
entropy

Article

Detecting Metachanges in Data Streams from the
Viewpoint of the MDL Principle

Shintaro Fukushima * and Kenji Yamanishi

Department of Mathematical Informatics, Graduate School of Information Science and Technology,
The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-8656, Japan; yamanishi@mist.i.u-tokyo.ac.jp
* Correspondence: shintaro_fukushima@mist.i.u-tokyo.ac.jp

Received: 11 October 2019; Accepted: 16 November 2019; Published: 20 November 2019 ����������
�������

Abstract: This paper addresses the issue of how we can detect changes of changes, which we call
metachanges, in data streams. A metachange refers to a change in patterns of when and how changes occur,
referred to as “metachanges along time” and “metachanges along state”, respectively. Metachanges
along time mean that the intervals between change points significantly vary, whereas metachanges
along state mean that the magnitude of changes varies. It is practically important to detect metachanges
because they may be early warning signals of important events. This paper introduces a novel notion
of metachange statistics as a measure of the degree of a metachange. The key idea is to integrate
metachanges along both time and state in terms of “code length” according to the minimum description
length (MDL) principle. We develop an online metachange detection algorithm (MCD) based on the
statistics to apply it to a data stream. With synthetic datasets, we demonstrated that MCD detects
metachanges earlier and more accurately than existing methods. With real datasets, we demonstrated
that MCD can lead to the discovery of important events that might be overlooked by conventional
change detection methods.

Keywords: change detection; change of change; data stream; minimum description length principle;
code length

1. Introduction

1.1. Purpose of This Paper

In this study, we are concerned with detecting changes in data streams. The goal of change detection
is to detect the time points at which the nature of the data-generating mechanism significantly changes.

Thus far, many algorithms have been proposed to detect change points in data streams (e.g.,
[1–11]), and several studies addressed or have been related to the issue of changes of changes [12–18].
In this paper, we refer to the changes of changes as metachanges. A metachange refers to a change in
the pattern of when or how changes occur. It is practically important to detect metachanges because
they may be early warning signals of important events [12,13]. Metachanges have been treated from a
viewpoint of metachanges along time. Metachanges along time indicate that the interval significantly
varies between the change points. Such metachanges were called burstiness [12] and volatility [13] in
previous studies. The detection of metachanges along time provides users with useful information
from data streams. For example, in a machine in a manufacturing factory, a decrease in the interval
between change points might be a sign of a serious failure.

There is also another type of metachange: metachanges along state. Here, “state” refers to the
parameter value of the probability density function of a distribution. We consider a situation where
change points t1, . . . are detected for a data stream y1, y2, . . . , and yt is drawn from py(yt; η). Here,
py is a probability density function of distributions, and η is the associated parameter. Note that η

Entropy 2019, 21, 1134; doi:10.3390/e21121134 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e21121134
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/12/1134?type=check_update&version=2

Entropy 2019, 21, 1134 2 of 24

is called state in this paper, and it varies before and after a change point. A metachange along state
means a change of how significantly η varies before and after a change point. Metachanges along state
might provide information such as changes of magnitude and velocity, which indicate an important
change in the underlying data-generating mechanism. For example, in a machine in a manufacturing
factory, a shift to an abrupt (sudden) change from a gradual (incremental) change [19], or its inverse
shift, might be a sign of serious events.

A conceptual illustration of metachanges is shown in Figure 1, where the upper graph shows
a data stream y1, . . . and change points {ti}8

i=1 on the horizontal axis. The lower left graph shows
intervals between change points ∆t = ti − ti−1 on the vertical axis. Metachanges along time occur
at t4, t5, t6, t7: for example, t4 − t3 is different from t3 − t2 and t2 − t1. The lower right graph shows
the states estimated piecewisely between the change points. Here, we assume yt is drawn from the
univariate normal distribution py(yt; µ, σ), where µ is the mean and σ is the standard deviation. In this
case, (µ, σ) is a state. In Figure 1, because there is no significant change in the magnitude of state
change between t1 and t2, a metachange along state does not occur at t2. However, there is a significant
change in the magnitude of change of µ between t2 and t3: thus, a metachange along state occurs at t3.
Because the magnitudes of the changes of µ and σ are almost the same between t3 and t4, a metachange
along state does not occur at t4. Using the same procedure, we conclude that metachanges along state
occur at t3 and t7 with respect to µ. Moreover, metachanges along state occur at t6 and t8 with respect
to σ: the magnitude of the change of standard deviations around t6 (t8) is greater than those around
t5 (t7). As a result, metachanges along state occur at t3, t6, t7, and t8. We can infer that metachanges
along both time and state occur at t6 and t8, by combining the metachanges along time and state.

Data stream

Metachanges along time Metachanges along state

time

time
Intervals vary between change points
 at

Metachanges along time and state
Metachanges along both time and state occur at

mean at

Magnitudes of changes of states vary
between change points at

standard deviation at

Figure 1. Conceptual illustration of metachanges.

Metachanges along time have been investigated in previous studies [12,13], and, although there
have been several studies related to metachanges along state [14–18], the focus of these studies was
not on metachanges along state in particular. The purpose of this paper is to propose a framework
and an approach to detect metachanges along time and state from a unified view with the minimum
description length (MDL) [20]. Therefore, our framework and approach not only include previous
notions such as burstiness [12] and volatility [13] but also extend these notions to metachanges along
state. MDL asserts that the best statistical decision strategy is the one that compresses the data best.

Entropy 2019, 21, 1134 3 of 24

Description and coding with MDL are suitable for quantifying changes, and they enable us to easily
integrate the code lengths of time and state.

1.2. Related Work

Change detection has been extensively explored in the area of data mining. Thus far, several
methods have been proposed to detect metachanges in data streams [12,13], and there have been
several studies related to metachanges along state [14–18].

Kleinberg [12] and Huang et al. [13] proposed algorithms for detecting metachanges along time.
Kleinberg [12] proposed an algorithm to detect bursts in a time series. This algorithm assumes that
intervals between successive events are drawn from an exponential distribution. The discretized
values of the parameters of the exponential distribution are regarded as states. For intervals between
successive events, states are estimated with dynamic programming. Changes of state indicate changes
of intervals between the successive events. Huang et al. [13] proposed an algorithm, called the volatility
detector, which detects changes of rates of change. The volatility detector prepares two buckets, called
the buffer and the reservoir, to store intervals between change points. The intervals are put into the
buffer sequentially. When the buffer is full, an interval is dropped from the buffer and moved to the
reservoir in a first-in-first-out fashion. The reservoir stores the dropped interval by randomly replacing
one of its stored intervals. If the ratio of variances of the buffer and the reservoir is over or under the
specified threshold, the algorithm judges that the intervals change between change points. The authors
called this event volatility shift. Both the burst detector and volatility detector are assumed to be used
in two steps. That is, change points are detected with other change detection algorithms, and then
changes of intervals between the change points are detected. While the burst detector works in an
offline fashion, the volatility detector works in an online fashion.

Moreover, there have been several studies related to metachanges along state [14–18].
Aggarwal [15] introduced velocity density estimation to understand, visualize, and determine trends
in the evolution of fast data streams. Spiliopoulou et al. [16,17] proposed an algorithm, called
MONIC, to model and track cluster transitions. Ntoutsi et al. [18] proposed an algorithm, called
FINGERPRINT, to summarize cluster evolution. Huang et al. [14] proposed a change type detector,
intended to categorize change types into three relative types, some of which correspond to concept
drifts proposed in [19]. Although their algorithms [14–18] are related to metachanges along state, they
are not intended to characterize and detect metachanges directly. In addition, many change detection
algorithms have been proposed based on detecting changes of state (e.g., [6–9,21,22]). The dynamic
model selection [6,7] is the seminal work to apply MDL to the task of dynamic model selection and
change detection. The MDL change statistics [8], SCAW [9], and STREAMKRIMP [22] are change
detection algorithms with MDL. However, these algorithms are not intended to characterize and
detect metachanges along state directly.

1.3. Significance of This Paper

In the context of Sections 1.1 and 1.2, the contributions of this paper are summarized in the
following subsections.

1.3.1. Proposal of Concept of Metachange

To detect changes of changes in data streams, we define a concept of metachanges along both time
and state. Previous studies [12,13] considered metachanges along time only. In this paper, we deal
with metachanges along both time and state. Metachanges along time include the notions proposed
in previous studies such as burstiness [12] and volatility [13]. Metachange along state could capture
changes of changes of the parameters of distribution between change points.

Our concept of metachange can detect the potential change of changes in data streams, which was
overlooked by previous studies.

Entropy 2019, 21, 1134 4 of 24

1.3.2. Novel Algorithm for Detection of Metachanges

We define metachange statistics along both time and state. There is a challenge to combining the
metachange statistics along time and those along state. In this paper, these statistics are defined based
on the MDL principle. Metachange statistics along time (MCAT) is defined as the code length of an
interval between the change points, whereas metachange statistics along state (MCAS) is defined as
the difference between the predictive code length and the normalized maximum likelihood (NML)
code length [23] after a change. It is possible to simply add these statistics because they are defined as
code lengths, which enables us to detect metachanges along both time and state in a unified manner.

