given nondegenerate MSE distortion constraints, (DS, D0), where 0 < D0 ≤ Ds ≤ σ2
X , the Gaussian

information-theoretic symmetric ZDMD RDF, RI
ZD,GM(D0, DS) is characterized by the solution to the following

optimization problem.
minimize
{πS ,ρ0}

1
2 log λ

πS
− 1

4 log
(
1− ρ2

0
)

subject to −1 ≤ ρ0 ≤ 0
0 ≤ πS ≤ λ

0 ≤ πi ≤ Di, i = 0, S,

(92)

where:

λ = a2πS + σ2
W , (93)

π0 = σ2
X − ΣXΩΣ−1

Ω ΣT
XΩ, (94)

and ΣXΩ , ΣΩ are defined in Equations (83) and (84).
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Remark 3 (Uniqueness of optimal solution). We believe that the optimal solution to Equation (92) is unique.
Firstly, the objective function in Equation (92) can be shown to be convex in πS and ρ0. Furthermore, the slope of
the objective is negative for all πS > 0 and −1 < ρ0 ≤ 0. Thus, it decreases monotonically towards a minimum.
Additionally, for nondegenerate distortions, there should be equality in the distortions bounds, and since every
ρ0 indicates a certain trade-off point on the dominant face of the rate-distortion region, the minimum should be
unique for every fixed ρ0. Hence, we conjecture the minimum to be unique. However, we have not yet been able
to finally prove the uniqueness of the optimal solution to Equation (92).

This completes the theoretical work on the lower bound to Problem 2, as the solution to
Equation (92). Thus, for stationary scalar Gaussian sources in a Gaussian coding scheme, i.e., a
source code that achieves the correctly distributed Gaussian noise, we have determined an achievable
lower bound to Rop

ZD(D0, DS), characterized by the (unique) solution to an optimization problem.
We now compare this theoretical lower bound to an operational achievable performance.

5. Simulation Study

In this section, we perform two simulation studies to validate our theoretical framework in
Section 4 in relation to an operational quantization scheme.

5.1. Simple Quantization Scheme

In general, test channels provide a basis for the design of practical coding schemes by replacing
the additive test-channel noises with quantizers producing quantization noise distributed similar
to the test-channel noises. However, it is a nontrivial task to produce quantization noise with high
negative correlation in practice [36]. There are some schemes that are able to achieve correlation
that tends towards −1 [36], e.g., [37–40]. These schemes and many other MD coding schemes in
general produce two descriptions with the desired correlation by direct operations on the source
signal. However, our ZDMD test channel forms two descriptions from two correlated signals.
Therefore, many existing schemes are not directly applicable to our test channel. This is somewhat
expected since ZDMD coding is mostly an unexplored problem until now. Fortunately, the scheme
of [41] illustrated in Figure 5 aligns well with our test channel, since it performs staggered quantization
of two prediction error processes and uses a refinement layer for further central distortion gain.
The main idea is to use two DPCM encoders with staggered quantizers, Q1 and Q2, in a base layer and
a third second-stage refinement quantizer Q0. For a detailed explanation of the derivation and design
of this scheme, we refer to [27,41].

5.2. Experiments

In all simulations, we consider stationary scalar Gauss-Markov sources of the Form (1).
All simulations are conducted by fixing the average rate per description, R, given as:

R = RS +
R0

2
, (95)

where RS is the rate of the first-stage quantizers, Q1, Q2, and R0 is the rate of the second-stage (central)
quantizer, Q0. Then, for each rate-pair, RS, R0, satisfying the rate constraint R, the practical quantizer
step sizes are determined according to the high-rate approximations:

RS = H
(

U∆S ,(i)
)
≈ h

(
U(i)

)
− log ∆S, (96)

R0 = H
(

E∆0
C

)
≈ h (EC)− log ∆0, (97)

where U∆S ,(i) is the quantized version of U(i), E∆0
C is the quantized version of EC, and the

approximations follow from ([28] Theo. 8.3.1). The step sizes are determined such that the operational
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rate per description, Rop, is approximately equal to the constraint, i.e., Rop ≈ R. Further details on
choosing the step size is found in [27]. From simulations we have seen, there is an approximate rate-loss
of 0.1 bits/sample/description due to the approximation of step sizes in Equations (96) and (97).
We have accounted for this when choosing the step sizes, such that Rop approximates R with greater
accuracy. For lower rates, this difference is higher; hence, we consider only the high-rate scenario.

