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Abstract: Recently, convolutional neural network (CNN) based on the encoder-decoder structure
have been successfully applied to image dehazing. However, these CNN based dehazing methods
have two limitations: First, these dehazing models are large in size with enormous parameters, which
not only consumes much GPU memory, but also is hard to train from scratch. Second, these models,
which ignore the structural information at different resolutions of intermediate layers, cannot capture
informative texture and edge information for dehazing by stacking more layers. In this paper, we
propose a light-weight end-to-end network named the residual dense pyramid network (RDPN)
to address the above problems. To exploit the structural information at different resolutions of
intermediate layers fully, a new residual dense pyramid (RDP) is proposed as a building block.
By introducing a dense information fusion layer and the residual learning module, the RDP can
maximize the information flow and extract local features. Furthermore, the RDP further learns
the structural information from intermediate layers via a multiscale pyramid fusion mechanism.
To reduce the number of network parameters and to ease the training process, we use one RDP
in the encoder and two RDPs in the decoder, following a multilevel pyramid pooling layer for
incorporating global context features before estimating the final result. The extensive experimental
results on a synthetic dataset and real-world images demonstrate that the new RDPN achieves
favourable performance compared with some state-of-the-art methods, e.g., the recent densely
connected pyramid dehazing network, the all-in-one dehazing network, the enhanced pix2pix
dehazing network, pixel-based alpha blending, artificial multi-exposure image fusions and the
genetic programming estimator, in terms of accuracy, run time and number of parameters. To be
specific, RDPN outperforms all of the above methods in terms of PSNR by at least 4.25 dB. The run
time of the proposed method is 0.021 s, and the number of parameters is 1,534,799, only 6% of that
used by the densely connected pyramid dehazing network.

Keywords: image dehazing; residual dense pyramid; encoder-decoder; convolutional neural network

1. Introduction

The images taken on hazy days inevitably lose colour fidelity and intensity contrast, since floating
particles in the atmosphere such as water droplets and dust particles absorb or scatter the light reflected
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from the scene object before it reaches the camera sensor. The degradation of sensor image quality
introduces challenges to computer vision tasks such as video surveillance, aerial photography systems,
image segmentation, and so on, all of which strongly rely on the quality of sensor images to realize
subsequent visual tasks [1–5]. Hence, image dehazing is a very important problem and has created a
wide range of interest in the research community.

In the past, many methods have shown outstanding performance in image dehazing [6–8]. Some
of them are based on the following physical model:

I(x) = J(x)t(x) + A(1− t(x)), (1)

where x is the pixel location in the image. I represents the observed hazy image. J denotes the unknown
clear image. A corresponds to the atmospheric light, and t denotes the scene transmission map
indicating the portion of light that reaches the camera sensor. Assuming that the haze is homogeneous,
we can further denote the transmission map t(x) as e−βd(x), where d represents the scene depth and β is
the scattered coefficient of the atmospheric light. Since only the observed image I is known, estimating
J from Equation (1) is a challenging ill-posed problem.

Conventional methods use hand-crafted features to capture the statistical properties of hazy
images for estimating the transmission maps and atmospheric lights. For example, Tan et al. obtained
a clear image by maximizing the per-patch contrast based on the prior that hazy images usually have
lower contrast than that of clear images [9]. However, the halo artefacts and colour distortion usually
appear in the dehazing results. He et al. estimated the transmission map via the dark channel prior
(DCP), which states that each locally small patch of a haze-free image contains at least some pixels
with very low intensities in one colour channel [6]. However, the method still has a challenge in
recovering the real colour of white objects from the foreground. Tang et al. estimated the transmission
map by searching the best combination of haze related features via random forest (RF) [10]. Due to the
over-fitting problem of RF, this method cannot obtain favourable results. Using a colour attenuation
prior (CAP), Zhu et al. modelled the depth of a hazy scene, but the parameters of the model were
learned using supervised methods [11]. Fattal et al. discovered that the intensities of pixels in local
image patches present a one-dimensional distribution in the RGB colour space [12]. Unfortunately,
this strategy may lead to incorrect patch classification. Berman et al. further investigated the colour
consistency theory of [12] and proposed a non-local prior (NLP), which asserts that a small number
of distinct colours in a haze-free image can be well approximated by corresponding colour-lines in
the RGB colour space [7]. However, this prior can be inaccurate in very hazy areas. To improve the
robustness, an information fusion strategy and superior optimization methods are adopted in image
dehazing methods. Yu et al. proposed a pixel-wise alpha blending method (PWAB) for predicting the
transmission map, which blends the transmission maps estimated by the dark channel prior and the
bright channel prior effectively [13]. Galdran et al. proposed artificial multi-exposure image fusion
(AMEF) to estimate the clear image, which fuses multiply exposed images by a multi-scale Laplacian
blending scheme [14]. Beltran et al. presented a novel genetic programming estimator (GPE) to predict
the transmission map by finding optimal operators that can approximate the real results [15]. However,
we found that the halo artefacts and colour distortions still occur when the fusion strategy and the
optimization method fail to dehaze in a complex scene.