2. Theoretical Background of Metachange Statistics

In this section, we consider how to encode both intervals between change points and states around
the change points. We assume that for a data stream y1, y2, . . . change points t1, ... are detected and
that the intervals between change points xi = ti − ti−1 and yt are drawn, respectively, from

xi ∼ px(xi; ξ), yt ∼ py(yt; η),

where px and py are probability density functions of distributions and ξ and η are the associated
parameters. Finally, η is the state whose metachanges are addressed in this paper.

2.1. Definitions of Metachanges

In this subsection, we give definitions of metachanges.

Definition 1. (Metachange along time) For intervals between change points x1, x2, . . . , we say that a
metachange along time occurs at a change point ti for a threshold parameter δt > 0 if and only if

q1 → q2 at t = ti,

d(q1, q2) > δt, q1, q2 ∈ Ft, Ft = {px(x; ξ)},
(1)

where q1 and q2 are distributions of intervals. q1 → q2 means that xt ∼ q1 at t = ti−1 and xt ∼ q2 at t = ti. d
is a distance function between the probability density functions.

Definition 2. (Metachange along state) For a data stream y1, y2, . . . , we say that a metachange along state
occurs at a change point ti for a threshold parameter δs > 0 if and only if

q1 → q2 at t = ti−1, q2 → q3 at t = ti,

|d(q2, q3)− d(q1, q2)| > δs, q1, q2, q3 ∈ Fs, Fs = {py(y; η)},
(2)

where q1, q2, and q3 are distributions of values of the data stream. Equation (2) means that yt ∼ q1 at
t = ti−2, . . . , ti−1 − 1, yt ∼ q2 at t = ti−1, . . . , ti − 1, and yt ∼ q3 at t = ti . . . , ti+1 − 1. Here, d is the same
as that in Definition 1.

Definition 3. (Integrated metachange) For a change point ti, we say that an integrated metachange occurs at
ti if and only if Equation (1) or Equation (2) holds.

2.2. Problem Setting

In this subsection, we consider a situation where (m + 1) change points t1, . . . , tm+1 are given.
We consider how to encode xi and yt as shortly as possible. The ideal code length required for encoding

Entropy 2019, 21, 1134 5 of 24

xi is given by what we call the predictive code length, which is the sum of the negative logarithm of its
predictive density px at each time point, defined as follows:

min
{ξ̂xi−1}m

i=1

m

∑
i=1
− log px(xi; ξ̂xi−1), (3)

where ξ̂xi−1 are estimated at each change point. Similarly, the ideal code length required for encoding
yt around change points is given by the predictive code length as follows:

min
{η̂yt−1 |t∈neighbor(ti)}m

i=1

m

∑
i=1

∑
t∈Neighbor(ti)

− log py(yt; η̂yt−1), (4)

where Neighbor(ti) indicates the neighborhood of a change point ti. In practice, as explained in Section 3.3,
Neighbor(ti) = [ti − h, ti + h], h ∈ N. ξ̂xi−1 and η̂yt−1 are estimated using xi−1 = x1 . . . xi−1 and yt−1 =

y1 . . . yt−1, respectively. A change of η̂yt−1 indicates a change of state. Detection of a metachange along
time is asserted as a problem of detection of a change of ξ̂xi−1 in Equation (3). On the other hand, detection
of a metachange along state is asserted as a problem of detection of a change of how η̂yt−1 in Equation (4)
changes around a change point between change points.

3. Metachange Detection Algorithm

In this section, we present our online algorithm called metachange detection algorithm (MCD) for
detecting metachanges along both time and state. We consider how to achieve Equations (3) and (4) in
an online fashion. A schematic description of MCD is shown in Figure 2.

A. Detecting change points

B. Detecting metachanges
along time

C. Detecting metachanges
along state

D. Integrating metachange
statistics

Figure 2. Schematic of the proposed metachange detection algorithm (MCD) algorithm.

First, we detect change points from data stream (A). Next, we concurrently detect metachanges
along time (B) and along state (C). We introduce metachange statistics to quantify these metachanges.
Finally, we integrate the metachange statistics along time and state into a statistics (D).

The key challenge of detecting metachanges along time and state is how to describe and integrate
them. Our approach describes both metachanges as code lengths with MDL; therefore, it is easy to
combine them.

3.1. Detecting Change Points

First, we detect change points t1, t2, As our proposed algorithm MCD works in an online
fashion, it is necessary for the change detection algorithm to work in an online fashion (e.g., [1–4,8,9]).

Entropy 2019, 21, 1134 6 of 24

In general, MCD is prone to errors by the change detection algorithm and its threshold parameter. We
empirically investigate and discuss this point in detail in Section 4.

3.2. Detecting Metachanges along Time

For the detected change points t1 . . . , let us consider intervals between the successive change
points Ii = [ti−1, ti − 1], with length xi = ti − ti−1. For an interval sequence xi = x1 . . . xi, we consider
how to achieve Equation (3) in an online fashion. We define metachange along time (MCAT) ati as the
predictive code length

ati
def
= − log px(xi; ξ̂xi−1), (5)

where px ∈ Ft, Ft = {px(x; ξ)} is a parametric class of probability distribution, and ξ̂xi−1 is
estimated using xi−1 = x1 . . . xi−1. For example, we can estimate ξ̂xi−1 as the maximum likelihood
estimator. To deal with nonstationary data streams, we use the online discounting maximum likelihood
estimator [24]

ξ̂xi−1 = argmax
ξ

i−1

∑
t=1

r(1− r)i−1−t log px(xt; ξ), (6)

where 0 < r < 1 is a discounting parameter. An increase in r has a greater effect on forgetting past data.
In this paper, we introduce a parametric class of the exponential distribution

Ft = {px(x; ξ) = ξ exp (−ξx), ξ > 0} . (7)

By substituting Equation (7) into Equation (6), we get

ξ̂xi−1 = argmax
ξ

i−1

∑
t=1

r(1− r)i−1−t log (ξ exp (−ξxt))

= argmax
ξ

i−1

∑
t=1

r(1− r)i−1−t (log ξ − ξxt) . (8)

The inside of argmax in the right-hand side of Equation (8) is expanded as

i−1

∑
t=1

r(1− r)i−1−t(log ξ − ξxt) = r log ξ
i−1

∑
t=1

(1− r)i−1−t − rξ
i−1

∑
t=1

(1− r)i−1−txt

= r log ξ
1− (1− r)i−1

r
− rξ

i−1

∑
t=1

(1− r)i−1−txt

= log ξ(1− (1− r)i−1)− rξ
i−1

∑
t=1

(1− r)i−1−txt. (9)

The right-hand side of Equation (9) is maximized by deriving it with respect to ξ. As a result, we
obtain the following optimal solution:

ξ̂xi−1 =
1− (1− r)i−1

r ∑i−1
t=1(1− r)i−1−txt

. (10)

Thus, by substituting Equation (10) into Equation (5), MCAT at ti is

ati = − log px(xi; ξ̂xi−1) = − log ξ̂xi−1 + ξ̂xi−1 xi. (11)

In practice, we judge that a metachange occurs along time when MCAT changes greatly between
the change points. Technically, we use the change rate of MCAT: a metachange occurs along time when

Entropy 2019, 21, 1134 7 of 24

|(ati − ati−1)/ati−1 | > εt holds, where εt > 0 is a threshold parameter. We call the algorithm described
above as the metachange detection along time algorithm (MCD-T).

As for computational cost of MCAT, Equation (10) is written as

ξ̂xi−1 =
1− (1− r)i−1

r si−1
,

where

si−1
def
=

i−1

∑
j=1

(1− r)i−1−jxj.

si and si−1 satisfy the following relation:

si = (1− r)si−1 + xi.

Therefore, the computational cost of MCAT ati is O(i).

Example:

We consider a data stream with a length of 200 time intervals between change points: xi = 100 (i =
1, . . . , 100) and xi = 500 (i = 101, . . . , 200). This means that there are 201 change points {ti}201

i=1. If we
assume t1 = 100, then t2 = 200, . . . , t101 = 10,100, t102 = 10,600, t103 = 11,100, . . . , t201 = 60,100.
Then, xi is calculated as xi = ti − ti−1. Figure 3 shows the time intervals at the change points (Figure 3,
top), MCATs ati (Figure 3, second graph), the change rate of MCATs |(ati − ati−1)/ati−1 | (Figure 3, third
graph), and ξ̂xi−1 (Figure 3, bottom). We observe in Figure 3 that we can detect the metachange along
time when we choose a suitable threshold εt. Here, the discounting parameter is set to r = 0.5.

