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Abstract: We construct a collision model description of the thermalization of a finite many-body
system by using careful derivation of the corresponding Lindblad-type master equation in the
weak coupling regime. Using the example of a two-level target system, we show that collision
model thermalization is crucially dependent on the various relevant system and bath timescales
and on ensuring that the environment is composed of ancillae which are resonant with the system
transition frequencies. Using this, we extend our analysis to show that our collision model can lead to
thermalization for certain classes of many-body systems. We establish that for classically correlated
systems our approach is effective, while we also highlight its shortcomings, in particular with regards
to reaching entangled thermal states.
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1. Introduction

Computer simulations of finite many-body systems have been challenging and expanding
predictions of statistical mechanics since their first application to test equilibration of an anharmonic
crystal modeled by a chain of masses with fixed-ends [1]. While standard methods to investigate
equilibration and thermalization of quantum systems are based upon master equations [2], so called
quantum collision models are introduced as versatile computational tools for simulating and studying
open quantum systems [3,4]. The simplest collision model consists of a two-level system undergoing
repeated collisions with environment, or ancilla, two-level systems. It is equivalent to a discrete
time Markovian master equation in Lindblad form for the dynamics of the system, for short collision
times [5]. Here, we address the question of how to generalize the collision models to finite quantum
many-body systems for illuminating their thermalization dynamics.

Intuitively, it is reasonable to obtain a Markovian dynamics of the system using collisions if the
colliding ancillae do not interact with any other degrees of freedom since such short time interactions
should not allow any significant memory effects. However, the often implicit assumption of stronger
interaction than the system Hamiltonian and the neglecting of the bath Hamiltonian are not always
valid. Furthermore, using the typical formalism, e.g., [5,6] where energy preserving exchange
interactions are considered, results in a dynamics which drives the system to the same state as ancillae,
meaning that the result is independent from the system Hamiltonian and homogenization, rather than
thermalization, is achieved [7,8]. This problem persists and is compounded for the generalization
of collision models for many-body systems [8,9]. Interestingly, [10] derives a Lindblad type master
equation for collisions with arbitrary interaction strengths and collision times and establishes that
the thermal state of a system at the environment temperature with respect to the Hamiltonian Ĥ0
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is an equilibrium state if [Û, Ĥ0 + Ĥbath] where Û is the unitary evolution operator under the total
Hamiltonian. However, setting Ĥ0= Ĥsystem and finding the necessary interaction type and strength
to satisfy this commutation property remains as a challenging open problem so far. At variance
with this and other works that study collision models starting from a “global" unitary picture [9,10],
in this work we propose a master equation derivation inspired by the well-known derivation for a
time-independent system–bath interaction in the weak coupling regime [2].

Despite its drawbacks in describing Markovian open system dynamics, quantum collision models
are still a good candidate for understanding the quantum thermodynamical phenomena from a
microscopic perspective [11]. For example, the microscopic Markovian master equation derivation in
[2] does not account for the information loss of the system about its initial state, while it is evident
using the collision model that the lost information is kept by the entanglement between the system
and ancillae [12]. Another study analyzes the entropy generation and distribution in a collision model
and proves the asymptotic factorization of the total density matrix of system and environment into
the density matrices of the system and the environment for a two level system in the strong coupling
regime [13]. More complex collision models involving ancilla–ancilla collisions allow for the derivation
of completely positive non-Markovian dynamics [14–16]. The controllable degree of non-Markovianity
and its effect on the dynamics of quantum coherence has been examined [17]. Further attempts to
study non-Markovian dynamics are made by using initially entangled ancillae [18], introducing time
overlap of two consecutive collisions [6,19,20] and using a two-spin system in which only one of the
pair interacts with the environment resulting in a Markovian dynamics for the composite system,
while tracing out the spin interacting with the bath gives a non-Markovian dynamics for the remaining
spin [21]. The versatility of collision models has resulted in other interesting research directions, such
as the introduction of collisions with non-thermalized ancillae to study non-equilibrium effects in
quantum thermodynamics [8,11,22–25] and the generation of multi-qubit entanglement via a shuttle
qubit colliding with disjoint qubit registers [26].

This work aims to examine the conditions required for thermalization in a Markovian collision
model using two level ancillae. To this end, we will first carefully examine the microscopic derivation of
a Lindblad master equation for a two level system in the weak coupling regime from [2] and introduce
a time dependent interaction Hamiltonian in Section 2, where we also assess each assumption made
for the derivation and examine their validity. Section 3 examines our collision model for many-body
systems for both non-entangled and entangled energy eigenstates with an example for each of these
cases illustrating how our proposed collisional route to many-body thermalization works. Finally, we
conclude in Section 4.