Recently, deep learning methods, especially those based on convolutional neural networks
(CNNs), have been successfully applied to many computer vision and image processing tasks, e.g.,
semantic segmentation, image classification, object detection, and so on [16]. Due to their superior
performance, CNNs are also used to solve the image dehazing problem. In general, image dehazing
can be implemented by two kinds of CNN based methods, namely hybrid dehazing methods and
end-to-end dehazing nets. Early approaches focussed on developing a hybrid strategy to remove haze
using CNNs to estimate the transmission maps and using conventional methods to obtain atmospheric
lights, e.g., the Dehazenet proposed by Cai et al. [17] maps a hazy image to a transmission map
and uses empirical rules to acquire the atmospheric light. The cardinal colour fusion multi-scale
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CNN (C2MSNet) presented by Dudhane et al. predicts the transmission map by generating the
multi-channel depth maps first [18]. One obvious problem of these methods is that they only focus
on the estimation of transmission maps. If the transmission maps were not accurately predicted,
they would impact negatively the final dehazed results. To avoid this problem, some works focus on
developing end-to-end network architectures that can learn a direct mapping between a hazy image
and its corresponding clear image. For example, Li et al. propose the all-in-one dehazing network
(AODN) to predict the clear image of a scene from its hazy image without requiring estimating
the transmission map [19]. Later, Zhang et al. proposed a densely connected pyramid dehazing
network (DCPDN), which jointly learns the transmission map, atmospheric light and dehazing
result by the pyramid densely connected network (PDCN), U network and generative adversarial
network (GAN). Qu et al. proposed the enhanced pix2pix dehazing network (EPDN), motivated
by the success of the generative adversarial network (GAN) [20]. Dudhane et al. further presented
a generative adversarial networks with residual inception module (RIGAN) to remove haze [21].
Ren et al. proposed a gated fusion network (GFN) to estimate a clear image by fusing three derived
images of the original hazy image effectively [22]. Based on GFN, Liu et al. further propose the
GridDehazeNet (GridDN) for image dehazing, which adopts a pre-processing module to convert a
hazy image to several derived images for information fusion and introduces a post-processing module
for improving the quality of the clear image [23]. Although these methods integrate intermediate
processing steps into one pipeline conveniently, the performance and architecture of these networks
are still limited by the following factors: 1. Most end-to-end dehazing models are designed based on
the deep encoder-decoder architecture with a large number of network parameters, e.g., DCPDN has
12,446,386 parameters, which not only consumes much GPU memory, but also is hard to train from
scratch. 2. Existing methods neglect the structural and contextual information in all intermediate layers,
leading to inaccurate dehazing results [24,25]. To alleviate the problem of parameters, the progressive
image deraining network (PIDN) adopts a recursive residual structure to share the parameters in the
network [26]. To extract more structural information in the intermediate layers, Liu et al. designed a
Simple Pooling-based Network (SPN) for salient object detection by inserting the pyramid pooling
module in each layer of the decoder [27]. The strategies borrowed from other vision models may give
inspiration for image dehazing. However, improvements may not be achieved in dehazing due to the
difficulty in applying the recursive module to the encoder-decoder network, and the encoder does not
capture the required structural information.

In this work, we construct a light-weight network that captures more structural information
from the intermediate layers. Therefore, the proposed end-to-end trainable residual dense pyramid
network (RDPN) (Figure 1) can fully make use of structural information at different resolutions of all
the layers with our new residual dense pyramid (RDP) (Figure 2). Generally speaking, our network is
designed based on the encoder-decoder architecture, where the encoder contains one RDP and the
decoder has two RDPs. For extracting features effectively from this light-weight network, the building
module RDP is carefully designed with dense information fusion (DIF), multiscale pyramid fusion
(MPF), and residual learning (RL), which not only combines the advantages offered by the popular
dense connection and residual learning, but also leverages MPF to learn the structural information at
different resolutions from each RDP.

The four main contributions of our work are summarized below:

• We propose a new end-to-end residual dense pyramid network (RDPN) based on the
encoder-decoder architecture, which achieves high performance in image dehazing.

• We propose the residual dense pyramid (RDP) as the basic building module, which not only can
effectively boost network performance by improving the information flow via dense connection
and the residual learning mechanism, but also can learn structural features at different resolutions
from all the layers of the encoder and decoder.
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• By using one RDP in the encoder and two RDPs in the decoder, the light-weight RDPN contains
much fewer network parameters (only 6% of that used by DCPDN [24]) and is much faster than
existing CNN based methods (run time is reduced to 0.021 s).

• To enhance the generalization ability of the RDPN, both indoor and outdoor images are collected
to generate a new synthetic dataset for training. The extensive experimental results demonstrate
that our light-weight RDPN can achieve competitive results compared to other heavy-weight
network models.
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Figure 1. Overall architecture of the proposed residual dense pyramid network (RDPN) model.
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Figure 2. Residual dense pyramid (RDP) architecture.

2. Residual Dense Pyramid Network for Image Dehazing

2.1. Network Structure

Inspired by the flexibility of the encoder-decoder network that can produce compelling results
for image denoising, super-resolution and image harmonization, we explored the effective design of
encoder-decoder in image dehazing. In most existing encoder-decoder modules, the dense block is
employed as the basic building model and stacked layer-by-layer in a greedy fashion to construct the
network architecture for feature transformation.

Consider Figure 3a as an example: three dense blocks with its down-sampling and transition
blocks from dense-net121 [28] are used for building the encoder and the symmetrical dense blocks with
corresponding deconvolutions as the decoder. Although this design utilizes the dense information
flow to extract features with smaller sizes and transform them back to haze-free image, multi-scale
structural information, which has been demonstrated to be effective in the traditional dehazing method,
is totally neglected [24,25]. After inputting a real hazy image, the dehazing result has a halo effect
(see the magnified detail in Figure 3a). Based on this model, Zhang et al. added a multilevel pyramid
pooling block (MPPB) with pooling size 1

32 , 1
16 , 1

8 and 1
4 at the end of the decoder (see Figure 3b) and

denoted this network as PDCN. Then, the global structural information with different scales was used
to estimate the final result [24]. However, this scheme only takes the multi-scale information of the last
layer into account, and high level global information from intermediate layers is not considered at all.
The halo effect is not completely removed (see the white shadow in the magnified detail of Figure 3b).
To further make full use of long range global information, some work, e.g., [27], adds MPPB into each
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layer of the decoder (see Figure 3c) to address the drawback of the model in Figure 3b. The improved
model can remove the halo effect and enhance fine features, but the multi-scale information of the
bottom-up pathway in the encoder is not explored. The colours in the dehazing result shift from the
real colours. For example, the magnified detail in Figure 3c has turned to a reddish tint colour. In our
proposed approach, we adopted the MPPB in the encoder. To verify the effectiveness of MPPB, only
one dense block from dense-net121 [28] and one MPPB from PDCN [24] were used for building the
encoder. Similarly, two MPPBs from PDCN [24] and two dense blocks with deconvolutions from
dense-net121 [28] were adopted for constructing the decoder (see Figure 3d). In the corresponding
output, we found not only that the halo effect was removed completely, but also the scene colours
were much closer to the ones in the real world (see the output and magnified detail in Figure 3d).
To understand this better, we further visualize the feature map at the bottleneck of the encoder-decoder
framework. Figure 3e displays the intermediate feature map of Figure 3c. Meanwhile, Figure 3f
shows the intermediate feature map of Figure 3d. By comparing these two results, we found that
even one MPPB in the encoder allowed the network to obtain more global structural information than
stacked dense blocks. For example, the edge and contour information is richer in Figure 3f than that in
Figure 3e.