Figure 3. Metachange statistics along time (MCAT): (top) time interval at each change point; (second)
MCAT ati ; (third) change rate of MCAT |(ati − ati−1)/ati−1 |; and (bottom) the estimated parameter of
the exponential distribution λ̂. The discounting parameter r = 0.5.

Entropy 2019, 21, 1134 8 of 24

3.3. Detecting Metachanges Along State

For a change point ti detected in Section 3.1, we consider how to achieve Equation (4) in an
online fashion. We consider a subset of time around ti for Neighbor(ti) in Equation (4). The subset is
denoted by Ji = [ti − h, ti + h], where h ∈ N is a window size. Thus, we consider a sequence yti+h

ti−h =

yti−h . . . yti+h, with length n = 2h + 1. We introduce a parametric class of probability distributions
Fs = {py(Y; η); η ∈ H}. Here, Y is a random variable and η is a real-valued parameter. H is the
associated parameter space.

Next, we define metachange statistics along state (MCAS) at change point ti. First, two statistics,
b+ti

and b−ti
, are introduced. These are defined as the difference between two code lengths for yti+h

ti+1:
one is the “expected” code length, estimated using the parameter change at ti−1 and the estimated
parameter with yti−1

ti−h. The other is the code length with the parameter estimated in terms of yti+h
ti+1.

Formally, b±ti
is defined as the difference between the predictive code length and the NML code

length [20] after the change point. The former is calculated as the predictive code length, which is the
total code length for encoding yti+h

ti+1 in a predictive way, using the estimated parameter η± as follows:

1
h

ti+h

∑
t=ti+1

− log py(yt; η̂±), (12)

where η̂± is defined as

η̂±
def
= η̂

y
ti−1
ti−h
±
(

η̂
y

ti−1+h
ti−1+1

− η̂
y

ti−1−1
ti−1−h

)
, (13)

which indicates the parameter change to the same side and the opposite side in the same way as the
previous change point ti−1. Here, η̂yτ2

τ1
means the maximum likelihood estimator of η using yτ2

τ1 =

yτ1 . . . yτ2 .
The latter is calculated as the NML code length, which is defined as the negative logarithm of the

NML distribution [20]:
1
h

(
ti+h

∑
t=ti+1

− log py(yt; η̂
y

ti+h
ti+1

) + log Ch

)
. (14)

The difference between Equation (12) and Equation (14) is given by

b±ti

def
=

1
h

{
ti+h

∑
t=ti+1

(
− log py(yt; η̂±) + log py(yt; η̂

y
ti+h
ti+1

)

)
− log Ch

}
, (15)

where Ch = ∑
z

ti+h
ti+1

maxη py(z
ti+h
ti+1; η) in Equation (15) is computed using Rissanen’s approximation

formula under some regularity conditions [23]:

log Ch ≈
k
2

log
h

2π
+ log

∫ √
|I(θ)|dθ,

where k is the dimension of H and I(θ) def
= Eη [−∂2 log py(Y; η)/∂ηi∂ηj] is the Fisher information matrix

at the parameter value η. Intuitively, Equation (15) quantifies the redundant code length for coding
yti+h

ti+1 with the parameters estimated in terms of the parameter change at ti−1 and the parameter values
in the former part of ti.

Finally, we define MCAS as
bti

def
= min(b+ti

, b−ti
), (16)

which means that metachanges along state are quantified by the relative magnitude of changes in
the parameters in this paper. The computational cost of MCAS is O(h) = O(1). We judge that a

Entropy 2019, 21, 1134 9 of 24

metachange along state occurs at ti when bti > εs holds, where εs > 0 is a threshold parameter. We
call the algorithm described above as the metachange detection along state algorithm (MCD-S).

Example:

We generate a data stream with length 11,250:

yt ∼



N (0.0, 0.05) (t = 1, . . . , 1000)
N (1.0, 0.05) (t = 1001, . . . , 2000)
N (0.0, 0.05) (t = 2001, . . . , 3000)
N (1.0, 0.05) (t = 3001, . . . , 4000)
N ((t− 4001)/1000, 0.05) (t = 4001, . . . , 5000)
N (0.0, 0.05) (t = 5001, . . . , 6000)
N ((t− 6000)/1000, 0.05) (t = 6001, . . . , 7000)
N (1.0, 0.05) (t = 7001, . . . , 8000)
N (1− (t− 8000)/250, 0.05) (t = 8001, . . . , 8250)
N (0.0, 0.1) (t = 8251, . . . , 9250)
N (1.0, 0.1) (t = 9251, . . . , 10, 250)
N (1.0, 0.3) (t = 10, 251, . . . , 11, 250)

,

where N (µ, σ) denotes the probability density function of the univariate normal distribution with
mean µ and standard deviation σ.

Figure 4 shows data stream {yt} (Figure 4, top) and statistics {bti} (Figure 4, bottom). The parameter
is set to h = 200. True change points occur at 1001, 2001, 3001, 4001, 5101, 6001, 7001, 8001, 8251, 9251,
and 10,251. Figure 4 shows that the statistics bti increase when there is a change in how parameters
behave around a change point between successive change points. At t2 = 2001 and t3 = 3001, bti are
relatively small, which shows that parameter changes (i.e., their magnitudes) do not differ much between
t1 = 1001 and t2 = 2001 and between t2 = 2001 and t3 = 3001. However, bti increases at t4 = 4001
because the change shifts to a gradual change from an abrupt one. These results indicate that MCAS
provides information regarding changes in the behavior around the change points.

Figure 4. Metachange statistics along state (MCAS): (top) data stream yt; and (bottom) MCAS bti .
Window size h = 200.

3.4. Integrating Metachange Statistics

Finally, we consider how to integrate MCAT ati and MCAS bti at a change point ti. Because ati and
bti are code lengths, they can be summed. Therefore, we propose adding ati and bti with weighting.
Integrated metachange (MCI) sti at ti is defined as

sti
def
= ati + λbti , (17)

Entropy 2019, 21, 1134 10 of 24

where λ ∈ R is a hyperparameter. We should carefully choose λ with data. In Section 4.3, λ is
determined using a grid search.

In practice, we judge that a metachange along both time and state occur at ti when MCI greatly
changes between the change points. As in the case of metachanges along time in Section 3.2, we use
the change rate of MCI: a metachange along both time and state occurs at ti if |(sti − sti−1)/sti−1 | > εts,
where εts > 0 is a threshold parameter.

We call the overall algorithm described above MCD; it is summarized in Algorithm 1.

Algorithm 1 MCD.

Input: r: discounting parameter (0 < r < 1), h: window size, εts: threshold parameter
Output: ati : metachange statistics along time, bti : metachange statistics along state, sti : integrated

metachange statistics.
1: i = 1
2: for t = 1, . . . do

3: Input yt.
4: Detect change point with a change detection algorithm.
5: if t is change point then

6: ti ← t.
7: xi ← ti − ti−1.
8: Calculate metachange statistics along time ati according to Equation (11).
9: Calculate metachange statistics along state bti according to Equation (16).

10: Calculate integrated metachange statistics sti according to Equation (17).
11: Raise an alarm if and only if |(sti − sti−1)/sti−1 | > εts.
12: i← i + 1.
13: end if
14: end for

4. Experiment

We conducted five experiments to confirm the effectiveness of the proposed algorithm MCD
(https://github.com/s-fuku/metachange).

4.1. Synthetic Dataset 1 (Metachanges along Time)

We defined six levels of time intervals between change points referring to the work in [13,25].
The interval lengths were 100,000, 50,000, 10,000, 5000, 1000, and 500. The change points were set
using a Bernoulli distribution oscillating between µ = 0.2 and µ = 0.8. For each combination of two
intervals, we generated the streams based on the scheme above. Each stream contained 100 change
points. In what follows, L1 and L2 indicate the first and second interval lengths, respectively.

We confirmed the effectiveness of MCD by comparing it with a volatility detector (VD) [13].
We used the SEED algorithm [13] and the sequential MDL-change statistics algorithm (SMDL) [8] for
change detection. SEED was based on ADWIN2 [21] and its parameters were set to δ = 0.05, Γ = 75,
ε̂ = 0.025, and α = 0.025, which are the same as those in [13]. The window size w of SMDL was
set to w = 0.2L1, and the threshold parameter ε was set to ε = 0.01. For the Bernoulli distribution,
the change score Ψt of SMDL at time t was calculated as

Ψt = −µ̂0 log µ̂0 − (1− µ̂0) log (1− µ̂0)

− 1
2
(−µ̂1 log µ̂1 − (1− µ̂1) log (1− µ̂1))−

1
2
(−µ̂2 log µ̂2 − (1− µ̂2) log (1− µ̂2)) ,

where µ̂0 = ∑t+w
i=t−w yi/(2w+ 1), µ̂1 = ∑t−1

i=t−w yi/w, and µ̂2 = ∑t+w
i=t yi/(w+ 1). If Ψt > ε, t is regarded

as a change point. We determined that t was a change point if the change score Ψt was the maximum.
The parameter of MCD-T was set to r = 0.2. Below, we discuss the dependency of MCD-T on r in
Figure 5. For VD, buffer size B = 32 and reservoir size R = 32, which were the same as in [13]. We also

https://github.com/s-fuku/metachange

Entropy 2019, 21, 1134 11 of 24

discuss the dependency of VD on B and R below in Figure 6. In running SEED [13], we used the
Java source code provided by the authors (https://www.cs.auckland.ac.nz/research/groups/kmg/
DavidHuang.html). We started to use change points when its number reached B + R for MCD-T and
VD because the buffer and the reservoir of VD are not full until B + R intervals arrive.