2. Derivation and Validity of Lindblad Master Equation

We begin by following the microscopic derivation of the Lindblad master equation given in
[2], however allowing for a time-dependent interaction Hamiltonian instead of using the second
order approximation of the unitary evolution operator for the system and the ancilla with respect to
the collision time [21]. The dynamics of the system and the bath is governed by the Liouville-von
Neumann equation

d
dt

ρ(t) = −i[ĤI(t), ρ(t)]. (1)

Integrating this equation with respect to time and plugging in the expression for ρ(t) in the commutator
twice with the assumption of TrB([ĤI(t), ρ(0)])=0 we arrive at

d
dt

ρ(t) = −
∫ t

0
ds[ĤI(t), [ĤI(s), ρ(s)]]. (2)
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Applying the Born approximation by neglecting system–bath entanglement and the effect of the system
on the bath allows us to write an equation for the dynamics of the system by tracing over the bath
degrees of freedom

d
dt

ρs(t) = −
∫ t

0
dsTrB([ĤI(t), [ĤI(s), ρS(s)⊗ ρB]]). (3)

At this point, the dynamics of the system is still, in general, non-Markovian and we have not made
any explicit assumptions about the nature of the interaction. However, the finite time of a given
collision may serve to justify the constancy of the bath density matrix along with the weak interaction
assumption. Putting aside the validity of Born approximation, we need to explicitly assume that the
density matrix of the system does not change significantly during the interaction with a single ancilla,
which is justifiable for short collision times, in order to replace the past states of the system with its
present state and to obtain the Redfield equation

d
dt

ρs(t) = −
∫ t

0
dsTrB([ĤI(t), [ĤI(t− s), ρS(t)⊗ ρB]]). (4)

The standard master equation derivation in [2] for a time-independent interaction Hamiltonian
continues with the assumption that the integrand above vanishes quickly enough to extend the
integral to infinity with negligible difference on the system dynamics. In our case of short time
collisions starting after t = 0, this extension is not an assumption to be checked as the integrand is
explicitly zeroed out for s > t by the time-dependent strength of the interaction Hamiltonian. For
simplicity, we assume that each ancilla interacts with the system once and these collisions start with a
period of τp and a duration of τc.

After explicitly defining our collision model, we can investigate the effects of the finite time
interactions on the dynamics. As in the derivation in [2], we will introduce the interaction Hamiltonian
in the Schrödinger picture

ĤI = ∑
α

Âα ⊗ B̂α (5)

where the Hermitian operators Âα and B̂α act on the system and the bath respectively. After
decomposing the operators Âα into operators Âα(ω) based on the energy transitions with frequency ω

generated on the eigenstates of the system Hamiltonian and plugging the interaction picture interaction
Hamiltonian in Equation (4), we obtain

d
dt

ρs(t) = ∑
ω,ω′

∑
α,β

eit(ω′−ω)Γαβ(ω)
(

Âβ(ω)ρs(t)Â†
α(ω

′)

− Â†
α(ω

′)Âβ(ω)ρs(t)
)
+ h.c.

(6)

where Γαβ(ω) is the one-sided Fourier transform of the reservoir correlation functions

Γαβ(ω) =
∫ ∞

0
dseisωTrB(B̂†

α(t)B̂β(t− s)) (7)

where operators are defined in the interaction picture.
For the evaluation of bath correlation spectra, we must specify our open system setup which

consists of the same basic ingredients as [6,19,20,25]. We first consider a two-level system with
time-independent Hamiltonian

ĤS = hsσ̂z. (8)



Entropy 2019, 21, 1182 4 of 14

The reservoir consists of, an in principle infinite number of, two-level systems prepared at an inverse
temperature βb=1/(kBT) for a bath Hamiltonian

ĤB =
N

∑
n=1

hbσ̂zn. (9)

where the index n indicates that the operator acts on the n-th spin of the reservoir. The time-dependent
interaction Hamiltonian in the Schrödinger picture is given by