 Dense  block  with  down-Sampling

 and transition block from dense-net121

 Dense  block  with  deconvolution

Multilevel pyramid pooling block

(a) (b) (c) (d)

(e) (f)

Figure 3. Comparison of different models. (a) Basic encoder-decoder network. (b) Encoder-decoder
network with a multilevel pyramid pooling block in the end. (c) Encoder-decoder network with
multilevel pyramid pooling blocks in the decoder. (d) Encoder-decoder network with multilevel
pyramid pooling blocks in the encoder and decoder. (e) Visualizations of feature map at bottleneck of
(c). (f) Visualizations of feature map at bottleneck of (d). All the models are trained on our synthetic
8000 hazy images. The real hazy image is shown at the top. Dehazing results with magnified details
marked by red rectangles are displayed under each model in (a–d).

Based on the above discussion, we propose the residual dense pyramid (RDP) as the basic building
module, which includes a dense block, residual learning and an MPPB. By building the encoder and
decoder with RDP, the novel residual dense pyramid network (RDPN) can learn and fuse structural
information from different resolutions at all layers. Generally speaking, RDPN takes a hazy image as
input and predicts its corresponding dehazed result as output. As shown in Figure 1, the architecture
of the RDPN mainly consists of five parts: a shallow feature extraction layer (SFEL), an encoder,
a decoder, a multilevel pyramid pooling layer (MPPL) and a global information fusion layer (GIFL).
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Simultaneously, the skip connection with the same filter size is used to ease the training of the RDPN.
The specific operations of these five parts are described in the next five subsections.

Shallow feature extraction layer (SFEL): As reported in many previous approaches [29],
the low-level features such as contours and edges extracted in shallower stages usually have a
smaller feature size and provide rich and detailed global information for deeper stages, which contain
high-level features. Therefore, the SFEL was necessary for the encoder decoder network. Besides,
in our work, SFEL also acts as a transition layer, which enabled the features with different spatial sizes
to be captured gradually, avoiding shrinking the input with smaller spatial size sharply. In our design,
we used a 1× 1 convolution layer with a stride of two for extracting shallow features Ss. With half
of the input image size, the shallow features not only can preserve the primary contours and edges
for deeper stages, but also can suppress noise and unimportant details. The related operation can be
expressed as:

Ss = fSFEL(S), (2)

where S is the input image. fSFEL(·) denotes a 1× 1 convolution operation of SFEL. Ss is the output
and also serves as the input to the subsequent encoder.

Encoder: The encoder further extracts a set of feature maps from Ss. Inspired by dense
connection [28] and residual learning [30], the proposed pyramid fusion can fully learn spatial
information at different resolutions. In this paper, we propose the residual dense pyramid (RDP)
as the basic building module and employ one RDP to construct the encoder. For each RDP, a 1× 1
convolution layer is also used to capture all extracted features of the RDP and to enable down-sampling
simultaneously. The output of the encoder can be formulated as:

Sen = fConv1( fRDP(Ss)), (3)

where fRDP denotes the composite function of our RDP, such as dense information fusion, multiscale
pyramid fusion and residual learning. fConv1 denotes the convolution operation following the RDP,
and Sen is the output. More details of the RDP are given in Section 2.2.

Decoder: After the features are extracted by the encoder, the decoder is utilized to restore the
image content and reconstruct the dehazed image. In the proposed decoder, two RDPs are used.
Similar to the encoder, two 1× 1 deconvolution layers are used for each RDP to refine mapping
features and to realize up-sampling. The decoder function can be described as follows:

S
′
de = fDeConv1( fRDP(Sen)), Sde = fDeConv2( fRDP(S

′
de)), (4)

where fDeConv1 and fDeConv2 denote two 3× 3 deconvolution functions. Sde is the final output of the
decoder network.

Multilevel pyramid pooling layer (MPPL): Similar to [24], where features at different scales in an
image are utilized for image dehazing, we also adopted a multilevel pyramid pooling layer to make
sure that the features from a hierarchical global context prior were embedded in the resulting image,
containing information from different scales. Here, four pooling operations with pyramid size 1/4,
1/8, 1/16 and 1/32 are employed to obtain multilevel features. Subsequently these pooled features
are up-sampled to the size of the input image by nearest neighbour interpolation, followed by a
concatenated operation with the original input to capture more global context information. The above
operation can be expressed as:

Sp = [ fu(Sde1/4
), fu(Sde1/8

), fu(Sde1/16
), fu(Sde1/32

), S], (5)

where Sde1/4
, Sde1/8

, Sde1/16
and Sde1/32

are the pooling results of Sde with pyramid sizes 1/4, 1/8, 1/16
and 1/32, respectively. fu is the up-sampling operation and Sp is the output of the MPPL.
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Global information fusion layer (GIFL): The extracted global hierarchical features from the MPPL
were further fused in the GIFL. In particular, we placed a 3× 3 convolution layer in the last stage of
the RDPN. The reconstructed result Sg from the final convolution function fGIFL is given by:

Sg = fGIFL(Sp). (6)

2.2. Residual Dense Pyramid

Motivated by the performance of the RDB, which combines the advantage offered by the dense
block and the residual block, we propose a new compact block named RDP. Different from the
existing RDB, we also added multiscale pyramid fusion in the RDP, which adopted the multiscale
pyramid fusion to enable learning local context information and exploring the spatial relation
in the RDP. The proposed RDP is shown in Figure 2, and all the components are discussed in
subsequent subsections.