We investigated the trade-off between detection delay and accuracy in terms of benefit and false
alarm rate, defined as in [8,26]. For MCD-T, we first fixed the threshold parameter εt and converted
MCAT {ati} in Equation (11) to binary alarms {αti}. That is, αti = 1 (|(ati − ati−1)/ati−1 | > εt), where
1(t) denotes the binary function that takes 1 if and only if t is true. We evaluated MCD-T by varying εt.
We let τ be a maximum tolerant delay of metachange detection. When the metachange really started
from t∗, we defined the benefit of an alarm at time t as

b(t; t∗) =

{
1− |t−t∗ |

τ (0 ≤ |t− t∗| < τ),
0 (otherwise).

(18)

The number of false alarms was calculated as

n(αm
1)

def
=

m

∑
k=1

αtk1(b(tk, t∗) = 0). (19)

We visualized the performance by plotting the recall rate of the total benefit, b, against the
false alarm rate, n/ supεt

n, with εt varying. Likewise, for VD, αti was calculated using the relative
volatility between the variances of the buffer and the reservoir by varying the threshold parameter β.
We evaluated all four combinations of change detectors SEED and SMDL and metachange detectors
MCD-T and VD by calculating the average and standard deviation of the area under the curve (AUC)
of the benefit vs. FAR curves. The AUC scores were calculated over 50 sequences. The delay parameter
was set to τ = 5L2. Table 1 shows the average AUC scores. Table 1 shows that MCD-T with SEED or
MCD-T with SMDL outperforms VD with SEED or VD with SMDL. This indicates the effectiveness of
MCD-T.

Because MCD-T depends on discounting parameter r and the change detection algorithm used,
we investigated these effects. First, we examined the dependency of AUC on r for all combinations
of L1 and L2. We calculated AUC for 30 times with r = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5. We used
SEED [13] as the change detection algorithm, and its parameters were set to the same values as above.
The dataset used was also the same as in the previous experiment. Figure 5 shows that, when L1 is
relatively small (e.g., L1 = 500, 1000, 5000, 10, 000), AUC is not heavily dependent on r. When L1 is
larger, however, we observe that the larger r is, the smaller AUC is. This is because, with an increase of
L1, the number of false alarms of SEED also increases. In such situations, MCD-T is more prone to the
false alarms when r is larger.

Figure 6 shows the dependency of AUC of VD on the buffer size B and the reservoir size R (B = R)
for comparison. We calculated AUC for 50 times. We observe from Figure 6 that AUC decreases as
B increases. In addition, we also see that MCD-T outperforms VD for various combinations of r and
B(= R) by comparing Figure 5 with Figure 6.

Next, we investigated the effect of the change detection algorithm used. We used SEED by
changing the parameter ε̂ = 0.0025, 0.005, and 0.0075. Other conditions and the dataset were the same
as in the previous experiment. Here, ε̂ is a hyperparameter that controls the threshold parameter [13].
Figure 7 shows that AUC does not heavily depend on ε̂ for all combinations of L1 and L2. In general,
the threshold parameter of the change detection algorithm controls the performance of MCD-T. Hence,
it should be carefully set.

https://www.cs.auckland.ac.nz/research/groups/kmg/DavidHuang.html
https://www.cs.auckland.ac.nz/research/groups/kmg/DavidHuang.html

Entropy 2019, 21, 1134 12 of 24

Table 1. Average area under the curve (AUC) scores on Synthetic Dataset 1 (r = 0.2, τ = 5L2). Boldfaces
describe best performances.

L1 L2
SEED SMDL

MCD-T VD MCD-T VD

100,000 50,000 0.603± 0.180 0.458± 0.199 0.500± 0.060 0.313± 0.160
100,000 10,000 0.621± 0.147 0.310± 0.167 0.710± 0.254 0.463± 0.113
100,000 5000 0.645± 0.129 0.328± 0.152 0.668± 0.223 0.416± 0.164
100,000 1000 0.651± 0.110 0.275± 0.135 0.512± 0.123 0.448± 0.107
100,000 500 0.697± 0.140 0.336± 0.140 0.660± 0.111 0.506± 0.138

50,000 100,000 0.788± 0.093 0.647± 0.107 0.729± 0.067 0.639± 0.107
50,000 10,000 0.671± 0.103 0.280± 0.130 0.605± 0.171 0.556± 0.060
50,000 5000 0.708± 0.087 0.293± 0.144 0.617± 0.183 0.546± 0.146
50,000 1000 0.718± 0.067 0.294± 0.140 0.655± 0.161 0.501± 0.144
50,000 500 0.767± 0.110 0.316± 0.133 0.686± 0.074 0.470± 0.157

10,000 100,000 0.863± 0.059 0.794± 0.058 0.877± 0.068 0.791± 0.015
10,000 50,000 0.834± 0.050 0.735± 0.050 0.876± 0.066 0.823± 0.026
10,000 5000 0.723± 0.040 0.344± 0.250 0.658± 0.159 0.498± 0.084
10,000 1000 0.781± 0.014 0.375± 0.260 0.689± 0.083 0.444± 0.077
10,000 500 0.809± 0.063 0.391± 0.256 0.671± 0.163 0.520± 0.070

5000 100,000 0.856± 0.060 0.796± 0.067 0.854± 0.071 0.798± 0.036
5000 50,000 0.825± 0.047 0.726± 0.062 0.875± 0.032 0.708± 0.043
5000 10,000 0.777± 0.030 0.575± 0.139 0.716± 0.060 0.630± 0.031
5000 1000 0.783± 0.009 0.436± 0.257 0.709± 0.009 0.353± 0.098
5000 500 0.816± 0.054 0.493± 0.269 0.839± 0.191 0.413± 0.097

1000 100,000 0.872± 0.072 0.814± 0.072 0.836± 0.036 0.812± 0.036
1000 50,000 0.844± 0.059 0.754± 0.061 0.947± 0.037 0.810± 0.027
1000 10,000 0.802± 0.022 0.668± 0.050 0.873± 0.049 0.805± 0.023
1000 5000 0.801± 0.014 0.648± 0.064 0.895± 0.053 0.812± 0.053
1000 500 0.816± 0.048 0.560± 0.242 0.711± 0.141 0.409± 0.108

500 100,000 0.876± 0.068 0.831± 0.063 0.830± 0.079 0.820± 0.023
500 50,000 0.845± 0.062 0.767± 0.062 0.836± 0.044 0.818± 0.010
500 10,000 0.827± 0.051 0.676± 0.047 0.872± 0.023 0.822± 0.016
500 5000 0.830± 0.047 0.663± 0.042 0.864± 0.047 0.819± 0.017
500 1000 0.830± 0.050 0.612± 0.100 0.935± 0.022 0.853± 0.095

0.5

0.6

0.7

0.8

0.9

A
U

C

L1 = 500 L1 = 1000 L1 = 5000

0.010.05 0.1 0.2 0.3 0.4 0.5
r

0.5

0.6

0.7

0.8

0.9

A
U

C

L1 = 10000

0.010.05 0.1 0.2 0.3 0.4 0.5
r

L1 = 50000

0.010.05 0.1 0.2 0.3 0.4 0.5
r

L1 = 100000

L2
500
1000
5000
10000
50000
100000

Figure 5. Dependency of AUC on discounting parameter r for MCD-T on Synthetic Dataset 1.

Entropy 2019, 21, 1134 13 of 24

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
U

C

L1 = 500 L1 = 1000 L1 = 5000

8 16 24 32 40
B

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
U

C

L1 = 10000

8 16 24 32 40
B

L1 = 50000

8 16 24 32 40
B

L1 = 100000

L2
500
1000
5000
10000
50000
100000

Figure 6. Dependency of AUC on the buffer size B (= the reservoir size R) for VD on Synthetic Dataset 1.

0.6

0.7

0.8

0.9

A
U

C

L1 = 500 L1 = 1000 L1 = 5000

0.0025 0.005 0.0075

0.6

0.7

0.8

0.9

A
U

C

L1 = 10000

0.0025 0.005 0.0075

L1 = 50000

0.0025 0.005 0.0075

L1 = 100000

L2

500

1000

5000

10000

50000

100000

Figure 7. Dependency of AUC on threshold controlling parameter ε̂ of SEED [13] on Synthetic Dataset 1.