Xk ∈ R

+ Q1 EC

Q−1
1

+z−1 1/2

Q0+ EC 1 : 2

Packet1
+ U

(1)
k U

∆,(1)
k

−

Y
(1)
k−1

+ Ec,k

Y
(1)
k

−
Xk ∈ R

+ Q2 EC

Q−1
2

+z−1 1/2

Packet2
+

U
(2)
k U

∆,(2)
k

−
Y

(2)
k

−

Y
(2)
k−1

Figure 5. The two-stage staggered differential pulse code modulation (DPCM) quantization scheme.
The two first-stage quantizers Q1 and Q2 are staggered identical uniform quantizers. Here, EC denotes
lossless (entropy) encoders. The binary description packets are formed by entropy coding each side
quantizer output and splitting the entropy coded second stage quantizer output in two.

We consider N source samples that are independently coded and decoded by the operational
quantization scheme, and M Monte Carlo simulations for each rate-pair R0, RS. The numerical
distortions are obtained by:

D̂i =
1
N

N

∑
i=k

(
Xk −Y(i)

k

)2
, i = 0, 1, 2, (98)

D̂S =
D̂1 + D̂2

2
, (99)

where Y(i)
k i = 0, 1, 2 are the reconstructions for the kth input sample Xk. The operational coding rates

are determined by the discrete entropies:

R̂i = H
({

U∆S ,(i)
k

}N

k=1

)
, i = 1, 2, (100)

R̂S =
R̂1 + R̂2

2
, (101)

R̂0 = H
({

E∆0
C,k

}N

k=1

)
, (102)

where the entropies are determined from the empirical probabilities, which are obtained based on the
histograms of {U∆S ,(i)

k }N
k=1, i = 1, 2 and {E∆0

C,k}N
k=1.

The theoretical distortion limits for a given rate R are determined by fixing the objective function
value in Equation (92), and determining the corresponding ρ0 and central distortion π0 for a grid of
side distortions, πS.
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5.2.1. Distortion Trade-Off at Fixed Rate

We consider the trade-off between the side and central distortions, DS, D0 for a fixed rate per
description, R = 5 bits/sample. We compare the theoretical lower bound on the distortions to the
operational distortions obtained using the practical quantization scheme. The source and simulation
parameters are listed in Table 1.

Table 1. Simulation Parameters for distortion trade-off curve in Figure 6.

Source Parameters Symbol Values

Source correlation coefficient a 0.9
Source innovation variance σ2

W 1
Initial value variance σ2

X1

1
1−0.92

Simulation parameters Symbol Values

Rate per description R 5 bits/sample
Time samples N 500,000
Monte-Carlo simulations M 4

The resulting theoretical and operational distortion curves are shown in Figure 6. The figure shows
the theoretical lower bound (black curve) on the achievable distortion region, and the operational
achievable distortion pairs (dashed blue curve), for the fixed rate per description R = 5 bits/sample.
The operational curve lies approximately 5 dB above the theoretical lower bound. Both curves show
that if we decrease the central distortion, we must increase the side distortion, and vice-versa, if we
want to maintain the same rate R. Hence, we are able to trade off between the side- and central
distortion by varying the bit allocation in the first- and second stage quantizers.

55 50 45 40 35
D0 [dB]

30

25

20

15

10

5

D
S [

dB
]

Rop R = 5 [bits/sample/description] 
Theoretical bound
Operational

Figure 6. The central distortion, D0, versus side distortion, DS for ZDMD coding of a Gauss-Markov
source (1) with a = 0.9 and unit variance at R = 5 bits/sample/description. Simulation parameters
in Table 1.

The 5 dB distortion loss corresponds to a total rate loss of approximately 0.83 bits/sample, for the
sum-rate, or equivalently 0.415 bits/sample/description. Some of this loss can be attributed to the
space-filling loss of the uniform quantizers, which is approximately 1.5 dB, or 0.254 bits/sample per
quantizer. Thus, the refinement scheme suffers from the space-filling loss of three quantizers [42].
Furthermore, there is a loss due to the non-optimal linear predictors; however, this loss is minimal in
the high-rate scenario [41].