Dense information fusion design (DIF): Based on the observation that dense connections can
maximize the information flow, we adopted dense connections as the basic structure in the RDP.
As displayed in Figure 2, Sd and So denote the input and output features, respectively. Red coloured
arrows indicate the dense connections between six convolution layers. Suppose the input feature
number of Sd is G0 and the growth gate for dense connections is G, then S0 has G0 + 5G feature maps.
Although the higher growth rate G can introduce more local features, it also makes the network hard
to train. Hence, it is necessary to reduce the number of features. Inspired by the RDB, to control and
fuse the information flow, a 1× 1 convolution layer indicated by grey colour shown in Figure 2 was
added. The overall structure of our proposed DIF is specified as:

S f = fDIF([Sd, S0
d, . . . , Sl

d, . . . , S5
d], where, Sl

d = fD([Sd, S0
d, . . . , Sl−1

d ], 0 ≤ l ≤ 5. (7)

Here, [Sd, S0
d, . . . , Sl−1

d ] defines the concatenation of the features produced using input Sd and the
preceding dense layers 0 . . . l − 1. fD denotes a 3× 3 convolution function to produce G feature maps
following the lth layer and has G0 + (l − 1)× G input feature maps. fDIF denotes a 1× 1 convolution
function to fuse the original input Sd and outputs S0

d, . . . , S5
d from six dense connection layers into S f

with G feature maps.
Multiscale pyramid fusion (MPF): Even though the DIF improved the information flow to a large

extent, the features from DIF still lost the spatial relation. The local context information at different
scales is helpful in this regard to explore spatial information at different resolutions. To address this
problem efficiently, we used multiscale pyramid fusion (MPF). MPF was realized by four pooling
operations and five convolution operations, as illustrated in Figure 2. In particular, we first pooled
the feature maps from DIF into four different scales, such as 1/2, 1/4, 1/8 and 1/16. A single 1× 1
convolution layer was introduced in the last stage for learning context information. The operation of
MPF can be defined as:

Sm = fMPF([ fp(S f1/2
), fp(S f1/4

), fp(S f1/8
), fp(S f1/16

), S f ], (8)

where fp(S f1/2
), fp(S f1/4

), fp(S f1/8
), fp(S f1/16

) are the pooling results of S f with pooling sizes 1/2,
1/4, 1/8, 1/16, respectively. fp denotes a convolution operation for upsampling. fMPF refers to the
final convolution function. [ fp(S f1/2

), fp(S f1/4
), fp(S f1/8

), fp(S f1/16
), S f ] represents the concatenation of

pooling results and the original input. Sm is the final output of the MPF.
Residual learning (RL): In order to enhance the RDP representation ability and to achieve better

performance, we introduced the residual learning mechanism in the RDP before the final output.
The final output Sr of the RDP is defined as:

Sr = Sd + Sm. (9)
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This motivation for this design was that the final RL can ensure that the RDP makes full use of the
advantages offered by the DIF, MPF and RL and to enable high quality estimation of dehazed images.

2.3. Loss Function

Since earlier works demonstrated that the Euclidean loss (L2) easily leads to colour distortion
or halo artefacts in the dehazed images [24], the works in [24,25] attempted to solve this problem by
adding some edge preserving information in the loss, such as the combination of three losses, including
the feature edge loss LF, the gradient loss LG and standard (L2) loss function. For fair comparison,
we adopted the same combined loss function for learning the parameters of the proposed RDPN.
Considering that the combined loss function used in [24] was designed for the U net, PDCN and GAN
jointly, we only adopted part of the loss function that is used in PDCN.

L = L2 + λLG + βLF, (10)

where λ and β are weighting coefficients for loss terms LG and LF, respectively. Let Ii, i = 1, 2 . . . , N
and Ji, i = 1, 2, . . . , N represent the set of hazy images and the set of corresponding ground truths,
respectively. Then, L2 is defined as:

L2 =
1
N

N

∑
i=0
‖ f (Ii, Θ)− Ji‖2 , (11)

where f represents the proposed dehazing network and Θ denotes the parameters in f .
The gradient loss LG is defined using gradient operations of the horizontal and vertical directions:

LG =
1
N

N

∑
i=1
‖(Gv( f (Ii, Θ)− Gv(Ji)‖2 +

1
N

N

∑
i=1
‖(Gh( f (Ii, Θ)− Gh(Ji)‖2 , (12)

where Gv and Gh are the vertical and horizontal gradient operators, respectively. Such a loss function
allows us to preserve fine details and to remove artefacts.

The feature edge loss LF is defined based on the edge information extracted from a pre-trained
VGG-16 network. This design aimed to make the reconstructed image approximate the ground truth
from the perspective of the feature edge. It is defined as:

LF =
1
N

N

∑
i=1
‖ fv1( f (Ii), Θ))− fv1(Ji)‖2 +

1
N

N

∑
i=1
‖ fv2( f (Ii), Θ))− fv2(Ji)‖2 , (13)

where fv1 and fv2 are extracted edge features from the first and second layers of the pre-trained VGG-16
network [31]. To show the effectiveness of this loss function, the experiments in super-resolution,
image dehazing and other relative fields [24,25] provided sufficient evidence.

3. Discussions

Difference from DCPDN: Inspired by the densely connected pyramid dehazing network (DCPDN),
we also propose a novel end-to-end RDPN for image dehazing. However, it is worth noting that there
are two obvious differences between DCPDN and our model. In general, the sizes of the network
models are different. DCPDN uses a U network, a pyramid densely connected network (PDCN)
and a GAN to jointly estimate the atmospheric light, the transmission map and the dehazing result
simultaneously [24]. Hence, the size of the network model was 268 MB, and the number of network
parameters was 12,446,386; while our proposed network used one RDP in the encoder and two RDPs
in the decoder, which not only saved GPU memory, but also improved computational efficiency. Using
the same platform of PyTorch as that used in DCPCN, the size of the proposed model was 4.3 MB and
the number of network parameters was only 787,707, which was only 6% of that used in DCPCN.
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Difference from PDCN: The PDCN in DCPDN was designed based on the encoder-decoder
structure for estimating the transmission map [24]. Comparing with our proposed RDPN, there are
two main differences: First, PDCN uses dense blocks as the basic building blocks, which cannot capture
informative texture and structural information for dehazing by stacking dense blocks. In contrast,
we used RDP to construct our RDPN, which not only combined the advantages of dense blocks and
residual blocks, but also added the multiscale pyramid fusion mechanism in the RDP for learning
structural information at different resolutions. Second, PDCN explores the structural information by
applying the multilevel pyramid pooling block (MPPB) at the end of the decoder, but ignoring the
structural information from intermediate layers. Our RDPN not only learns structural information
from each layer of the network by using RDP, but also learns global context information by placing a
multilevel pyramid pooling layer (MPPL) at the end of the network.