4.2. Synthetic Dataset 2 (Metachanges along State)

We generated a data stream with length 24L, where L = 500, 1000, 2000. The generated data
stream contained a metachange along state. In the former part, each datum was drawn from

yt ∼
{
N (0, 0.1) (t = 1, . . . , L),
N (0.5, 0.1) (t = L + 1, . . . , 2L).

(20)

After we repeated the procedure 10 times, we obtained a subsequence with length 20L. In the latter
part, each datum was drawn from

yt ∼
{
N ((t− 20L)/2L, 0.1) (t = 20L + 1, . . . , 21L),
N (0, 0.1) (t = 21L + 1, . . . , 24L).

A metachange along state occurred at t = 20L + 1. For change detection, we employed four
algorithms for comparison: (1) SMDL [8], a semi-instant method with the MDL change statistics;

Entropy 2019, 21, 1134 14 of 24

(2) ChangeFinder (CF) [1,2,4], a state-of-the-art method of abrupt change detection; (3) Bayesian online
change point detection (BOCPD) [3], a retrospective online change point detection with a Bayesian
scheme; and (4) ADWIN2 [21], adaptive windowing methods. As we assumed a situation where change
and metachange mechanisms do not vary significantly, we decided to choose the best combinations of
parameters of each change detection algorithm by grid search, as in [8,27]. We generated 10 sequences
with the scheme above and calculated the F-scores for each combination of the following parameters:

• SMDL: Window size w = 50, 100 (L = 500), w = 100, 200 (L = 1000), w = 200, 400 (L = 2000).
Threshold parameter ε = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7.

• CF: Discounting rate r = 0.003, 0.005, 0.01, 0.03, 0.1. Threshold parameter δ = 0, 0.5, 1.0, 1.5, 2.0
(regression orders k1, k2 = 3, smoothing parameters T1, T2 = 5).

• BOCPD: Parameter related to change intervals α = 100, 300, 600. Threshold parameter ε = 0.1, 0.3.
• ADWIN2: Confidence parameter δ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

F-score is defined as the harmonic mean of precision and recall, which are calculated using the number
of true positives (TP), false positives (FP), and false negatives (FN) as follows [9]: TP is the number of
true change points that are τ-neighbors of estimated change points. Thus, FP and FN are calculated
as FP = `− TP and FN = m− TP, where ` and m are calculated as FP = `− TP and FN = m− TP,
where ` and m denotes the total number of estimated and true change points, respectively. Finally, we
calculated recall = TP/(TP + FN) and precision = TP/(TP + FP) for each method. In this experiment,
we set τ to 100.

After optimizing the parameters of each change detection algorithm, we generated 30 data streams
with the scheme above and detected change points and the metachange. In the metachange detection,
we compared MCD-S with SMDL. We chose SMDL for comparison because it calculates a change score
at each time based on changes of parameters with MDL. Hence, a change rate of scores between change
points is regarded as the degree of metachange along state. Hereafter, we refer to SMDL for metachange
detection as SMDL metachange (SMDL-MC) and the window parameter as wmc. We calculated MCAS
in Equation (16) for MCD-S and the change rate |(Ψti −Ψti−1)/Ψti−1 | for SMDL-MC. Ψt is the change
score at time t for a univariate normal distribution [8]:

Ψt =
1
2

log
σ̂2

0
σ̂1σ̂2

+ log
C2wmc

C2
wmc

,

where σ̂0, σ̂1, and σ̂2 are the maximum likelihood estimators of standard deviations calculated for
yt+wmc

t−wmc+1, yt−1
t−wmc+1 and yt+wmc

t , respectively. Ck is the normalizer of the normalized maximum
likelihood code length [20]

log Ck =
1
2

log
16µmax

πσ2
min

+
k
2

log
k
2e
− log Γ

(
k− 1

2

)
,

where Γ is the gamma function. In this paper, µmax = 2 and σmin = 0.005. The window parameters h
of MCD-S and wmc of SMDL-MC were set to h, wmc = 100 (L = 500), h, wmc = 200 (L = 1000), and
h, wmc = 400 (L = 2000). In calculating the F-scores, the maximum tolerant delay was set to τ = 0.5L.

Table 2 shows the average AUC values of MCD-S and SMDL-MC for the detection of metachanges
along state at t = 20L + 1. The first and second rows in the header represent change detection and
metachange detection algorithms, respectively. The best parameters for each combination of change
detection and metachange detection algorithms are ε = 0.7, w = 100 (L = 500), ε = 0.7, w = 200
(L = 1000), and ε = 0.7, w = 400 (L = 2000). Table 2 shows that MCD-S outperforms SMDL-MC
overall because MCD-S deals with metachanges along state directly in terms of MCAS, whereas
SMDL-MC only quantifies the difference in code lengths between situations where there is a change
and where there is no change.

Entropy 2019, 21, 1134 15 of 24

Table 2. Average AUC scores on Synthetic Dataset 2. The first and second headers represent change
detection and metachange detection algorithms, respectively. Boldfaces describe best performances.

L SMDL CF BOCPD ADWIN2

MCD-S SMDL-MC MCD-S SMDL-MC MCD-S SMDL-MC MCD-S SMDL-MC

500 0.887± 0.100 0.795± 0.156 0.874± 0.111 0.851± 0.170 0.701± 0.318 0.572± 0.332 0.797± 0.186 0.853± 0.114

1000 0.921± 0.018 0.905± 0.012 0.912± 0.042 0.830± 0.052 0.751± 0.323 0.743± 0.291 0.834± 0.094 0.847± 0.048

2000 0.970± 0.010 0.953± 0.011 0.912± 0.033 0.843± 0.022 0.829± 0.124 0.821± 0.138 0.951± 0.032 0.887± 0.046

We further investigated the effects of window size h and threshold parameters of the change
detection algorithms. We chose SMDL [8] for change detection. Figure 8 shows the dependency of
AUC on h and threshold parameter ε of SMDL. The interval length was set to L = 500, threshold
parameter was set to ε = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and h = w = 50, 100, 150, where w is the window
parameter of SMDL. Figure 8 (top and bottom) shows the dependency of AUC of MCD-S on the
threshold parameter ε of SMDL and the dependency of F-score of SMDL on ε, respectively. We observe
in Figure 8 (top) that AUC of MCD-S decreases between ε = 0.2 and 0.4, but, when ε exceeds 0.4,
AUC begins to increase for h = 50, 100, 150. This reflects the fact that there are many local maximum
points of the change scores of SMDL, leading to false alarms of change points around ε = 0.2–0.4. It is
noticeable that F-scores of SMDL decrease for ε = 0.1 (h = 100), and for ε = 0.2 (h = 150), but AUCs
of MCD-S do not do so much. This is because SMDL detects many false positive change points, but it
detects the metachange point accurately.

As for the dependency of AUC on window size h, we observe that AUC generally increases as h
increases for the same ε.

Figure 8. Dependency of AUC on threshold parameter ε for SMDL [8] and window size h of MCD-S
on Synthetic Dataset 2.

4.3. Synthetic Dataset 3 (Metachanges Along Time and State)

We generated a data stream that contained metachanges along both time and state. The stream
consisted of two subsequences. The former part repeated changes of mean. Each instance was drawn
from Equation (20) with L = L1. We repeated the procedure for 50 times and obtained a subsequence
with length 100L1. The latter part comprised the following four parts, each with length L2:

yt ∼
{
N (0, 0.1) (t = 100L1 + 1, . . . , 100L1 + L2),
N (0.45, 0.1) (t = 100L1 + L2 + 1, . . . , 100L1 + 4L2).

Entropy 2019, 21, 1134 16 of 24

In total, we obtained a data stream with length 100L1 + 4L2. A metachange along both time and
state occurred at t = 100L1 + L2 + 1. We chose lengths L1 and L2 among 400, 450, and 500.

We detected the metachange in the following three ways: we first detected change points with
the same algorithms as in Section 4.2, and then detected the metachanges with MCD-T, MCD-S, and
MCD. The parameters of the change detection algorithms were tuned as in Section 4.2. The ranges
of parameters were the same as those in Section 4.2. except that, for SMDL, the threshold parameter
ε = 0.05, 0.1, 0.15 for all combinations of L1 and L2. The parameter of MCD-T was selected among
r = 0.1, 0.2, 0.3 and MCD-S was among h = 0.1L1, 0.2L1. The window size of SMDL were selected
among w = h, and the maximum tolerant delay was τ = L2. We chose the weight parameter λ in
Equation (17) among λ = 0.001, 0.01, 0.1, 1, 5, 10. For VD, the buffer and reservoir sizes (B and R)
were selected among 16, 24, 32. All the parameters were selected with grid search for the AUCs of
metachange detection to be maximum.

Table 3 shows the average AUC values. Table 3a–c show average AUC values with MCD-T,
MCD-S, and MCD. Table 3a shows that MCD combined with SMDL as the change detection algorithm
outperforms MCD-S and MCD-T.

Table 3. Average AUC scores of metachange detection on Synthetic Dataset 3. The first and second
headers represent change detection and metachange detection algorithms, respectively. Boldfaces
describe best performances.