ĤI =
N

∑
n=1

gn(t)σ̂x ⊗ σ̂xn (10)

where the operator without index acts on the system. For simplicity, we assume that the interaction
strength is exactly zero before and after the interaction, remains constant during the collision, and
has the same magnitude for all collisions. It should be noted that the interaction in Equation (10) is
different from the often considered partial swap case which is known to lead to homogenization [4]
rather than thermalization [7]. Knowing the collision period and duration, we can now define the
time-dependent interaction strengths as

gn(t) = θ(t− (n− 1)τp)θ((n− 1)τp + τc − t)g (11)

where θ denotes the Heaviside step function.
Before explicitly calculating the bath correlation spectra, we can make some simplifications. As

each ancilla has one interaction component in the form of Equation (5), the indices α and β in fact
denote the index of the corresponding ancilla. Also, knowing that all ancillae are prepared in a thermal
state, it is easy to prove that cross correlations vanish and we can arrange Equation (6) in the form

d
dt

ρs(t) = ∑
ω,ω′

N

∑
n=1

eit(ω′−ω)Γn(ω)
(

Ân(ω)ρs(t)Â†
n(ω

′)− Â†
n(ω

′)Ân(ω)ρs(t)
)
+ h.c. (12)

After some manipulation, we find the explicit form of reservoir correlation spectra

Γn(ω) = g2θ(t− (n− 1)τp)θ((n− 1)τp + τc − t)∫ ∞
0 dseisω(ρn

eee2ihbs + ρn
gge−2ihbs)θ((t− s)− (n− 1)τp)θ((n− 1)τp + τc − (t− s))

= g2θ(t− (n− 1)τp)θ((n− 1)τp + τc − t)
∫ t−(n−1)τp

0 ds eisω(ρn
eee2ihbs + ρn

gge−2ihbs) (13)

where ρn
ee and ρn

gg are excited and ground populations of n-th ancilla. It is clear that the bath correlation
spectra are time-dependent and they are zeroed out by the step functions before or after the collision.
We must evaluate this expression for the cases ω=±2hb and ω 6=±2hb separately,

Γn(ω 6= ±2hb, t) = −ig2

(
ρn

ee(exp(i(t− (n− 1)τp)(ω + 2hb))− 1)
ω + 2hb

+
ρn

gg(exp(i(t− (n− 1)τp)(ω− 2hb))− 1)
ω− 2hb

)
(14)

If ω = ±2hb, one of the complex exponentials in the integrand simplifies and gives a linearly
growing term

Γn(ω = −2hb, t) = g2(ρn
ee(t− (n− 1)τp))−

iρn
gg(exp(i(t− (n− 1)τp)(ω− 2hb))− 1)

ω− 2hb

Γn(ω = 2hb, t) = g2(ρn
gg(t− (n− 1)τp))−

iρn
ee(exp(i(t− (n− 1)τp)(ω + 2hb))− 1)

ω + 2hb

(15)
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The final step of the derivation of a Lindblad type master equation is the decomposition of bath
correlation spectra into its real and imaginary parts. The imaginary part results in an additional
Hamiltonian term, the Lamb shift acting on the system. However, as this is not relevant to the
equilibration of the system, we will neglect it in what follows. As we explicitly show in Figure 1 it is
also reasonable to neglect situations where ancillae spins are not on resonance with the system, i.e., we
only consider hb =hs. In this case, the bath correlation spectra consists of a real and linearly growing
term and a rotating term with real and complex parts. The linearly growing term generates a dynamics
similar to a Lindblad master equation with time-independent interactions, while the real part of the
rotating term can be neglected assuming that the relaxation of the system is much slower than the
dynamics of the closed system. The master equation in Lindblad form can be obtained after applying
these assumptions to Equation (12) together with the secular approximation resulting in

d
dt

ρs(t) = Re(Γ(2hs, t))(σ̂−ρs(t)σ̂+ −
1
2
{σ̂+σ̂−, ρs(t)}) + Re(Γ(−2hs, t))(σ̂+ρs(t)σ̂− −

1
2
{σ̂−σ̂+, ρs(t)}) (16)

where the Γ function contains the information about all of the collisions

Re(Γ(ω, t)) = g2
N

∑
n=1

(δ′(ω− 2hb)ρ
n
gg + δ′(ω + 2hb)ρ

n
ee)(t− (n− 1)τp)θ(t− (n− 1)τp)θ((n− 1)τp + τc − t), (17)

where N denotes the number of ancilla spins. The function δ′(ω) is defined as one for ω=0 and zero
elsewhere, not to be confused with Dirac delta function. Note that this equation neglects the case
where the ancilla is not in resonance with the system and it is used throughout Section 3. However, the
off-resonance effects in Figure 1 need to be interpreted using the bath correlation spectrum described
in Equation (14).