Difference from RDB: Due to the convincing advantages of the residual dense block (RDB) [29],
we propose RDP based on RDB. However, there are three main differences between them. First, RDB
was designed for image super-resolution, while our proposed RDP was designed to realize image
dehazing. Second, RDB was proposed by combining the advantages of dense blocks and residual
blocks, while our proposed RDP added the multiscale pyramid fusion between dense information
fusion and residual learning for fully learning the spatial information at different resolutions. Third,
existing methods stacked RDBs for extracting features with a fixed scale [29], while we embedded RDP
into the encoder-decoder architecture and added a convolution or deconvolution operation following
each RDP to realize the down-sampling or the up-sampling operation.

4. Implementation Details

The detailed architecture and parameter settings of the RDPN are provided in Table 1, where each
RDP in the encoder and decoder has the same setting except the filter number, which depends
on the number of output channels from the preceding layer, and these are shown in Table 2.
Each convolutional layer in the DIF was followed by a rectified linear unit (ReLU) for improving
training efficiency and for adding non-linearity. The growth rate G was 32. Adam was selected as the
optimization algorithm with a learning rate of 2× 10−3 for training the model. The batch size was set
as two. Empirical values of λ and β were used, which were 2 and 0.8, respectively. All the training
images were resized to 512× 512, and the output of the corresponding clear image had three channels
(red, green and blue). The RDPN was trained for 3,200,000 iterations.

Table 1. Detailed configuration of the proposed RDPN. SFEL, shallow feature extraction layer; MPPL,
multilevel pyramid pooling layer; GIFL, global information fusion layer.

Name Layer Type Kernel Filter Stride Pad

SFEL 1 convolution 1× 1 32 2 0

Encoder RDP
1 convolution

/
1× 1

32
64

/
2

/
0

Decoder

RDP
1 deconvolution

RDP
1 deconvolution

/
3× 3

/
3× 3

64
32
64
16

/
2
/
2

/
1
/
1

MPPL
4 poolings

4 up-samplings
4 convolutions

4× 4, 8× 8, 16× 16, 32× 32
/

1× 1

16
/
1

4,8,16,32
/
1

0
/
0

GIFL 1 convolution 3× 3 3 1 1
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Table 2. Detailed configuration of the proposed RDP. DIF, dense information fusion; MPF, multiscale
pyramid fusion; RL, residual learning.

Name Layer Type Kernel Filter Stride Pad

DIF 6 convolutions
1 convolution

3× 3
1× 1

32 / 64
32 / 64

1
1

1
0

MPF

4 poolings
4 up-samplings
4 convolutions
1 convolution

2× 2, 4× 4, 8× 8, 16× 16
/

1× 1
1× 1

32 / 64
/
1

32 / 64

2,4,8,16
/
1
1

0
/
0
0

RL summation / 32 / 64 / /

5. Experimental Results

In this section, we further investigate the effectiveness of RDPN. We first introduce our large
dataset, which contained both a synthetic dataset and real hazy images for training and testing. Then,
we compare our method with several state-of-the-art methods in terms of visual results and accuracy.
Finally, a series of analyses and discussion related to the performance, run time and limitations of the
RDPN are given.

5.1. Datasets

Although there are some existing training datasets, the amount of synthetic hazy images contained
in them is enormous. For example, the RESIDE dataset [32] contains 313,950 synthetic outdoor
images. Directly using existing datasets for training our model would cost too much training time.
Besides, it is also not fair to compare our trained model with other dehazing models that were
trained on 4000∼10,000 synthetic images [24]. Therefore, we created our dataset including both
indoor and outdoor images. Similar to [24], 1000 depth images from the NYU depth dataset [33] were
selected randomly for generating 4000 indoor training images and 400 testing images via Equation (1),
with random atmospheric light A ∈ {0.5, 1} and scattering coefficient β ∈ {0.4, 0.6}. In addition,
from the RESIDE dataset [32], another 4000 synthetic training images and an extra 400 test images
with β in {0.04, 0.06, 0.08, 0.1, 0.12, 0.16, 0.2} and A in {0.8, 0.85, 0.9, 1} were chosen randomly as the
outdoor images. Hence, we had 8000 training images and 800 testing images in total, including
400 indoor images denoted as the indoor testing dataset and 400 outdoor images denoted as the
outdoor testing dataset.

5.2. Testing on the Synthetic Dataset

Comparison with Existing Dehazing Methods

In this section, we first compare our model on synthetic datasets (indoor testing dataset and
outdoor testing dataset) with six state-of-the-art dehazing methods, including DCP [6], NLP [7],
CAP [11], AODN [19], Dehazenet [17] and DCPDN [24]. Two commonly used quality metrics: PSNR
and SSIM are used to evaluate the dehazing results. All the PSNR/SSIM measures are reported
in Table 3. Compared with other dehazing methods, we see that our proposed RDPN had a higher
PSNR and SSIM.

Table 3. Quantitative comparisons on the synthetic testing dataset in terms of PSNR/SSIM. The best
results are in bold. DCP, dark channel prior; NLP, non-local prior; CAP, colour attenuation prior;
AODN, all-in-one dehazing network; DCPDN, densely connected pyramid dehazing network.