(a) Metachange detection along time.

L1 L2
SMDL CF BOCPD ADWIN2

MCD-T VD MCD-T VD MCD-T VD MCD-T VD

400 450 0.867± 0.022 0.845± 0.013 0.818± 0.031 0.815± 0.025 0.843± 0.053 0.825± 0.038 0.839± 0.048 0.806± 0.043

400 500 0.871± 0.021 0.867± 0.021 0.815± 0.040 0.812± 0.041 0.831± 0.049 0.814± 0.033 0.823± 0.048 0.826± 0.038

450 400 0.813± 0.024 0.804± 0.017 0.795± 0.044 0.784± 0.029 0.810± 0.038 0.805± 0.031 0.805± 0.052 0.812± 0.035

450 500 0.872± 0.014 0.863± 0.019 0.822± 0.039 0.819± 0.047 0.847± 0.032 0.829± 0.042 0.816± 0.044 0.815± 0.034

500 400 0.874± 0.024 0.867± 0.024 0.837± 0.016 0.813± 0.045 0.822± 0.019 0.797± 0.029 0.815± 0.011 0.802± 0.031

500 450 0.893± 0.015 0.873± 0.019 0.829± 0.013 0.859± 0.039 0.833± 0.011 0.823± 0.049 0.819± 0.021 0.875± 0.031

(b) Metachange detection along state.

L1 L2
SMDL CF BOCPD ADWIN2

MCD-S SMDC-MC MCD-S SMDC-MC MCD-S SMDC-MC MCD-S SMDC-MC

400 450 0.901± 0.012 0.857± 0.014 0.823± 0.013 0.833± 0.024 0.855± 0.021 0.858± 0.031 0.809± 0.015 0.867± 0.011

400 500 0.923± 0.016 0.911± 0.023 0.813± 0.011 0.812± 0.014 0.852± 0.034 0.851± 0.028 0.805± 0.036 0.798± 0.024

450 400 0.895± 0.022 0.875± 0.011 0.835± 0.021 0.809± 0.033 0.855± 0.034 0.853± 0.025 0.809± 0.033 0.892± 0.031

450 500 0.917± 0.017 0.905± 0.023 0.842± 0.039 0.825± 0.047 0.837± 0.051 0.819± 0.042 0.838± 0.044 0.615± 0.034

500 400 0.875± 0.024 0.863± 0.022 0.822± 0.032 0.813± 0.045 0.810± 0.026 0.797± 0.022 0.729± 0.024 0.702± 0.023

500 450 0.865± 0.021 0.823± 0.028 0.715± 0.038 0.723± 0.049 0.728± 0.045 0.706± 0.038 0.694± 0.042 0.675± 0.031

(c) Metachange detection along both time and state.

L1 L2
SMDL CF BOCPD ADWIN2

MCD MCD MCD MCD

400 450 0.985± 0.011 0.971± 0.023 0.968± 0.033 0.967± 0.029

400 500 0.989± 0.007 0.975± 0.016 0.971± 0.005 0.969± 0.031

450 400 0.983± 0.016 0.981± 0.013 0.968± 0.035 0.966± 0.014

450 500 0.987± 0.010 0.982± 0.014 0.975± 0.025 0.970± 0.029

500 400 0.979± 0.015 0.973± 0.011 0.969± 0.012 0.964± 0.013

500 450 0.975± 0.012 0.969± 0.010 0.967± 0.018 0.954± 0.021

Table 4 shows the best parameters for each combination of intervals. We observe that the more
intensive a metachange along time is, the bigger r is and the less λ becomes. These results reflect the

Entropy 2019, 21, 1134 17 of 24

fact that it is necessary to adapt to recent data, and MCAT increases in such a situation, leading to the
decrease of λ.

Table 4. Best parameters for each combination of intervals.

L1 L2 r w h λ

400 450 0.2 0.2L1 0.2L1 0.1
400 500 0.3 0.2L1 0.2L1 0.01
450 400 0.1 0.2L1 0.2L1 0.1
450 500 0.2 0.2L1 0.2L1 0.1
500 400 0.3 0.2L1 0.2L1 0.01
500 450 0.1 0.2L1 0.2L1 0.1

4.4. Real Dataset: Human Action Recognition Data

We applied MCD to the detection of metachanges in human action recognition data called
HASC-PAC2016 dataset [28] (HASC-PAC2016 dataset is publicly available at http://hub.hasc.jp/).
The data were collected from the Human Activity Sensing Consortium (HASC, http://hasc.jp/).
HASC-PAC2016 dataset contains sequences of acceleration data for three axes, and each sequence is
segmented into one of six action labels: “stay”, “walk”, “jog”, “skip”, “stair up”, (go upstairs) and
“stair down” (go downstairs). For this experiment, we aimed to evaluate the effectiveness of our
proposed algorithm MCD by using a data stream with ground truth of “changes of action changes”
and “changes of intervals of actions”. The former corresponds to metachanges along state, and the
latter to metachanges along time. We combined each action into a data stream as follows: first, we
repeated “stay” and “walk” alternately for 15 times; then “jog” and “skip” for 15 times; and, finally,
“stair up” and “stair down” for 15 times. We repeated each pair of actions for 15 times because “stair
up” and “stair down” have only 15 files, which are the fewest in all the six actions. We obtained a data
stream of length 89,324. Table 5 shows the files used for a participant named Person06023. We read the
files sequentially in alphabetical order for each action. Figure 9 shows the data stream we obtained.
Here, acc_X, acc_Y, and acc_Z represent accelerations for x-, y-, and z-axes, respectively.

Table 5. Files for generating a sequence of Person06023.

Action Label Files

stay HASC N-acc.csv (N = 0605581–0605595)
walk HASC N-acc.csv (N = 0608420–0608434)
jog HASC N-acc.csv (N = 0611173–0611187)
skip HASC N-acc.csv (N = 0613411–0613425)
stair up HASC N-acc.csv (N = 0615620–0615634)
stair down HASC N-acc.csv (N = 0614162–0614166)

First, we detected change points with SMDL [8]. It was a challenge to determine the hyperparameters
of SMDL—window size w and threshold parameter ε—in an online change detection. We tuned w and
ε with the remaining dataset for Person06023, which alternated “stay” and “walk” four times, and
“jog” and “skip” likewise. Although this dataset lacked “stair up” and “stair down”, we thought that
it was enough to estimate the best configuration of w and ε. We calculated F-score as described in
Section 4.2 for the change points between different action labels. We selected w = 900 and ε = 0.75
among w ∈ {500, 600, 700, 800, 900, 1000} and ε ∈ {0, 0.25, 0.5, 0.75, 1}. Figure 10 shows histograms of
intervals for each action label. We observe in Figure 10 that most of the intervals are around 960–970
for “jog”, “walk”, and “skip”, whereas, for “stay”, “stair up”, and “stair down”, the intervals are
around 1020. We can see that w = 900 was enough to detect changes.

http://hub.hasc.jp/
http://hasc.jp/

Entropy 2019, 21, 1134 18 of 24

− 2

− 1

0

1

2

a
cc

_X

− 1

0

1

2

a
cc

_Y

0 20000 40000 60000 80000
t im e

− 2

− 1

0

1

a
cc

_Z

stay jog stair up walk skip stair down

Figure 9. Human action recognition data for Person06023. Each row represents accelerations for x-, y-,
and z-axes, respectively.

interval0

2

4

6

8

stay

interval0

2

4

6

jog

interval0
2
4
6
8

10
12

stair up

interval0

1

2

3

4

5
walk

960 970 980 990 1000 1010 1020 1030
interval

0

1

2

3

4

5
skip

960 970 980 990 1000 1010 1020 1030
interval

0

2

4

6

8

10
stair down

Figure 10. Histograms of intervals for each action label.

We applied SMDL to the stream and obtained the estimated change scores {Ψt} at each time
point. We calculated Ψt with the multivariate normal distribution. Specifically, Ψt is calculated as

Ψt =
1
2

log
|Σ̂0|2

|Σ̂1||Σ̂2|
+

1
2w

log
C2w

C2
w

+
1

2w

{
t+w

∑
i=t−w

(yi − µ̂0)
>Σ̂−1

0 (yi − µ̂0)

−
t−1

∑
i=t−w

(yi − µ̂1)
>Σ̂−1

1 (yi − µ̂1)−
t+w

∑
i=t

(yi − µ̂2)
>Σ̂−1

2 (yi − µ̂2)

}
, (21)

where µ̂0 = 1/(2w + 1)∑t+w
i=t−w yi, µ̂1 = 1/w ∑t−1

i=t−w yi, and µ̂2 = 1/(w + 1)∑t+w
i=t+1 yi. Σ̂0 = 1

2w ∑t+w
i=t−w

(yi − µ̂0)(yi − µ̂0)
>, Σ̂1 = 1

w ∑t−1
i=t−w(yi − µ̂1)(yi − µ̂1)

>, and Σ̂1 = 1
w+1 ∑t+w

i=t (yi − µ̂2)(yi − µ̂2)
>.