0

0.2

0.4

0.6

0.8

1.0

Figure 1. Simulation results for the thermalization of a single two-level system using our collision
model. We show the fidelity of the system with the target thermal state as a function of the bath
ancilla frequency and number of collisions. We clearly see that thermalization occurs when the system
interacts with bath frequencies that are on resonance. We have fixed T=10 mK, g=1 MHz, hs =1 GHz,
t=200 ns, and ρs(0)= |1〉〈1|.

The transition from Equation (12) to Equation (16) takes the secular approximation for granted,
however it can be justified by some assumptions relating three different time scales of the open system
dynamics: The natural evolution times of the system and ancillae and the duration of the collision, all
of which play a critical role in constraining the validity of the derived master equation. We assume
that the interaction vanishes before any significant change on the density matrix of the ancilla can
happen. We also assume that the variation of the system state during one collision is small, which
further constrains the maximum collision time. On the other hand, we also want to eliminate the
rotating terms of the bath correlation spectra by averaging them over multiple periods of the system
dynamics with a slow relaxation of the system which leads to a lower bound of the collision duration.
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After justifying the derivation of Equation (16), it is straightforward to find the
Kubo–Martin–Schwinger (KMS) condition for n-th collision exploiting the fact that the ancillae are
prepared in a thermal state, resulting in vanishing cross bath correlations.

Re(Γn(2hs, t))
Re(Γn(−2hs, t))

= exp(2βhs) =
ρn

gg

ρn
ee

= exp(2βbhs) (18)

The interpretation of this equation is obvious: The thermal state of the system at the inverse bath
temperature βb is the unique steady state of the Markovian dynamics generated by collisions with
ancillae prepared in thermal state [2]. This result was also predicted in complementary works on
collision models [5,25] derived using different parameter regimes.

In Figure 1 we simulate our collision model sweeping through a range of frequencies for the
bath ancillae and show the final state fidelity between the system and its target thermal state. The
simulation consists of the unitary evolution of the system and ancillae during the collision time with
the sum of system, bath, and interaction Hamiltonians described above and the ancillae are traced out
after each collision without interacting again with the system or other with ancillae. We clearly see
that when the ancillae are close to resonance the collision model leads to thermalization of the system.
Conversely, when the ancillae are far detuned from hs we find the system dynamics are almost frozen.
This result can be predicted theoretically by calculating the real part of bath correlation spectrum
without assuming resonance. Equation (14) has two terms which are inversely proportional to the
difference between the transition frequency ω and ±2hb. Assuming a small detuning from either 2hb
or −2hb, the other term becomes negligibly small. After dropping the small term, evaluating the real
part for the other part gives

Re(Γn(∓2hs, t)) =
ρn

ee,ggg2sin(δt)
δ

, δ = ∓2hs±2hb (19)

ignoring the Heaviside step functions and taking the beginning of each collision as t = 0. Its limit for
δ→ 0 recovers the case of resonance. The off-resonance dynamics depend heavily on the product δτc.
As the average of sine function over a period is zero, we can conclude that the effect of the dissipative
term should be negligible if the product δτc = 2kπ where k is an integer and the dynamics is slow
enough. On the other hand, in the case where the product is an odd multiple of π, the average of
sine function is not zeroed out and we observe thermalization as seen in Figure 1. Furthermore, it is
straightforward to prove that the fastest thermalization is achieved in the case of resonance using
the identity

sin(δt)
δ

≥ t, t ≥ 0. (20)

The results in Figure 1 confirm the range of validity of our master equation and are in keeping
with other results in the literature [25]. Furthermore, the clear importance of on-resonance ancillae
indicates that, under suitable constraints, only particular bath frequencies are relevant for ensuring
the system thermalizes. Thus, we can exploit this feature to explore the requirements for achieving
thermalization for many-body systems.

3. Thermalization of Finite Many-Body Systems

3.1. Classically Correlated Systems

Let us consider the 1D Ising chain described by the Hamiltonian

ĤS =
N

∑
i=1

hiσ̂zi +
N−1

∑
i=1

Jiσ̂ziσ̂z(i+1). (21)
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As stressed in the previous section, to achieve thermalization we require the driving frequency of the
system and the ancillae to be the same. In the case of interacting many-body systems, it should be
clear that there will be a range of frequencies, each of which will be related to the various transition
frequencies of the many-body system. Thus, to examine the requirements to reach thermalization we
use the expression of the interaction Hamiltonian in the form