DCP [6] NLP [7] CAP [11] AODN [19] Dehazenet [17] DCPDN [24] Ours

Indoor testing dataset 13.97/0.8842 17.44/0.7959 18.04/0.8567 17.83/0.8842 20.19/0.8773 29.22/0.9560 29.29/0.9747

Outdoor testing dataset 13.59/0.8664 16.59/0.7736 16.01/0.7696 18.54/0.852 22.30/0.9159 28.12/0.9416 28.59/0.9752
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In Figure 4, three samples with the magnified details from the synthetic dataset were selected
for visual comparison. Among them, Figure 4a,c,e are the original hazy images. Figure 4b,d,f are
the magnified details of regions enclosed in red rectangles in corresponding hazy samples. The
corresponding ground truths of Figure 4 are shown in Figure 5. Meanwhile, Figure 6a–f display
the dehazing results of DCP [6], NLP [7], Dehazenet [17], DCPCN [24], CAP [11] and AODN[19],
respectively, and the corresponding magnified details are shown in the second, fourth and sixth rows.
It can be seen that even though existing methods could remove haze from the original images to some
extent, their results tended to be either over dehazed or under dehazed. For example, the results of
DCP [6] (Figure 6a) and CAP [11] (Figure 6c) were over dehazed and had some colour distortions,
compared with the ground truths (Figure 5), e.g., the towel, building and sky region in magnified
images from the second, fourth and sixth rows in Figure 6a,c. In the dehazed results of NLP [7],
there were haze residuals and artefacts, which could be observed in the road and tree in the third
and fifth rows of Figure 6b. These improperly dehazed results were probably due to the invalid
assumption of priors used in the above methods. The AODN and Dehazenet estimates of the dehazing
result and the transmission map by neural networks, respectively, could overcome the limitations
of the hand-crafted prior based methods, e.g., DCP, NLP and CAP. However, the results shown in
Figure 6d,e still contained some hazy residuals. The DCPDN using GAN to optimize the dehazing
result estimated by neural networks could obtain clearer results shown in Figure 6f than those of other
methods. Unfortunately, upon detailed inspection, this method produced noticeable colour shifts, e.g.,
the towel in the second row and buildings in the sixth rows. In contrast, our method worked better
than others and generated clearer images with less colour distortion. Actually, the results displayed
in Figure 6g are visually closest to the ground truth shown in Figure 5. The PSNR/SSIM measures
shown under each image also demonstrated the favourable performance of the proposed method.

(a) (b) (c) (d) (e) (f)
Figure 4. Hazy samples from the synthetic dataset and the corresponding magnified details. (a) Hazy
Sample 1; (b) Magnified detail of hazy Sample 1; (c) Hazy Sample 2; (d) Magnified detail of hazy
Sample 2; (e) Hazy Sample 3; (f) Magnified detail of hazy Sample 3.

(a) (b) (c) (d) (e) (f)
Figure 5. Ground truths of hazy samples and the corresponding magnified details. (a) Ground truth of
hazy Sample 1; (b) Ground truth of the magnified detail of hazy sample 1; (c) Ground truth of hazy
sample 2; (d) Ground truth of the magnified detail of hazy sample 2; (e) Ground truth of hazy sample 3;
(f) Ground truth of the magnified detail of hazy sample 3.

RESIDE [32], a recently released dehazing benchmark, was also adopted for further evaluating
the performance of RDPN. As a public benchmark for image dehazing and beyond, the sub-dataset
SOTS [32] in RESIDE containing 500 indoor images and 500 outdoor images with different haze
concentration was used for testing the performance of different dehazing algorithms. The quantitative
results of our model and the extra seven state-of-the-art methods tested on SOTS are displayed
in Tables 4 and 5, where the quantitative values of some methods were collected from [20,21,23].
From Table 4, we can see that our model ranked the third among popular dehazing methods on the
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indoor images of SOTS, only second to the results by GridDN [23] and EPDN [20]. Meanwhile, our
model ranked the second on outdoor images of SOTS as shown in Table 5. It is noteworthy that GridDN
consisted of a pre-processing module, a dehazing module and a post-processing module for image
dehazing. Hence, GridDN had the most competitive performance. In contrast, our model removed
haze with one RDP in the encoder and two RDPs in the decoder, with a much simpler architecture and
much fewer network parameters. Further, our method even outperformed some recent methods, e.g.,
RIGAN, GPE, AMEF and GFN. The corresponding dehazing results of two samples from the SOTS
dataset are displayed in Figure 7. As can be seen, our results (see Figure 7g) were closest to the ground
truth (see Figure 7h), while the results by other methods were either over dehazed or under dehazed
(see Figure 7b–f).

19.45/0.8890 17.85/0.8361 17.99/0.8426 18.59/0.8601 21.47/0.9123 25.82/0.9395 25.55/0.9558

18.98/0.9258 16.02/0.8288 23.02/0.9399 18.37/0.8450 20.64/0.9070 17.60/0.8999 24.58/0.9532

15.43/0.8901 17.43/0.8795 23.19/0.9578 20.34/0.8948 24.97/0.9705 17.46/0.8647 26.86/0.9759

(a) (b) (c) (d) (e) (f) (g)
Figure 6. Dehazing results of three samples in the synthetic dataset. (a) DCP [6]; (b) NLP [7];
(c) CAP [11]; (d) AODN [19]; (e) Dehazenet [17]; (f) DCPDN [24]; (g) ours.
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Table 4. Quantitative comparisons on the indoor images of the SOTS in terms of PSNR/SSIM. Red,
green and blue indicate the best, second best and third best performance, respectively. GPE, genetic
programming estimator; PWAB, pixel-wise alpha blending method; AMEF, artificial multi-exposure
image fusion; GFN, gated fusion network; GridDN, GridDehazeNet; EPDN, enhanced pix2pix dehazing
network; RIGAN, generative adversarial networks with residual inception module.

GPE [15] PWAB [13] AMEF[14] GFN [22] GridDN [23] EPDN [20] RIGAN [21] Ours

11.97/0.6301 15.96/0.7415 16.01/0.7573 22.30/0.8800 32.16/0.9836 25.06/0.9232 18.61/0.8179 19.66/0.8972

Table 5. Quantitative comparisons of the outdoor images of the SOTS in terms of PSNR/SSIM. Red,
green and blue indicate the best, second best and third best performance, respectively.

GPE [15] PWAB [13] AMEF [14] GFN [22] GridDN [23] EPDN [20] Ours

15.91/0.7297 12.33/0.6759 17.62/0.8201 21.55/0.8444 30.86/0.9819 22.57/0.8630 26.82/0.9598

(a) (b) (c) (d) (e) (f) (g) (h)
Figure 7. Dehazing results of two samples from the SOTS dataset. (a) Input; (b) GPE [15]; (c) PWAB [13];
(d) AMEF [14]; (e) GFN [22]; (f) EPDN [20]; (g) ours; (h) ground truths

5.3. Testing on Real Images

To verify the generalization ability of our model, we further tested RDPN on challenging
images provided by previous methods [22,24]. Visual dehazing results produced by RDPN and
six state-of-the-art methods are displayed in Figure 8.