The sudden bend in the operational curve can be attributed to a possible alphabet change,
i.e., for certain rates and, hence, quantization bin sizes, the quantized signals have an increased
alphabet size, due to smaller bin sizes.
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5.2.2. Distortion versus Distortion-Ratio for Multiple Fixed Rates

We next consider how the side- and central distortions, D0, DS, vary with the distortion ratio
γ , D0/DS for different fixed rates R. Using the previously described procedure for the fixed rates
R ∈ {4, 5, 6}bits/sample/description, we obtained the distortion curves in Figure 7; the simulation
parameters are listed in Table 2. Figure 7a shows the side distortion, DS, in relation to the distortion
ratio, γ, for varying rates. Similarly, Figure 7b shows the central distortion, D0, in relation to the
distortion ratio, γ, for the same rates. In both figures, dashed curves indicate operational distortions
and ratios, and solid curves indicate theoretical bounds.
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(a) Side distortion, DS

0.00 0.05 0.10 0.15 0.20 0.25
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(b) Central distortion, D0

Distortion vs. Distortion-ratio for varying rates, R [bits/sample/description]

Operational, Rop 4
Theoretical, R = 4

Operational, Rop 5
Theoretical, R = 5

Operational, Rop 6
Theoretical, R = 6

Figure 7. (a) Side distortion, DS, and (b) central distortion, D0, versus distortion ratio
γ =D0/DS for ZDMD coding of a Gauss-Markov source (1) with a = 0.9 and unit variance at
R ∈ {4, 5, 6}bits/sample/description. Simulation parameters in Table 2.

Table 2. Simulation parameters for distortion versus distortion ratio curves in Figure 7.

Source Parameters Symbol Values

Source correlation coefficient a 0.9
Source innovation variance σ2

W 1
Initial value variance σ2

X1

1
1−0.92

Simulation parameters Symbol Values

Rate per description R {4, 5, 6} bits/sample
Time samples N 500,000
Monte-Carlo simulations M 4

For any particular rate and distortion ratio in Figure 7, the central distortion, D0, is always lower
than the side distortion, DS. Further, as the rate per description increases, both distortions decrease
for all distortion ratios. Lower ratios imply lower central distortion, D0, at the cost of a higher side
distortion DS. This was also seen in Figure 6. Figure 7 shows, this trend is independent of the rate.
Furthermore, the plots in Figure 7 show that by increasing the rate per description for any fixed ratio,
we can increase the performance in both central and side distortion.

It can be shown, at no excess marginal rate, i.e., when R0 = 0, we have that D0/DS ≈ 1/4 [27],
and therefore, the maximum operational distortion ratio is limited to approximately 1/4. Hence,
to evaluate higher distortion ratios, we would need to perform non-optimal central reconstructions or
decrease the quantizer offsets away from the optimum half bin size.

For a given rate and distortion ratio, the operational curves in Figure 7 are all approximately
2.5 dB above the theoretical bounds, with a slightly better performance at higher rates. This loss can
again be attributed to the space-filling loss and non-optimal predictors. We notice that this loss seems
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to be half of that seen when plotting DS versus D0 in Figure 6. However, for a given ratio, there are
two curves in Figure 7, one for each of DS and D0. Thus, the total distortion loss at a give ratio is 5 dB.
Therefore, the apparent splitting of the loss can be attributed to a 2.5 dB loss for each of DS and D0 at a
given ratio, c.f. [27].

From the rate-distortion performances in Figures 6 and 7, we see for the high-rate scenario that
the simple quantization scheme is able to achieve a performance close to the theoretical ZDMD lower
bounds derived in the previous sections. Hence, we are able to operate along the theoretical bounds
for ZDMD coding of stationary scalar Gaussian sources using simple techniques. Particularly, we are
able to trade off both rates and distortions. The simulation results also provide an indication of an
upper bound on the optimal operational performance limits of ZDMD coding of stationary scalar
Gauss-Markov sources.

6. Discussion

We now discuss some important aspects of our derivations and simulation results. Particularly, we
focus on the assumptions made in the information-theoretic lower bound derivation, and how the
test channel generalizes to an operational quantization scheme. Finally, we consider extension of our
results to vector Gauss-Markov sources.

6.1. Theoretical Lower Bound

In order to derive an information-theoretic lower bound on the symmetric ZDMD RDF for scalar
stationary Gaussian sources in Theorem 2, we have made some technical assumptions.

The main assumption was the use of sequential greedy coding (Assumption 2). This implies
that at each time step, we must encode a source sample such that the rates are minimized and the
distortion constraints are achieved. However, this might lead to an increased rate, since we must
achieve the desired distortion performance in each time step and not just in the asymptotic average.
Hence, for some source samples, excess bits might have to be spent to ensure the distortion constraints
are achieved. The reason for this technical assumption is its implication from an information-theoretic
or probabilistic point of view. That is, the test-channel distribution of a particular reconstruction given
the current and past inputs should remain unchanged once it has been selected. It seems plausible that
sequential greedy coding provides the same ZDMD information rates as jointly selecting the optimal
test-channel distribution over all time steps. Since, from a ZD perspective, all source samples must be
encoded and transmitted immediately without delay, their respective reconstruction distributions are
thus selected only once. However, this remains an open problem for future research.