ĤI =
N

∑
i=1

Ni

∑
n=1

∑
ω

gi,n(t)σ̂xi(ω)⊗ σ̂x(i,n) (22)

where sum over ω denotes the decomposition of each spin-ancilla collision operator into the different
energy transitions it generates. We can make a temporary simplification to make the illustration of
many-body system thermalization easier by replacing the ancillae with a set of harmonic oscillators
forming a continuous spectrum prepared at an inverse temperature βb =1/(kBT). In this case, we can
find the energy transitions generated by each term of the interaction Hamiltonian with a partition of
the Hilbert space of the whole system based on each nearest neighbor configuration with respect to a
reference spin denoted as i. We can write all terms of the system Hamiltonian involving i-th spin as

Ĥi = (Ji−1σ̂z(i−1) + hi + Jiσ̂z(i+1))σ̂zi (23)

where i 6= 1, N as the first and last spins of the Ising chain do not have a left and right neighbor,
respectively. The Hamiltonian at the end points i = 1, N can be found by omitting the term
corresponding to the lacking neighbors i=0, N + 1 in the above equation.

We can now define the transition frequencies generated by flipping the i-th spin in terms of the
state of neighbor spins

ω
(∣∣∣↑i−1↑i+1

〉)
= 2(Ji−1 + hi + Ji),

ω
(∣∣∣↑i−1↓i+1

〉)
= 2(Ji−1 + hi − Ji),

ω
(∣∣∣↓i−1↑i+1

〉)
= 2(−Ji−1 + hi + Ji),

ω
(∣∣∣↓i−1↓i+1

〉)
= 2(−Ji−1 + hi − Ji). (24)

Decomposing the operator σ̂x as
σ̂xi = σ̂−i + σ̂+i, (25)

we obtain two dissipators for each term of the interaction Hamiltonian. The frequencies in Equation (24)
correspond to the transitions generated by σ̂−i while their negatives correspond to σ̂+i. Expressing the
frequencies as a function of nearest neighbor configuration for each spin results in the master equation

d
dt

ρs =
N

∑
i=1

∑
{si}

(
γi(ω(si))D(ρs, σ̂

si
−i) + γi(−ω(si))D(ρs, σ̂

si
+i)
)

. (26)

Here, {si} is a short hand notation for the respective arguments of the frequencies in Equation (24),
corresponding to the set of basis vectors of the Hilbert space of the neighbor spins of i-th spin. The
notation σ̂

si
±i implies that this operator can be decomposed as

σ̂
si
−i = |↓〉i 〈↑|i ⊗ |si〉 〈si|

σ̂
si
+i = (σ̂si

−i)
† (27)

and D(ρ, ô) is defined by

D(ρ, ô) = ôρô† − 1
2
{ô† ô, ρ}. (28)



Entropy 2019, 21, 1182 8 of 14

Although Equation (26) is derived for a continuous set of harmonic oscillators, each term
appearing in the double sum is similar to the master equation for a two-level system with the driving
frequency depending on the nearest neighbor configuration. Therefore, the implementation of a
similar master equation with collisions generating one spin flip operations with ancillae driven at the
frequencies of single spin transitions, as illustrated in Figure 2, is possible if the secular approximation
is valid such that the ancillae cannot generate any transitions other than those corresponding to its
driving frequency. The results of Section 2 on the KMS conditions for the bath correlation spectra
can be generalized for the master equation of 1D Ising model and this ensures that if all ancillae are
prepared at an inverse temperature βb, the thermal state of the system at the same temperature is a
steady state of the master equation [2]. However, the uniqueness of the stationary solution requires
additional constraints. A sufficient condition for the uniqueness can be stated as follows [27,28]:

Condition 1. Let L be the Lindblad superoperator describing the time derivative of the density matrix and
σ̂±i(ω(si)) operators the generators of L. The dynamical semigroup generated by L is relaxing in the sense that
it drives the density matrix to a unique final state as time tends to infinity regardless of the initial state if the
linear span of the generators is an adjoint set and the bicommutant of the generators is the set of all bounded
operators acting on the Hilbert space of the system.

(a) (b)

Figure 2. Sketch of our proposed collision model thermalizing (a) a two-spin Ising model and (b) a
many-body spin model. Complete thermalization requires separate ancillae each corresponding to a
spin flip transition frequency of the system.

In order to check the applicability of Condition 1 to the thermal bath with local system–bath
interactions, we start by checking the adjoint property of the linear span of generators. As established
in [27], this follows since σ̂+i(ω(si)) = σ̂†

−i(ω(si)), meaning that the adjoint of each generator is also a
generator. The second property is easy to prove using the fact that σ̂± operators only commute with
themselves and the identity operator and the only operator commuting with all σ̂±i(ω(si)) for all i
and si is the identity operator.