Entropy 2019, 21, 1134 19 of 24

Note that Cw in Equation (21) is the normalizer of the NML code length [29,30]:

log Cw = −(m + 1) log
m
2
+

m
2

log µmax −
m2

2
log σmin +

mw
2

log
w
2e

− log Γ
(m

2

)
− log Γm

(
w− 1

2

)
, (22)

where m is the dimension of the data stream, Γ is the gamma function, and Γm is calculated as

Γm(x) = π
m(m−1)

4

m

∏
j=1

Γ
(

x +
1− j

2

)
.

We set µmax = 50 and σmin = 0.005.
Next, we defined the ground truths for metachanges along state at two time points where the

changes of action label changes occurred: t =29,752 from “jog” to “stair up”, and t =59,588 from “walk”
to “skip”. Moreover, we also defined the ground truths for metachanges along time at time points
where the changes of intervals occurred. We see in Figure 10 that the distributions are significantly
different between four types of “changes of action changes”: from “stay” to “jog”, from “jog” to “stair
up”, from “stair up” to “walk”, and from “skip” to “stair down”.

We detected metachanges along time with MCD-T and volatility detector (VD) [13], and compared
them. Figure 11 shows the estimated MCAT with MCD-T and the relative volatility with VD. The parameter
of MCD-T was set to r = 0.1, 0.2, 0.3, whereas one of VD was B = R = 10, 15, 20. Figure 11 shows
the results.

We observe in Figure 11 that MCAT detects the metachanges along time between the four action
pairs, respectively, for r = 0.1, 0.2, and 0.3. However, the relative volatility fails to detect some of these
metachanges along time.

7.8

7.9

8.0

M
C

A
T

(r
=

0
.1

)

7.8

7.9

8.0

M
C

A
T

(r
=

0
.2

)

7.8

7.9

8.0

M
C

A
T

(r
=

0
.3

)

1

2

3

R
e

la
ti

v
e

 v
o

la
ti

lit
y

(B
=

R
=

1
0

)

0.50

0.75

1.00

R
e

la
ti

v
e

 v
o

la
ti

lit
y

(B
=

R
=

1
5

)

0 20000 40000 60000 80000
t im e

0.6

0.8

1.0

R
e

la
ti

v
e

 v
o

la
ti

lit
y

(B
=

R
=

2
0

)

stay jog stair up walk skip stair down

Figure 11. MCAT with MCD-T (r = 0.1, 0.2, 0.3) and the relative volatility with the volatility detector [13]
(B = R = 10, 15, 20).

Entropy 2019, 21, 1134 20 of 24

We detected metachanges along state with MCD-S and the change rate of the MDL change
statistics [8]. Figure 12 shows the estimated MCAS with MCD-S and the MDL change statistics.
We observe in Figure 12 that both MCD-S and the MDL change statistics detect a time point around
t =29,752 from “jog” to “stair up”. However, the MDL change statistics do not change significantly
at a time point around t =59,588, where a metachange along state happened from “walk” to “skip”.
It indicates that the change rate of the MDL change statistics failed to detect the metachange along
state around t =59,588, whereas MCD-S detected it successfully.

1

2

3

4

5

M
C

A
S

0 20000 40000 60000 80000
t im e

1

2

3

4

5

M
D

L
ch

a
n

g
e

 s
ta

ti
st

ic
s

stay jog stair up walk skip stair down

Figure 12. MCAS of MCD-S (h = 900) and the MDL change statistics (w = 900).

In summary, the proposed algorithm MCD detected metachanges along both time and state more
accurately than other methods.

4.5. Real Dataset: Production Condition Data

We applied MCD to the detection of metachanges in the production condition data. The data were
collected from a factory of a manufacturing company. Each datum comprised eight attributes, and the
length of the stream was 26,450. The factory reported that important events occurred 10 times during
the study period, at t =668, 2634, 2635, 9663, 13,230, 13,231, 17,372, 17,832, 20,131, and 25,441. Figure 13
shows the attributes from the stream. The dashed line indicates the time points where important
events occurred. We investigated whether the detected metachanges were signs of important events,
and we finally concluded that it might be true. The details are as follows.

Figure 13 shows that the scales of attributes were different. Hence, we normalized each attribute
X to (X− µ)/σ, where µ and σ are the sample mean and standard deviation, respectively, which were
calculated with the first 250 time points. First, we applied SMDL [8] to the stream and obtained the
estimated change scores {Ψt} at each time. We calculated Ψt with the multivariate normal distribution
in Equation (21). The window sizes w of SMDL and h of MCD were set to w = h = 250 by field
knowledge that it roughly represents a unit of production. Moreover, µmax and σmin in Equation (22)
were set to 60 and 0.001, respectively. Next, we detected change points t1, t2, ... as time points where
the change scores Ψti were locally maximum within an interval where Ψt > ε. We set ε = 0.3 when the
total change points detected was less than 0.5% of the total length. It is a business demand by a factory,
and so there were not many alarms. The number of detected change points was 97 (0.37%). Finally, we
determined the discounting parameter r and the weight parameter λ of MCD in Equation (17) with the
first 5000 time points. We selected r = 0.1 and λ = 0.2 so that the AUC score at t = 2634 and t = 2635
would be the maximum. The AUC score was calculated using Equations (18) and (19).

Entropy 2019, 21, 1134 21 of 24

20

40

4.75

5.00

20

30

22.5

25.0

0

5

20

40

12

14

0 5000 10000 15000 20000 25000
t ime

0.04

0.06

Figure 13. Data stream of the production condition data. Red dashed line indicates the time points
where the important events occurred.

Figure 14 shows the MDL change statistics {Ψt} calculated with SMDL [8] (Figure 14, top), the
estimated MCAT ati (Figure 14, second), logarithm of the estimated MCAS log10 bti (Figure 14, third),
and logarithm of the estimated MCI log10 sti (Figure 14, fourth). We also estimated the relative volatility
with VD [13,25] (Figure 14, fifth) and the change rate of the MDL change statistics |(Ψti −Ψti−1)/Ψti−1 |
(Figure 14, bottom) for comparison in detecting metachanges along both time and state. For VD, the
buffer size B and the reservoir size R were both set to 10. In Figure 14 (top), the red points indicate the
detected change points.

We summarize what can be seen for metachange statistics in Figure 14 as follows:

• t = 9663: The trend of MCI increases roughly after t = 5000, which can be interpreted as a
combination of MCAT and MCAS in Figure 14. The relative volatility and the change rate of the
MDL change statistics do not show such a significant sign.

• t = 13,230, 13,231, 17,372, 17,832: For time points between t = 10,000 and t = 15,000, the trend of
MCI increases. It is also due to the combination of MCAT and MCAS, but is more influenced by
MCAS. It might also be a sign of important events at t = 17,372 and 17,832 as well as t = 13,230
and t = 13,231. The relative volatility increases after t = 13,231, which might be a sign of the
important event at t = 17,372. However, the change rate of the MDL change statistics does not
show such a significant sign.

• t = 25,440: For time points between t = 20,000 and t = 25,000, the trend of MCI increases with
large fluctuations. It is also more influenced by MCAS. It might also be a sign of important events
at t = 25,440. The relative volatility increases for the time points, but the change rate of the MDL
change statistics does not show such a significant sign.

In summary, we can observe a sign of metachange for each important event. We therefore infer
that there might have been some symptoms that should be analyzed using field knowledge.

Entropy 2019, 21, 1134 22 of 24

0.0

0.5

1.0

1.5

2.0
MDL change statistics

6

8

10

12

14 MCAT

1.00

1.25

1.50

1.75

2.00

2.25

2.50
log10(MCAS)

1.0

1.2

1.4

1.6

1.8 log10(MCI)

0

1

2

3

4

5

6 relative volatility

0 5000 10000 15000 20000 25000
time

0.25

0.50

0.75

1.00

1.25

1.50

1.75 change rate of MDL change statitstics

Figure 14. Metachange statistics of the production condition data: (top) the MDL change statistics
{Ψti}. Blue dots show change points {ti}, where Ψti > ε; (second) estimated MCAT ati ; (third)
estimated logarithm of MCAS log10 bti ; (fourth) estimated logarithm of integrated metachange statistics
(MCI) log10 sti ; (fifth) relative volatility [13]; and (bottom) change rate of the MDL change statistics
|(Ψti −Ψti−1)/Ψti−1 |. h = w = 250, ε = 0.3, B = R = 10, λ = 0.2.

Entropy 2019, 21, 1134 23 of 24

5. Conclusions

We propose the concept of metachanges along time and state in data streams, and we introduce
metachange statistics to quantify metachanges from a unified view with MDL. The key idea of our
proposed method is to encode the time intervals and change of states with code lengths in the same
fashion. Next, we introduce the novel methodology of MCD. Using synthetic datasets, we empirically
demonstrated that the proposed algorithm was highly effective in detecting metachanges along time
and state. Using a real dataset, we demonstrated that the proposed algorithm could detect metachanges
in both time and state, some of which were overlooked by VD [13] and the MDL change statistics [8].
The estimated metachange statistics might have been a sign of important events.