To derive the information-theoretic lower bound on the sum-rate, we assume the decoder side
information is mutually independent. This assumption ensures the side-decoder reproduction, Y(1)

k ,
is independent of the side information belonging to the other decoder, Sk

D2
, when the previous

reproductions, Y(2),k−1 are given, and vice versa for reproduction Y(2)
k . Therefore, if using dependent or

common side information, the results of Section 3 warrant further investigation, although, for common
side information, it seems reasonable that the bounds should remain widely unchanged. In [43],
an achievable region is derived for MD coding without feedback and with common side information,
in the classic distributed information-theoretic sense. The bounds of [43] are similar to those of
El-Gamal and Cover [11] with an added dependency upon the unknown side information in the
involved mutual informations. Hence, these results could provide a basis for extending the results of
Section 3 to the case of unknown or dependent side information.

6.2. Difficulties with the Vector Case

We note that Problem 2 and our first main result of Theorem 1 also hold for stationary vector
sources. Similarly, the definition of the (Gaussian) information-theoretic symmetric ZDMD RDF is
easily extended to the vector case.
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The main concern is that of extending Theorem 2 to the vector case, i.e., showing Gaussian
reproductions minimize the information theoretic lower bound on the sum-rate for stationary Gaussian
vector sources. In [35], the scalar result of Ozarow is extended to IID Gaussian vector processes and
shows the natural Gaussian multiple description scheme is optimal in achieving the lower bound
on the sum-rate for matrix covariance constraints. In [14], it is shown how the Gaussian description
scheme is also optimal under MSE distortion constraints. In the sense of zero delay, the results of [8,17]
show that for Gauss-Markov source processes, the jointly Gaussian reproduction process minimizes
the information-theoretic lower bound. Therefore, based on these results, we conjecture the result
of Theorem 2 may be extended to Gaussian vector processes. To this end, we note that the proof of
Theorem 2 relies on the tightness of Ozarow’s lower bound for stationary scalar Gaussian processes.
This reliance on scalar sources may be disregarded if it can be shown that:

Ī
(

Y(1); Y(2)
)
≥ Ī

(
Y(1)

G ; Y(2)
G

)
, (103)

with equality if Y(1), Y(2) are jointly Gaussian. For some initial results in this regard, see the extended
proof of Theorem 2 in ([27] App. E).

If Theorem 2 can be extended to the vector case, it remains to derive an optimum test-channel
realization scheme. Early work by the authors indicates that the test channel in Section 4 may be
generalized to the vector case in a similar manner to that of [8]. In the stationary case, the covariances
in Lemma 2 may be extended to the vector case in the form of Ricatti matrix equations, where
explicit solutions may be obtained using the techniques of ([44] Section 5). However, the main
difficulty is that of determining the proper correlation between Gaussian test-channel noise vectors.
Particularly, due to the structure of the noise covariance matrix, it is difficult to derive expressions for
the determinant of ΣZ such that a more explicit, possibly using semidefinite programming, expression
may be formulated for RI

ZD,GM(D0, DS). For spatially uncorrelated vector sources, the extension is
fairly straightforward, since it can be reasonably assumed that the noise cross-covariance matrix
ΣZ(1)Z(2) should be diagonal along with ΣZS . Since the dimensions are independent, the scalar solution
can be applied to each dimension, and the total rates and distortions are given as sums across the
scalar solutions for each dimension.

7. Conclusions

In this work, we studied the ZDMD source coding problem where the MD encoder and decoders
are required to be causal and of zero delay. Furthermore, the encoder receives perfect decoder
feedback, and side information is available to both encoder and decoders. Using this constructive
system, we showed that the average data sum-rate is lower bounded by the sum of the directed
information rate from the source, X, to the side descriptions, Y(1), Y(2), and the mutual information
rate between the side descriptions, thus providing a novel relation between information theory and
the operational ZDMD coding rates.

For scalar stationary Gaussian sources with MSE distortion constraints subject to the technical
assumptions of sequential greedy coding and conditional residual independence, we showed this
information-theoretic lower bound is minimized by Gaussian reproductions, i.e., the optimum
test-channel distributions are Gaussian. This bound provides an information-theoretic lower bound to
the operational symmetric ZDMD RDF, Rop

ZD(D0, DS).
We showed the optimum test channel of the Gaussian information-theoretic lower bound is

determined by a feedback realization scheme utilizing predictive coding and correlated Gaussian noises.
This shows that the information-theoretic lower bound for first-order stationary scalar Gauss-Markov
sources is achievable in a Gaussian coding scheme. Additionally, the optimum Gaussian test-channel
distribution is characterized by the solution to an optimization problem.