To simulate thermalization for a two-site Ising model, Equation (21) with N = 2, we require
collisions corresponding to the one-spin flip transition frequencies as illustrated in Figure 2a. As each
of the spin has a single neighbor, there are two nearest neighbor configurations, resulting in a total of
four energy transitions for the whole system. For larger systems, each spin in the bulk of the chain has
four different energy transitions and requires more ancillae to successfully thermalize, as shown in
Figure 2b.

We implement our collision model for the two-site Ising chain, considering when the collisions
with the various ancillae happen “sequentially”, i.e., the whole system collides with one of the ancillae
corresponding to one of the energy transitions at a time and the colliding ancilla is subsequently traced
out before the next collision occurs. We also consider “simultaneously” occurring collisions where
the whole system interacts with all of the four ancillae corresponding to different energy transitions
at once, after which they are traced out. The minimum energy states are up-down and down-up
states and these states cannot be prepared by a local master equation as the collisions are identical,
verifying the effect of the system Hamiltonian on open system dynamics resulting in a global master
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equation. In Figure 3 we show that our collision model gives rise to thermalization for interacting
systems. Furthermore, as the cross bath correlations vanish for a thermal bath, we expect that a time
overlap between the collisions (such as that which occurs in the simultaneous collision case) does not
change the form of the equation, and our numerical results confirm that both approaches generate an
almost identical evolution.

Figure 3. Simulation of a 2-spin Ising model with parameters h1 = h2 = 500 MHz and J = 1 GHz and
corresponding transition frequencies ω1 = ω3 = 1.5 GHz and ω2 = ω4 = 0.5 GHz. All ancilla-system
spin coupling strengths are set as 1 MHz and the collision times are fixed as 400 ns. Fidelity after each
step consisting of one collision for each one spin transition frequency with respect to the thermal state
of the system at the temperature of ancilla spins Tb = 10 mK. The initial state is the thermal state of the
system at infinite temperature.

3.2. Entangled Systems

The Ising model considered in the previous analysis has eigenvectors which are product states
without any entanglement among the spin sites. In this section we elaborate on the validity of our
collision model for realizing thermalization in more generic many-body systems, particularly those
that exhibit entanglement. Addressing such an issue in full generality is a formidable task. Indeed,
unlike in the case of non-entangled eigenstates where the generation of single-spin transitions for each
interacting neighbor configuration was sufficient, even determining the minimum necessary number
of collisions for the uniqueness of the equilibrium state is difficult for entangled states. As such we
will restrict to a specific example in this section.

We begin our discussion by reminding that the matrix representation of any Hamiltonian has an
eigenvalue decomposition in the form

Hs = UDU† (29)

where D is a diagonal matrix with the values of eigenenergies on the diagonal, U is a unitary matrix
such that its columns are the eigenstates of the Hamiltonian. Following our master equation derivation,
each term of the interaction Hamiltonian is decomposed into different energy transitions, giving rise
to operators in the form

Âkl =
∣∣ψ′k〉 〈ψ′l ∣∣ (30)

where
∣∣ψ′k〉 denotes the k-th eigenstate of the Hamiltonian, which is also denoted by the k-th column of

the matrix U. This simple form of the energy transition operators can also be expressed in the basis
consisting of the Kronecker product of the bases of the subsystems as

Âkl =
N

∑
i=1

N

∑
j=1

aij,kl |i〉 〈j| (31)
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where N is the dimension of the Hilbert space of the system and states i and j are selected from the
basis constructed by the Kronecker product of the subsystems, therefore these states are not entangled.
Knowing that the k-th column of the matrix U is equal to

∣∣ψ′k〉, we can write

aij,kl = U∗kiUl j (32)

where Uab denotes the element of U at the a-th row and b-th column.
The existence of coefficients aij,kl indicates that there is a one-to-one linear map from the vectors

in the basis of eigenstates to the vectors in the Kronecker product basis. Furthermore, we can vectorize
the indices i and j into one index u and the indices k and l into another index v. By these reductions,
we can express our linear map in the form of a matrix M such that

Muv Av = xu (33)

where the vectors A and x are the vectorized representations of an operator in the basis of eigenstates
and in the Kronecker product basis, respectively, with the sum running over the repeated index v. As
the matrix M represents a one-to-one linear map, its inverse exists and any vector Au can be expressed
in the form

M−1
uv xv = Au. (34)

Using this expression, we can conclude that a single subsystem transition generated by the interaction
Hamiltonian, which can be expressed with a vector xv, with one non-zero element can generate
multiple energy transitions by the multiplication by the inverse of the matrix M used for conversion
into eigenstate basis. In this case, the thermalization conditions depend on the structure of the matrix M,
however the thermalization of any many-body system is in principle possible with a sufficient number
of energy transitions generated by the collisions with two-level ancillae driven at the corresponding
transition frequencies, the appropriate choice of interaction Hamiltonian, and the validity of our
assumptions for the master equation.