Future work will be directed toward the theoretical guarantee of metachange statistics, especially
integrated metachange statistics. We will also consider how to adapt to a non-stationary data stream by
updating the weight parameter λ in Equation (17). Other research directions might lie in the extension
of metachange statistics to transient periods between change points. Furthermore, metachange
detection of model structure change and its change sign is another interesting line of research.

Author Contributions: Conceptualization, S.F. and K.Y.; methodology, S.F. and K.Y.; software, S.F.; validation,
S.F.; formal analysis, S.F.; investigation, S.F.; resources, K.Y.; data curation, S.F.; writing–original draft preparation,
S.F.; writing–review and editing, S.F. and K.Y.; visualization, S.F.; supervision, K.Y.; project administration, K.Y.;
funding acquisition, K.Y.

Funding: This work was partially supported by JST KAKENHI 19H01114 and JST-AIP JPMJCR19U4.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Yamanishi, K.; Takeuchi, J. A unifying framework for detecting outliers and change points from non-stationary
time series data. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), Edmonton, AB, Canada, 23–25 July 2002; pp. 676–681.

2. Takeuchi, J.; Yamanishi, K. A unifying framework for detecting outliers and change-points from time series.
IEEE Trans. Knowl. Data Eng. 2006, 18, 482–492. [CrossRef]

3. Adams, R.; MacKay, D. Bayesian online changepoint detection. arXiv 2007, arXiv:0710.3742.
4. Takahashi, T.; Tomioka, R.; Yamanishi, K. Discovering emerging topics in social streams via link anomaly

detection. IEEE Trans. Knowl. Data Eng. 2014, 26, 120–130. [CrossRef]
5. Miyaguchi, K.; Yamanishi, K. On-line detection of continuous changes in stochastic processes. In Proceedings

of the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Paris, France,
19–21 October 2015; pp. 1–9.

6. Yamanishi, K.; Maruyama, Y. Dynamic syslog mining for network failure monitoring. In Proceedings of the
eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD), Chicago,
IL, USA, 21–24 August 2005; pp. 499–508.

7. Yamanishi, K.; Maruyama, Y. Dynamic model selection with its applications to novelty detection. IEEE Trans.
Inform. Theory 2007, 53, 2180–2189. [CrossRef]

8. Yamanishi, K.; Miyaguchi, K. Detecting gradual changes from data stream using MDL-change statistics.
In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA,
5–8 December 2016; pp. 156–163.

9. Kaneko, R.; Miyaguchi, K.; Yamanishi, K. Detecting changes in streaming data with information-theoretic
windowing. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA,
USA, 11–14 December 2017; pp. 646–655.

10. Yamanishi, K.; Fukushima, S. Model change detection with the MDL Principle. IEEE Trans. Inform. Theory
2018, 64, 6115–6126. [CrossRef]

11. Aminikhanghahi, S.; Cook, D.J. A survey of methods for time series change point detection. Knowl. Inf. Syst.
2017, 51, 339–367. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TKDE.2006.1599387
http://dx.doi.org/10.1109/TKDE.2012.239
http://dx.doi.org/10.1109/TIT.2007.896890
http://dx.doi.org/10.1109/TIT.2018.2852747
http://dx.doi.org/10.1007/s10115-016-0987-z
http://www.ncbi.nlm.nih.gov/pubmed/28603327

Entropy 2019, 21, 1134 24 of 24

12. Kleinberg, J. Bursty and hierarchical structure in streams. Data Min. Knowl. Discov. 2003, 7, 373–397.
[CrossRef]

13. Huang, D.; Koh, Y.S.; Dobbie, G.; Pears, R. Detecting volatility shift in data streams. In Proceedings of
the 2014 IEEE International Conference on Data Mining (ICDM), Shenzhen, China, 14–17 December 2014;
pp. 863–868.

14. Huang, D.; Koh, Y.S.; Dobbie, G.; Pears, R. Tracking drift types in changing data streams. In Proceedings
of the International Conference on Advanced Data Mining and Applications, Hangzhou, China, 14–16
December 2013; pp. 72–83.

15. Aggarwal, C. A framework for diagnosing changes in evolving data streams. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data (SIGMOD), San Diego, CA, USA, 9–13
June 2003; pp. 575–586.

16. Spiliopoulou, M.; Ntoutsi, I.; Theodoridis, Y.; Schult, R. MONIC: Modeling and monitoring cluster transitions.
In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), Philadelphia, PA, USA, 20–23 August 2006; pp. 706–711.

17. Spiliopoulou, M.; Ntoutsi, E.; Theodoridis, Y.; Schult, R. MONIC and followups on modeling and monitoring
cluster transitions. In Proceedings of the joint European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML PKDD), Prague, Czech Republic, 23–27 September 2013; pp. 622–626.

18. Ntoutsi, I.; Spiliopoulou, M.; Theodoridis, Y. Summarizing cluster evolution in dynamic environments.
In Proceedings of the International Conference on Computational Science and Its Applications, Santander,
Spain, 20–23 June 2011; pp. 562–577.

19. Gama, J.; Žliobaitė, I.; Bifet, A.; Mykola, P.; Abdelhamid, B. A survey on concept drift adaptation.
ACM Comput. Surv. 2014, 46, 44:1–44:37. [CrossRef]

20. Rissanen, J. Optimal Estimation of Parameters; Cambridge University Press: Cambridge, UK, 2012.
21. Bifet, A.; Gavaldá, R. Learning from time-changing data with adaptive windowing. In Proceedings of the

2007 SIAM International Conference on Data Mining, Philadelphia, PA, USA, 26–28 April 2007; pp. 443–448.
22. van Leeuwen, M.; Siebes, A. StreamKrimp: Detecting change in data streams. In Proceedings of the Joint

European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), Antwerp,
Belgium, 15–19 September 2008; pp. 672–687.

23. Rissanen, J. Stochastic complexity and modeling. Ann. Stat. 1986, 14, 1080–1100. [CrossRef]
24. Yamanishi, K.; Takeuchi, J.; Williams, G.; Milne, P. On-line unsupervised outlier detection using finite

mixtures with discounting learning algorithms. Data Min. Knowl. J. 2004, 8, 275–300. [CrossRef]
25. Huang, D. Change Mining and Analysis for Data Streams. Ph.D. Thesis, The University of Auckland,

Auckland, New Zealand, 2015.
26. Fawcett, T.; Provost, F. Activity monitoring: noticing interesting changes in behavior. In Proceedings of the

Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Diego,
CA, USA, 15–18 August 1999; pp. 53–62.

27. Liu, S.; Yamada, M.; Collier, N.; Sugiyama, M. Change-point detection in time-series data by relative
density-ratio estimation. Neural Netw. 2013, 43, 72–83. [CrossRef] [PubMed]

28. Ichino, H.; Kaji, K.; Sakurada, K.; Horii, K.; Kawaguchi, N. HASC-PAC2016: Large scale human pedestrian
activity corpus and its baseline recognition. In Proceedings of the UBICOMP/ISWC’16 adjunct, Heidelberg,
Germany, 12–16 September 2016; pp. 705–714.

29. Hirai, S.; Yamanishi, K. Efficient computation of normalized maximum likelihood coding for Gaussian
mixtures with its applications to optimal clustering. In Proceedings of the IEEE International Symposium on
Information Theory, St. Petersburg, Russia, 31 July–5 August 2011; pp. 1031–1035.

30. Hirai, S.; Yamanishi, K. Efficient computation of normalized maximum likelihood coding for Gaussian
mixtures with its applications to optimal clustering. IEEE Trans. Inform. Theory 2013, 59, 7718–7727. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1024940629314
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1214/aos/1176350051
http://dx.doi.org/10.1023/B:DAMI.0000023676.72185.7c
http://dx.doi.org/10.1016/j.neunet.2013.01.012
http://www.ncbi.nlm.nih.gov/pubmed/23500502
http://dx.doi.org/10.1109/TIT.2013.2276036
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Purpose of This Paper
	Related Work
	Significance of This Paper
	Proposal of Concept of Metachange
	Novel Algorithm for Detection of Metachanges

	Theoretical Background of Metachange Statistics
	Definitions of Metachanges
	Problem Setting

	Metachange Detection Algorithm
	Detecting Change Points
	Detecting Metachanges along Time
	Detecting Metachanges Along State
	Integrating Metachange Statistics

	Experiment
	Synthetic Dataset 1 (Metachanges along Time)
	 Synthetic Dataset 2 (Metachanges along State)
	 Synthetic Dataset 3 (Metachanges Along Time and State)
	Real Dataset: Human Action Recognition Data
	Real Dataset: Production Condition Data

	Conclusions
	References