The first, second and fourth rows of Figure 8a show three original real-world images. Figure 8b–g
display the corresponding results of DCP [6], NLP [7], DCPDN [17], CAP [11] and AODN [19],
respectively. Our results are given in Figure 8h. The magnified details of two images using different
methods are shown in the third and fifth rows. In Figure 8b–d, the results of DCP [6], NLP [7] and
CAP [11] suffered from over dehazed, due to the colour distortion and blocking artefacts shown in
Figure 8b–d. The results of AODN [19] and Dehazenet [17] displayed in Figure 8e,f still had some
remaining haze in them. Some details shown in the magnified regions were missing, as shown in the
third and fifth rows. DCPCN [24] could produce clearer images with strong contrast (see Figure 8g),
but part of the buildings in the first, second and third rows was not recovered. In particular, the tops
of buildings in the magnified inset shown in the third row of Figure 8g were missing. Furthermore,
the magnified region in the fifth row had an over dehazed effect. In contrast, our method could remove
haze with visually appealing results in all cases.

5.4. Analysis and Discussion

We further analyse and discuss the validity of our RDPN with different network architectures
and parameters. Besides, we also discuss the runtime performance and limitations of RDPN.
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(a) (b) (c) (d) (e) (f) (g) (h)
Figure 8. Dehazing results on real-world images downloaded from the Internet. (a) Input; (b) DCP [6];
(c) NLP [7]; (d) CAP [11]; (e) AODN [19]; (f) Dehazenet [17]; (g) DCPDN [24]; (h) ours. The third row
shows the magnified view of the highlighted windows in the second row. The fifth row shows the
magnified view of the highlighted windows in the fourth row.

5.4.1. Different RDP Number

Since the proposed neural network was constructed based on RDP, we first investigated the
effect of the number of RDP in the encode and decoder network. To determine the effect of the
RDPN’s depth, we trained the network with three different settings: one RDP in the encoder and two
RDPs in the decoder (denoted as D = 1), two RDPs in the encoder and three RDPs in the decoder
(denoted as D = 2) and three RDPs in the encoder and four RDPs in the decoder (denoted as D = 3).
The quantitative comparisons of these three settings are shown in Table 6. We can see that the PSNR and
SSIM values of D = 1 were higher than those of D = 2 and D = 3, which demonstrated that stacking
more RDPs in the encoder and the decoder would not lead to better performance, as commonly
believed. Therefore, we used D = 1 as our basic network parameters. Based on the RDPN with D = 1,
we also investigated the effect of the number of dense convolution layers C and the growth rate G in
DIF. Because the default setting of C and G in the DIF of RDPN was six and 32, respectively, the settings
of C = 5, C = 7 and G = 16, G = 64 were adopted for testing the effect of RDPN further. From Table 6,
we can see that they produced suboptimal results compared to those of C = 6 and G = 32.

Table 6. Ablation study: quantitative PSNR/SSIM for different configurations of the proposed networks.

RDPN, (C = 6, G = 32) RDPN (D = 1) RDPN (D = 1)

D = 1 D = 2 D = 3 C = 5 C = 7 G = 16 G = 64

Indoor testing dataset 29.29/0.9747 28.69/0.9675 29.09/0.9713 29.02/0.9710 28.84/0.9708 29.05/0.9721 29.11/0.9729

outdoor testing dataset 28.59/0.9752 28.28/0.9710 28.42/0.9729 28.57/0.9733 28.30/0.9725 28.35/0.9723 28.41/0.9739

Generally, it can be seen that RDPN was quite robust based on different configurations and
parameter settings, as the results of SSIM in Table 6 ranged between 0.9708 and 0.9752 for both the
indoor testing dataset and the outdoor testing dataset. In particular, RDPN with D = 1, C = 6 and
G = 32 attained the best performance among the evaluated configurations.
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5.4.2. Analysis of the RDP Structure

The proposed RDP for image dehazing is a significant contribution of this paper. To verify its
effectiveness, we compared the RDPN with several variants of RDPs. RDP w/o R indicates that the
RDP module does not contain the residual learning in the MPF. DRP represents that the residual
learning in the original RDP is moved from the end of MPF to the end of DIF. For fair comparison,
these network structures (RDPN using RDP w/o R and RDPN using DRP) were the same as the
proposed RDPN, except for using different building modules, e.g., RDP w/o R and DRP. As reported
in Table 7, the RDPN with the proposed RDP outperformed other models on all datasets, which
demonstrated that the design of RDP could take advantage of the dense connection, multi-scale
pyramid fusion and residual learning in the best combination.

5.4.3. Different RDP Placement

In our work, we built RDPN with the proposed RDP so that the contextual and structural
information from all the layers could be used to obtain more robust features. A question that deserves
asking is how the RDP improved the performance of the model? To investigate the effects of using
RDP in different layers of the RDPN, we further compared three variant models, namely, RN, RN
w/o MPPL and RDPN-decoder, where RN denotes the model with all RDPs in RDPN replaced with
dense block (the DIF in the RDP), and RN w/o MPPL means the RN model without MPPL, just as the
schematic figures displayed in Figure 3a,b, respectively. RDPN-decoder indicated that in the RDPN
model, the RDP in the encoder was replaced with the dense block (the DIF in the RDP), just as the
schematic figure shown in Figure 3c. The results reported in Table 7 demonstrate that the performances
of these models were inferior to that of the proposed model RDPN. That means the contextual and
structural information collected from RDPs in all the layers made contributions to image dehazing.
Besides, the performance differences between RDPN-decoder and RDPN were obvious. With the
help of RDP inserted in the encoder of RDPN, the output of the encoder could capture more global
structural information in the encoding stage and could generate better results with higher PSNR and
SSIM values.