As a concrete example consider a two-spin anisotropic XY-model with Dzyaloshinskii–Moriya
(DM) interaction in z-direction

ĤXY = J(σ̂x1σ̂x2 − σ̂y1σ̂y2 + σ̂x1σ̂y2 − σ̂y1σ̂x2) (35)

with the eigenstates and eigenenergies [29]

|ψ1,2〉 =
|↓↓〉 ± |↑↑〉√

2
, |ψ3,4〉 =

|↓↑〉 ∓ i |↑↓〉√
2

;

E1,3 = 2J, E2,4 = −2J.
(36)

Using the definition of operators Âkl , we can express the one spin flip operators as

|↓↓〉〈↑↓| = −i(Â13 + Â23 − Â14 − Â24)/2

|↑↑〉〈↑↓| = i(Â13 − Â23 + Â14 − Â24)/2

|↓↓〉〈↓↑| = (Â13 + Â23 + Â14 + Â24)/2

|↑↑〉〈↓↑| = (Â13 − Â23 + Â14 − Â24)/2. (37)

We can then describe the spin ladder operators acting on the first site as

σ̂−1 = |↓↑〉 〈↑↑|+ |↓↓〉 〈↑↓|

=
1
2
(Â31 − Â32 + Â41 − Â42 + i(−Â13 − Â23 + Â14 + Â24))

σ̂+1 = σ̂†
−1. (38)
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It is clear that the Â41 and Â32 terms of the ladder operators and their Hermitians generate state
transitions with non-zero energy difference. Other state transitions are between the states with the
same energy which cannot be generated via with collisions with ancilla spins which do not have
internal energy as we have assumed hs, hb >> g. If the zero energy transitions were allowed, we
could make transitions from any state of the system to another state using intermediate transitions,
impling the uniqueness of the thermal state as the equilibrium point of the dynamics [30]. In our
case, this condition is not satisfied, and this leads to the equilibrium state of the system exhibiting an
initial state dependence. Our numerical simulations in Figure 4 show that if the system is initially
prepared in some thermal state, but not in equilibrium with the bath, a Gibbsian thermal state at the
environment temperature is achieved. However, it is not guaranteed for generic non-equilibrium
initial states, such as |1〉〈1|. We understand this as follows: the choice of initial state as a thermal state
at some temperature guarantees that the population of the states having the same energy is equal, thus
implying that the zero frequency transition terms will not contribute to the dynamics of the system
even if they are generated by the collisions. This means we can assume that the zero frequency terms
exist and consequently the equilibrium state is the thermal state at the environment temperature.

Figure 4. Simulation of a 2-spin anisotropic XY model with J = 1 GHz with different initial states of
the system. Collision time is set as 400 ns with an ancilla-system interaction strength of 1 MHz. Fidelity
after each collision between an ancilla driven with the sole non-zero transition frequency of the system
ω = 4 GHz and the first spin of the system each one spin transition frequency with respect to the
thermal state of the system at the temperature of ancilla spins Tb = 10 mK.

Another possible issue regarding thermalization of entangled many-body systems by our collision
model is the additional terms of the master equation due to the non-vanishing bath cross correlations
arising due to the decomposition of each term of the interaction Hamiltonian acting on a single
subsystem into multiple energy transition terms, which implies that the bath operator of those energy
transition terms are the same. For this reason, the positive definiteness of the bath correlation matrix
for every frequency needs to be asserted for the uniqueness of the equilibrium state [27].

In summary, our example of two spin anisotropic XY model shows that our collision model
can generate multiple energy transitions without the explicit calculation of the M matrix. Although
thermalization is not guaranteed, this analysis nevertheless provides insight about how an entangled
many-body system with non-degenerate energy levels can be thermalized as long as the secular
approximation used in the master equation derivation remains valid and the bath correlation matrix is
positive definite.