We have not yet been able to extend the test channel into an operational quantization scheme that
allows for an exact upper bound on the optimum operational performance limits.
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Operational achievable results are determined for the high-rate scenario by utilizing the simple
quantization scheme of [41], resembling our test channel to some extent. Using this simple quantization
scheme, it is possible to achieve operational rates within 0.415 bits/sample/description of the
theoretical lower bounds.
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ZD Zero Delay
ZDMD Zero-Delay Multiple Description

Appendix A. Proof of Theorem 1

First, since the expected length of a uniquely decodable code is lower bounded by its
entropy ([28] Ch. 5), we have that:

E
[
l(i)k

]
≥ H

(
B(1)

k |B(i),k−1, Sk
Di

)
, i = 1, 2, (A1)

since B(i),k−1 and Sk
Di

are already available at decoder i before the reception of B(i)
k . Thus:
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D2

)

− H
(

B(2)
k |B(1),k, B(2),k−1, Sk

D1
, Sk
D2

)
+ I

(
Xk; B(1)

k , B(2)
k |B(1),k−1, B(2),k−1, Sk

D1
, Sk
D2

)

(d)
= I

(
Xk; B(1)

k , B(2)
k |B(1),k−1, B(2),k−1, Sk

D1
, Sk
D2

)
+ I

(
B(2)

k ; B(1),k, Sk
D1
|B(2),k−1, Sk

D2

)

+ I
(

B(1)
k ; B(2),k−1, Sk

D2
|B(1),k−1, Sk

D1

)
, (A2)

where (a) follows from the non-negativity of discrete entropy ([28] Lem. 2.1.1). Step (b) follows
from the definition of conditional mutual information ([28] p. 23), (c) by the chain rule for discrete
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entropy ([28] Theo. 2.5.1), and (d) by the definition of conditional mutual information ([28] p. 23).
Consider the first term of step (d) in Equation (A2):

I
(

Xk; B(1)
k , B(2)

k

∣∣B(1),k−1, B(2),k−1, Sk
D1

, Sk
D2

) (e1)
= I

(
Xk; B(1)

k , B(2)
k

∣∣Y(1),k−1, Y(2),k−1, Sk
D1

, Sk
D2

)

(e2)
≥ I

(
Xk; Y(1)

k , Y(2)
k

∣∣Y(1),k−1, Y(2),k−1, Sk
D1

, Sk
D2

)

(e3)
= I

(
Xk; Y(1),k, Y(2),k, Sk

D1
, Sk
D2

)
− I

(
Xk; Y(1),k−1, Y(2),k−1, Sk

D1
, Sk
D2

)

(e4)
≥ I

(
Xk; Y(1),k, Y(2),k

)
− I

(
Xk; Y(1),k−1, Y(2),k−1, Sk

D1
, Sk
D2

)

(e5)
= I

(
Xk; Y(1)

k , Y(2)
k

∣∣Y(1),k−1, Y(2),k−1
)

− I
(

Xk; Sk
D1

, Sk
D2

∣∣Y(1),k−1, Y(2),k−1
)

(e6)
= I

(
Xk; Y(1)

k , Y(2)
k

∣∣Y(1),k−1, Y(2),k−1
)

, (A3)

where (e1) follows since the decoders are invertible given the side information, (e2) follows from the
data processing inequality (DPI) ([28] Section 2.8), the invertible decoders, and Equation (30), (e3) by
the chain rule of mutual information ([28] Theo. 2.5.2), (e4) since, by the non-negativity of mutual
information ([28] Section 2.6), removing a variable can only decrease the mutual information, (e5) by
the chain rule of mutual information, and (e6) since the side information is assumed to be independent
of X.

For the second term of step (d) in Equation (A2):

I
(

B(2)
k ; B(1),k, Sk

D1

∣∣B(2),k−1, Sk
D2

) (f1)
= I

(
B(2)

k ; Y(1),k, Sk
D1

∣∣Y(2),k−1, Sk
D2

)

(f2)
≥ I

(
Y(2)

k ; Y(1),k, Sk
D1

∣∣Y(2),k−1, Sk
D2

)

(f3)
≥ I

(
Y(2)

k ; Y(1),k∣∣Y(2),k−1, Sk
D2

)

(f4)
= I

(
Y(2)

k , Sk
D2

; Y(1),k∣∣Y(2),k−1
)
− I

(
Sk
D2

; Y(1),k∣∣Y(2),k−1
)

(f5)
≥ I

(
Y(2)

k ; Y(1),k∣∣Y(2),k−1
)
− I

(
Sk
D2

; Y(1),k∣∣Y(2),k−1
)

(f6)
= I

(
Y(2)

k ; Y(1),k∣∣Y(2),k−1
)

, (A4)

where (f1) follows since the decoders are invertible, and (f2) from the DPI and Equation (32), (f3) since
conditional mutual information is non-negative, removing a term on the left side of the conditioning
can only decrease the mutual information, (f4) follows from the chain rule of mutual information, (f5)
is similar to (f3), and finally, (f6) follows from Equation (34), and the mutual information is zero for
independent variables.