5.4.4. Effectiveness of SFEL

To demonstrate the effectiveness of SFEL in the proposed RDPN, we removed the SFEL from
RDPN and also set the stride of convolution behind RDP at four to keep a symmetrical feature size in
the encoder and decoder. The result of the corresponding model named RDPN w/o SFEL is shown
in Table 7. As can be seen, without SFEL degraded the performance of the original model RDPN,
as shown in the second row of Table 7. This indicates that SFEL was an important transition layer,
which provided rich global information with half of the input image size for deeper stages collecting
high level information. Removing SFEL straightforwardly led to missing significant useful global
information by shrinking the input feature by a quarter.

Table 7. Performance of RDPN and its variant models in terms of PSNR/SSIM. Best results in bold.

Model Indoor Testing Dataset Outdoor Testing Dataset

RDPN 29.29/0.9747 28.59/0.9752
RDPN using RDP w/o R 28.78/0.9642 27.89/0.9701

RDPN using DRP 29.10/0.9732 28.32/0.9720
RN 28.84/0.9251 27.15/0.9111

RN w/o MPPL 27.96/0.9133 27.01/0.9087
RDPN-Decoder 28.97/0.9697 27.77/0.9712

RDPN w/o SFEL 23.04/0.9274 25.50/0.9568
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5.4.5. The Impact of Regulation Coefficients in the Loss Function

In this work, we adopted the combined loss function of [24] to learn the parameters of the
proposed RDPN. That means the feature edge loss LF and gradient loss LG were combined with the
common standard L2 function in the loss. In Equation (10), LF and LG are multiplied by corresponding
weighting coefficients λ and β. To verify the robustness of this loss function, in Table 8, we list results
when different settings of weighting coefficients λ and β are considered. As can been seen, using λ = 2
and β = 0.8, the network obtained the highest PSNR and SSIM values. The other settings lowered the
performance in a small range. Hence, the combined loss function had good robustness.

Table 8. Analysis of the loss function in terms of PSNR/SSIM when different weighting coefficients are
used. Best results in bold.

Setting Indoor Testing Dataset Outdoor Testing Dataset

λ = 2, β = 0.8 29.29/0.9747 28.59/0.9752
λ = 0.8, β = 2 29.22/0.9745 28.54/0.9749
λ = 1, β = 1 29.26/0.9746 28.55/0.9750

5.4.6. Run Time and Number of Network Parameters

As our network contained three RDPs with significantly fewer parameters than those of other
heavy-weight dehazing models, how fast can the proposed method dehaze an image? How many
fewer parameters are contained in our dehazing model compared with other methods? In this section,
we mainly compare the average run time and number of parameters of the RDPN with the counterparts
of several state-of-the-art methods on a computer (Intel Xeon(R) CPU E5-2637 3.5 GHz). Related results
are provided in Table 9. Besides, the accuracy of different methods, e.g., average PSNR, obtained
by testing them on 500 outdoor images of the public SOTS dataset are also given in Table 9 for
comprehensive comparison. From that, we observed that our method ranked second in run time and
ranked third in the number of parameters, only second to PIDN and AODN. However, PIDN had
fewer parameters, which could be attributed to its use of a recurrent structure to share the parameters
in the network. AODN had much fewer parameters and a much shorter run time, because AODN only
used five convolutional layers to build the network. However, the design of AODN also led to poor
accuracy. From the last row of Table 9, we can see that our method outperformed AODN and most
dehazing methods, e.g., DCPDN, PWAB, AMEF and GPE, on outdoor images of the SOST dataset in
terms of PSNR by up to 4.25 dB at least, only second to PIDN [20]. Hence, our method was much more
efficient in comparison (the run time was reduced to 0.021 s) and could produce better results with
fewer parameters (the number of parameters was 1,534,799, only 6% of that used by DCPDN) than
these state-of-the-art methods.

Table 9. Comparison of the proposed RDPN with other state-of-the-art methods in terms of run time,
number of parameters and accuracy. PIDN was re-trained with our synthetic hazy images. Average
PSNR values and run time are reported on the outdoor images of the public SOTS dataset. Red, green
and blue indicate the best, second best and third best results, respectively.

PIDN [20] PWAB [13] AMEF [14] GPE [15] AODN [19] DCPDN [24] Ours

Platform PyTorch MATLAB MATLAB Python PyTorch Python PyTorch

Run time 0.115 0.46 1.67 2.46 0.002 0.056 0.021

Parameters 172,044 / / / 1761 12,446,386 1,534,799

accuracy 26.93 12.33 17.62 15.91 20.29 19.93 26.82
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5.4.7. Limitations

The training outdoor images were taken during the daytime and synthesized with white fog.
Therefore, the model did not hold for images taken in the evening or at night with strong grey smog.
Figure 9 shows that the RDPN was not able to produce a clear image (see Figure 9a) for a night-time
image (see Figure 9b). This was probably because the training dataset did not contain similar images,
resulting in the RDPN model failing to learn the corresponding mapping function. We plan to address
this problem by adding more comprehensive outdoor hazy images taken at different times into the
training dataset.

(a) (b)
Figure 9. The failed case for RDPN; (a) Night-time image; (b) Dehazing image.

6. Conclusions

In this paper, we presented a novel end-to-end residual dense pyramid network (RDPN) based
on the encoder and decoder architecture for image dehazing, where the proposed residual dense
pyramid (RDP) served as the basic building module. RDP used multiscale pyramid fusion (MPF) to
learn spatial information, leading to effective information fusion. After using one RDP in the encoder
and two RDPs in the decoder in RDPN, the proposed framework also adopted a pyramid pooling
module to capture the global content information from different scales before the final mapping.
Extensive experiments showed that the average PSNR of the proposed RDPN was 26.82 dB, which
outperformed most art-of-the-state methods, e.g., the recent densely connected pyramid dehazing
network, all-in-one dehazing network, enhanced pix2pix dehazing network, pixel-based alpha
blending, artificial multi-exposure image fusions and genetic programming estimator, by up to 4.25 dB.
Besides, the run time of the RDPN was reduced to 0.021 s, and the number of parameters in the network
was 1,534,799, which was only 6% of that used by the densely connected pyramid dehazing network.
Hence, RDPN achieved superior performance over state-of-the-art methods with a significantly smaller
model size and much fewer network parameters.
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