4. Conclusions

In this work we have presented a collision model using two level ancillae that leads to
thermalization in the weak coupling regime, even for certain finite many-body systems. By carefully
assessing the relevant timescales present, we showed that when the ancillae are tuned inline with
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the transition frequencies of the system, thermalization can be achieved. This is at variance with
other schemes commonly examined in the literature where system and environment interact via a
partial swap [6,20]. Our master equation derivation for 1D Ising model can be straightforwardly
generalized to N-dimensional spin lattices by redefining the sums over the Hilbert space of neighbor
spins. In the case of Ising spin lattices with more than one dimension, the system can be tuned to be
an integrable or non-integrable system depending whether the external magnetic fields are turned
off or on respectively [31] and our collision model achieves thermalization in both of the cases. If the
eigenstates of the system Hamiltonian are entangled, our collision model gives valuable insight on the
dependence of equilibrium state on the initial condition; in particular reveals the conditions to engineer
Gibbsian thermal state at the environment temperature. Remarkably, for entangled eigenstates, the
decomposition of single-spin transition operators into multiple energy transition operators may remove
the necessity of bath interaction with each spin in the system.

Beyond the clear interest in understanding the phenomenology of thermalization using a collision
model and its possible extensions to non-Markovian and non-equilibrium dynamics, our collision
model also can be viewed as a versatile and implementable artificial environment acting as a
temperature knob, as similarly considered in [30,32]. Contrary to the artificial temperature knob
proposal in [30], our proposal satisfies the KMS condition for thermalization instead of an optimized
approximation depending on tunable system parameters and it is promising to be scalable for large
many body systems. The proposal in [32] relies on a similar idea to our proposal; its authors propose
to sweep all possible energy transitions of the system with a slowly varying bath Hamiltonian strength,
which can be considered as a different way of obtaining the effect of ancillae colliding to a subsystem
with different bath Hamiltonian strength. Obviously, making use of only relevant transition frequencies
leads to much faster thermalization and it is possible to get rid of some timescale constraints of [32] as
the ancillae are supposed to be prepared in a thermal state for a time independent bath Hamiltonian
before the collision in our proposal.

Our proposal can also lead to the cooling of the target system if it is possible to keep ancilla spins
colder than the environment temperature. Indeed we mention two possible methods of spin cooling
for the preparation of a cold environment that our scheme is well suited to. The first one is the use of
frequent measurements on a two-level system interacting with a non-Markovian environment which
brings the mean energy of interaction Hamiltonian to zero in order to reduce the total energy of the
two-level system and its environment [33]. The application of this idea may suffer from the challenges
posed by the necessary minimum frequency of the measurements. Another idea is to use quantum
coherent or entangled two-level systems [34–36] to engineer the temperature of a two-level target
system, which can then be used as an ancilla for the many-body system to be thermalized.

Our results can have practical significance for suggesting design principles of quantum
thermalizing machines for finite many-body systems. Such devices would be compact as they can
consist of few ancillae as artificial environment; they would be fast as they can engineer the target
thermal state with high fidelity after a small number of collisions describing a unitary route to
thermalization. These properties can be valuable for quantum thermal annealing [30] and quantum
simulation applications [37], for example using superconducting circuits.
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4. Scarani, V.; Ziman, M.; Štelmachovič, P.; Gisin, N.; Bužek, V. Thermalizing Quantum Machines: Dissipation

and Entanglement. Phys. Rev. Lett. 2002, 88, 097905. [CrossRef] [PubMed]
5. Ciccarello, F. Collision models in quantum optics. Quantum Meas. Quantum Metrol. 2017, 4, 53–63. [CrossRef]
6. McCloskey, R.; Paternostro, M. Non-Markovianity and system-environment correlations in a microscopic

collision model. Phys. Rev. A 2014, 89, 052120. [CrossRef]
7. Pezzutto, M.; Paternostro, M.; Omar, Y. Implications of non-Markovian quantum dynamics for the Landauer

bound. New J. Phys. 2016, 18, 123018. [CrossRef]
8. Barra, F. The thermodynamic cost of driving quantum systems by their boundaries. Sci. Rep. 2015, 5, 14873.

[CrossRef]
9. Lorenzo, S.; Ciccarello, F.; Palma, G.M. Composite quantum collision models. Phys. Rev. A 2017, 96, 032107.

[CrossRef]
10. Barra, F.; Lledó, C. Stochastic thermodynamics of quantum maps with and without equilibrium. Phys. Rev. E

2017, 96, 052114. [CrossRef]
11. Chiara, G.D.; Landi, G.; Hewgill, A.; Reid, B.; Ferraro, A.; Roncaglia, A.J.; Antezza, M. Reconciliation of

quantum local master equations with thermodynamics. New J. Phys. 2018, 20, 113024. [CrossRef]
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