For the third term of step (d) in Equation (A2), we have through similar derivations using the
Markov chains in Equations (31) and (33):

I
(

B(1)
k ; B(2),k−1, Sk

D2
|B(1),k−1, Sk

D1

)
≥ I

(
Y(1)

k ; Y(2),k−1|Y(1),k−1
)

. (A5)

Then, by Equations (A2)–(A5):

E
[
l(1)k

]
+ E

[
l(2)k

]
≥ I

(
Xk; Y(1)

k , Y(2)
k |Y(1),k−1, Y(2),k−1

)
+ I

(
Y(2)

k ; Y(1),k|Y(2),k−1
)
+ I

(
Y(1)

k ; Y(2),k−1|Y(1),k−1
)

. (A6)

Summing over k, we have, by the definition of directed information (Definition 4):
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n

∑
k=1

(
E
[
l(1)k

]
+ E

[
l(2)k

])
≥ I

(
Xn → Y(1),n, Y(2),n

)
+ I

(
Y(1),n → Y(2),n

)
+ I

(
Y(2),n−1 → Y(1),n

)

= I
(

Xn → Y(1),n, Y(2),n
)
+ I

(
Y(1),n → Y(2),n

)
+ I

(
0 ∗Y(2),n−1 → Y(1),n

)

= I
(

Xn → Y(1),n, Y(2),n
)
+ I

(
Y(1),n; Y(2),n

)
, (A7)

where the last equality follows from the conservation of information ([45] Prop. 2) and 0 ∗ Y(2),n−1

denotes the concatenation 0, Y(2)
1 , . . . , Y(2)

n−1 . The lower bound (Equation (44)) now follows by dividing
by n and taking the limit as n→ ∞.

Appendix B. Proof of Theorem 2

Recall:

Ī
(

X → Y(1), Y(2)
)
+ Ī

(
Y(1); Y(2)

)
= lim

n→∞

1
n

I
(

Xn → Y(1),n, Y(2),n
)
+

1
n

I
(

Y(1),n; Y(2),n
)

(A8)

where:

I
(

Xn → Y(1),n, Y(2),n
)
=

n

∑
k=1

I
(

Xk; Y(1)
k , Y(2)

k |Y(1),k−1, Y(2),k−1
)

, (A9)

and:

I
(

Y(1),n; Y(2),n
)
= I

(
Y(1),n → Y(2),n

)
+ I

(
0 ∗Y(2),n−1 → Y(1),n

)
(A10)

= I
(

Y(1),n → Y(2),n
)
+ I

(
Y(2),n−1 → Y(1),n

)
(A11)

=
n

∑
k=1

I
(

Y(2)
k ; Y(1),k|Y(2),k−1

)
+ I

(
Y(1)

k ; Y(2),k−1|Y(1),k−1
)

. (A12)

For each time step k ∈ N, using the chain rule of mutual information [28], we have that:

I
(

Y(2)
k ; Y(1),k|Y(2),k−1

)
+ I

(
Y(1)

k ; Y(2),k−1|Y(1),k−1
)

= I
(

Y(2)
k ; Y(1)

k |Y(1),k−1, Y(2),k−1
)
+ I

(
Y(1)

k ; Y(2),k−1|Y(1),k−1
)
+ I

(
Y(2)

k ; Y(1),k−1|Y(2),k−1
)

. (A13)

Consider the first time step of k = 1:

I
(

X1; Y(1)
1 , Y(2)

1 |∅
)
+ I

(
Y(2)

1 ; Y(1)
1 |∅, ∅

)
+ I

(
Y(1)

1 ; ∅|∅
)
+ I

(
Y(2)

1 ; ∅|∅
)
= I

(
X1; Y(1)

1 , Y(2)
1

)

+ I
(

Y(2)
1 ; Y(1)

1

)
(A14)

Now:

I
(

X1; Y(1)
1 , Y(2)

1

)
+ I

(
Y(2)

1 ; Y(1)
1

) (a)
≥ I

(
X1; Y(1)

1,G, Y(2)
1,G

)
+ I

(
Y(2)

1 ; Y(1)
1

)
(A15)

= I
(

X1; Y(1)
1,G

)
+ I

(
X1; Y(2)

1,G

)
+ I

(
Y(1)

1,G; Y(2)
1,G|X

)

− I
(

Y(1)
1,G; Y(2)

1,G

)
+ I

(
Y(1)

1 ; Y(2)
1

)
, (A16)
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where subscript G denotes Gaussian random variables, and (a) follows from ([46] Theo. 1.8.6) with
equality if Y(1), Y(2) are jointly Gaussian with X. The last equality follows from the identity:

I (A; B, C) = I (A; B) + I (A; C) + I (B; C|A)− I (B; C) .

We recall that the noncausal and arbitrary-delay, lower bound of El-Gamal and Cover [11] is tight
for scalar IID Gaussian sources. In the first time step, we may regard X1 as a sample from a white
Gaussian process with distribution N (0, Var[X1]). Therefore, the causal and zero-delay coding rate of
X1 can never do better than the lower bound of El-Gamal and Cover. We recognize the first three terms
in Equation (A16) as the El-Gamal and Cover region. Thus, the difference I(Y(1)

1 ; Y(2)
1 )− I(Y(1)

1,G; Y(2)
1,G)

can never be negative, since this would violate the tightness of the lower bound. Therefore:

I
(

X1; Y(1)
1 , Y(2)

1

)
+ I

(
Y(2)

1 ; Y(1)
1

)
≥ I

(
X1; Y(1)

1,G

)
+ I

(
X1; Y(2)

1,G

)
+ I

(
Y(1)

1,G; Y(2)
1,G|X

)
(A17)

= I
(

X1; Y(1)
1,G, Y(2)

1,G

)
+ I

(
Y(2)

1,G; Y(1)
1,G

)
(A18)

with equality if Y(1)
1 , Y(2)

1 are jointly Gaussian.
Now, for the next time step of k = 2, we consider:

I
(

X2; Y(1)
2 , Y(2)

2 |Y
(1)
1 , Y(2)

1

)
+ I

(
Y(2)

2 ; Y(1)
2 |Y

(1)
1 , Y(2)

1

)
+ I

(
Y(1)

2 ; Y(2)
1 |Y

(1)
1

)
+ I

(
Y(2)

2 ; Y(1)
1 |Y

(2)
1

)
. (A19)

However, we just showed that to be optimal in the first step Y(1)
1 , Y(2)

1 should be jointly Gaussian.
Therefore, under the sequential greedy condition, we have that:

I
(

X2; Y(1)
2 , Y(2)

2 |Y
(1)
1 , Y(2)

1

)
+ I

(
Y(2)

2 ; Y(1)
2 |Y

(1)
1 , Y(2)

1

)
+ I

(
Y(1)

2 ; Y(2)
1 |Y

(1)
1

)
+ I

(
Y(2)

2 ; Y(1)
1 |Y

(2)
1

)

=I
(

X2; Y(1)
2 , Y(2)

2 |Y
(1)
1,G, Y(2)

1,G

)
+ I

(
Y(2)

2 ; Y(1)
2 |Y

(1)
1,G, Y(2)

1,G

)
+ I

(
Y(1)

2 ; Y(2)
1,G|Y

(1)
1,G

)
+ I

(
Y(2)

2 ; Y(1)
1,G|Y

(2)
1,G

)
(A20)

Let:

W2 , X2 − E
[

X2|Y(1)
1,G, Y(2)

1,G

]
(A21)

U(i)
2 , Y(i)

2 − E
[
Y(i)

2 |Y
(1)
1,G, Y(2)

1,G

]
, i = 1, 2 (A22)

be the residuals for the MMSE predictions of X2, Y(1)
2 , Y(2)

2 given Y(1)
1,G, Y(2)

1,G. Then, considering
the first two terms in Equation (A20), we have that:

I
(

X2; Y(1)
2 , Y(2)

2 |Y
(1)
1,G, Y(2)

1,G

)
+ I

(
Y(2)

2 ; Y(1)
2 |Y

(1)
1,G, Y(2)

1,G

)

=I
(

W2; U(1)
2 , U(2)

2 |Y
(1)
1,G, Y(2)

1,G

)
+ I

(
U(2)

2 ; U(1)
2 |Y

(1)
1,G, Y(2)

1,G

)
(A23)

By the orthogonality principle, the residuals of the MMSE estimators are uncorrelated with the
conditioning variables, Y(1)

1,G, Y(2)
1,G [34]. Therefore, since X2 is Gaussian, W2 is Gaussian and independent

of Y(1)
1,G, Y(2)

1,G. Furthermore, by the conditional residual independence assumption, U(i)
2 , i = 1, 2 are

assumed independent of Y(1)
1,G, Y(2)

1,G, which is true for Gaussian Y(i)
2 . Thus:

I
(

W2; U(1)
2 , U(2)

2 |Y
(1)
1,G, Y(2)

1,G

)
+ I

(
U(2)

2 ; U(1)
2 |Y

(1)
1,G, Y(2)

1,G

)
= I

(
W2; U(1)

2 , U(2)
2

)
+ I

(
U(2)

2 ; U(1)
2

)
. (A24)
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Using the same technique and arguments as in the first time step, we can lower bind these
two terms:

I
(

W2; U(1)
2 , U(2)

2

)
+ I

(
U(2)

2 ; U(1)
2

)
≥ I

(
W2; U(1)

2,G, U(2)
2,G

)
+ I

(
U(2)

2,G; U(1)
2,G

)
(A25)

with equality if U(1)
2 , U(2)

2 are jointly Gaussian, or equivalently when Y(1)
2 , Y(2)

2 are jointly Gaussian.
Now consider the last two terms in Equation (A20):

I
(

Y(1)
2 ; Y(2)

1,G|Y
(1)
1,G

)
+ I

(
Y(2)

2 ; Y(1)
1,G|Y

(2)
1,G

)
= I

(
Y(1)

2 − E
[
Y(1)

2 |Y
(1)
1,G

]
; Y(2)

1,G − E
[
Y(2)

1,G|Y
(1)
1,G

] ∣∣∣∣Y
(1)
1,G

)

+ I
(

Y(2)
2 − E

[
Y(2)

2 |Y
(2)
1,G

]
; Y(1)

1,G − E
[
Y(1)

1,G|Y
(2)
1,G

] ∣∣∣∣Y
(2)
1,G

)

(b)
= I

(
Y(1)

2 − E
[
Y(1)

2 |Y
(1)
1,G

]
; Y(2)

1,G − E
[
Y(2)

1,G|Y
(1)
1,G

])

+ I
(

Y(2)
2 − E

[
Y(2)

2 |Y
(2)
1,G

]
; Y(1)

1,G − E
[
Y(1)

1,G|Y
(2)
1,G

])
, (A26)

where (b) follows since we assume conditional prediction residual independence of the MMSE
predictors. Since the residuals on the right side of the mutual informations are Gaussian, the mutual
information is minimized if the residuals on the left, Y(i)

2 − E
[
Y(i)

2 |Y
(i)
1,G

]
, i = 1, 2, are Gaussian—that

is, when Y(i)
2 , i = 1, 2 are Gaussian. Thus:

I
(

X2; Y(1)
2 , Y(2)

2 |Y
(1)
1 , Y(2)

1

)
+ I

(
Y(2)

2 ; Y(1)
2 |Y

(1)
1 , Y(2)

1

)
+ I

(
Y(1)

2 ; Y(2)
1 |Y

(1)
1

)
+ I

(
Y(2)

2 ; Y(1)
1 |Y

(2)
1

)

≥ I
(

X2; Y(1)
2,G, Y(2)

2,G|Y
(1)
1,G, Y(2)

1,G

)
+ I

(
Y(2)

2,G; Y(1)
2,G|Y

(1)
1,G, Y(2)

1,G

)
+ I

(
Y(1)

2,G; Y(2)
1,G|Y

(1)
1,G

)
+ I

(
Y(2)

2,G; Y(1)
1,G|Y

(2)
1,G

)
(A27)

with equality if Y(1)
2 , Y(2)

2 are jointly Gaussian, given that Y(1)
1 , Y(2)

1 are jointly Gaussian, which they
are by the sequential greedy assumption. The result now follows by induction on k, dividing by n,
and taking the limit as n→ ∞.

Notation

Symbol Description
R The set of real numbers
N The set of natural numbers
Nn The set {1, . . . , n}, n ∈ N
X Random variable
X Alphabet for the random variable X
Xn Sequence of n ∈ N random variables (X1, . . . , Xn)

xn Sequence of n ∈ N random variable realizations, where xn ∈ X n

X n ×n
k=1Xk, with Xk = X

X ⊥⊥ Y For independent random variables, X, Y
X−Y− Z When the random variables X, Y, Z form a Markov chain in that order

i.e., when P(X, Z|Y) = P(X|Y)P(Z|Y)
X|W −Y|W − Z|W If the Markov chain is conditioned upon W
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